成都树德实验中学东区数学几何图形初步同步单元检测(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学几何模型部分解答题压轴题精选(难)
1.如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.
(1)求∠MON的度数;
(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;
(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;
(4)从(1)、(2)、(3)的结果中,你能看出什么规律?
【答案】(1)解:∠AOB=90°,∠BOC=30°,
∴∠AOC=90°+30=120°.
由角平分线的性质可知:∠MOC= ∠AOC=60°,∠CON= ∠BOC=15°.
∵∠MON=∠MOC﹣∠CON,
∴∠MON=60°﹣15°=45°
(2)解:∠AOB=α,∠BOC=30°,
∴∠AOC=α+30°.
由角平分线的性质可知:∠MOC= ∠AOC= α+15°,∠CON= ∠BOC=15°.
∵∠MON=∠MOC﹣∠CON,
∴∠MON= α+15°﹣15°= α
(3)解:∠AOB=90°,∠BOC=β,
∴∠AOC=β+90°.
由角平分线的性质可知:∠MOC= ∠AOC= β+45°,∠CON= ∠BOC= β.
∵∠MON=∠MOC﹣∠CON,
∴∠MON= β+45°﹣β=45°
(4)解:根据(1)、(2)、(3)可知∠MON= ∠BOC,与∠BOC的大小无关
【解析】【分析】(1)先求得∠AOC的度数,然后由角平分线的定义可知∠MOC=60°,
∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(2)先求得∠AOC=α+30°,由角平分线的定义可知∠MOC= α+15°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解
即可;(3)先求得∠AOC=β+90°,由角平分线的定义可知∠MOC= β+15°,∠CON= β,最后根据∠MON=∠MOC﹣∠CON求解即可;(4)根据计算结果找出其中的规律即可.
2.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为________度;
(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;
(3)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.
【答案】(1)90
(2)解:如图3,∠AOM﹣∠NOC=30°.
设∠AOC=α,由∠AOC:∠BOC=1:2可得
∠BOC=2α.
∵∠AOC+∠BOC=180°,
∴α+2α=180°.
解得α=60°.
即∠AOC=60°.
∴∠AON+∠NOC=60°.①
∵∠MON=90°,
∴∠AOM+∠AON=90°.②
由②﹣①,得∠AOM﹣∠NOC=30°;
(3)(ⅰ)如图4,当直角边ON在∠AOC外部时,
由OD平分∠AOC,可得∠BON=30°.
因此三角板绕点O逆时针旋转60°.
此时三角板的运动时间为:
t=60°÷15°=4(秒).
(ⅱ)如图5,当直角边ON在∠AOC内部时,
由ON平分∠AOC,可得∠CON=30°.
因此三角板绕点O逆时针旋转240°.
此时三角板的运动时间为:
t=240°÷15°=16(秒).
【解析】【解答】解:(1)由旋转的性质知,旋转角∠MON=90°.
故答案是:90;
【分析】(1)根据旋转的性质知,旋转角是∠MON;(2)如图3,利用平角的定义,结合已知条件“∠AOC:∠BOC=1:2”求得∠AOC=60°;然后由直角的性质、图中角与角间的数量关系推知∠AOM﹣∠NOC=30°;(3)需要分类讨论:(ⅰ)当直角边ON在∠AOC外部时,旋转角是60°;(ⅱ)当直角边ON在∠AOC内部时,旋转角是240°.
3.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.
(1)求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;
(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;
(4)你能用一句简洁的话,描述你发现的结论吗?
【答案】(1)MN=MC+NC= AC+ BC= (AC+BC)= ×(8+6)= ×14=7
(2)MN=MC+NC= (AC+BC)= a
(3)MN=MC-NC= AC- BC= (AC-BC)= b
(4)如图,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC的中点.那么MN就等于AB的一半.
【解析】【分析】(1)根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半,那么MC、CN的和就应该是AC、BC和的一半,也就是说MN是AB的一半,有了AC、CB的值,那么就有了AB的值,也就能求出MN的值了;(2)方法同(1)只不过AC、BC的值换成了AC+CB=a cm,其他步骤是一样的;(3)当C在线段AB的延长线上时,根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半.于是,MC、NC的差就应该是AC、BC的差的一半,也就是说MN是AC-BC即AB的一半.有AC-BC的值,MN也就能求出来了;(4)综合上面我们可发现,无论C在线段AB 的什么位置(包括延长线),无论AC、BC的值是多少,MN都恒等于AB的一半.
4.根据下图回答问题:
(1)如图1,CM平分∠ACD,AM平分∠BAC,∠MAC+∠ACM=90°,请判断AB与CD的位置关系并说明理由;
(2)如图2,当∠M=90°且AB与CD的位置关系保持(1)中的不变,当直角顶点M移动时,问∠BAM与∠MCD是否存在确定的数量关系?并说明理由;
(3)如图3,G为线段AC上一定点,点H为直线CD上一动点且AB与CD的位置关系保持(1)中的不变,当点H在射线CD上运动时(点C除外)∠CGH+∠CHG与∠BAC有何数量关系?猜想结论并说明理由.
【答案】(1)∵CM平分∠ACD,AM平分∠BAC,
∴∠BAC=2∠MAC,∠ACD=2∠ACM,
∵∠MAC+∠ACM=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD;
(2)∠BAM+∠MCD=90°,
理由:如图,过M作MF∥AB,
∵AB∥CD,
∴MF∥AB∥CD,
∴∠BAM=∠AMF,∠FMC=∠DCM,
∵∠M=90°,
∴∠BAM+∠MCD=90°;
(3)∠BAC=∠CHG+∠CGH.
理由:过点G作GP∥AB,
∵AB∥CD
∴GP∥CD,
∴∠BAC=∠PGC,∠CHG=∠PGH,
∴∠PGC=∠CHG+∠CGH,
∴∠BAC=∠CHG+∠CGH.
【解析】【分析】(1)已知CM平分∠ACD,AM平分∠BAC,根据角平分线的定义可得∠BAC=2∠MAC,∠ACD=2∠ACM,再由∠MAC+∠ACM=90°,即可得∠BAC+∠ACD=180°,根据同旁内角互补,两直线平行即可得AB∥CD;(2)∠BAM+∠MCD=90°,过M作MF∥AB,即可得MF∥AB∥CD,根据平行线的性质可得∠BAM=∠AMF,∠FMC=∠DCM,再由∠M=90°,即可得∠BAM+∠MCD=90°;(3)∠BAC=∠CHG+∠CGH,过点G作GP∥AB,即可得GP∥CD,根据平行线的性质可得∠BAC=∠PGC,∠CHG=∠PGH,所以PGC=∠CHG+∠CGH,即可得∠BAC=∠CHG+∠CGH.
5.如图1,已知,点A、B在直线a上,点C、B在直线b上,且于E.
(1)求证:;
(2)如图2,平分交于点F,平分交于点G,求
的度数;
(3)如图3,P为线段上一点,I为线段上一点,连接,N为的角平分线
上一点,且,则、、之间的数量关系是________. 【答案】(1)证明:过作 ,





(2)解:作,,
设,,
由(1)知:,,

∴,
∴,
同理:,

(3)
【解析】【解答】解:(3)结论:或

I.∠NCD在∠BCD内部时,
过I点作,过N点作,设∠IPN=∠BPN=x, =y,
∴∠BCD=3y.
∵a∥b,

∴,,,
∴,,
∴,


II. 在外部时,如图3(2):
过I点作,过N点作,设∠IPN=∠BPN=x, =y,
∴∠BCD=y.
∵a∥b,
∴IG∥a∥
∴,,,
∴,,
∴,

∴.
故答案为:.
【分析】(1) 过作EF∥a,由BC⊥AD可知,由平行可知,,从而可得 = + = ;
(2)作,,设,,由平行线性质和邻补角定义可得,,进而计算出
即可解答;
(3)分两种情况解答:I.∠NCD在∠BCD内部,II 外部,仿照(2)解答即可.
6.已知:直线EF//MN,点A、B分别为EF,MN上的动点,且∠ACB= a,BD平分∠CBN交EF于D.
(1)若∠FDB=120°,a=90°.如图1,求∠MBC与∠EAC的度数?
(2)延长AC交直线MN于G,这时a =80°,如图2,GH平分∠AGB交DB于点H,问∠GHB是否为定值,若是,请求值.若不是,请说明理由?
【答案】(1)解:如图1,过C作CP∥EF.
∵EF∥MN,∴EF∥MN∥CP.
∵EF∥MN,∴∠NBD=180°-∠FDB=180°-120°=60°.
∵BD平分∠CBN,∴∠CBD=∠NBD=60°,∴∠MBC=180°-∠CBD-∠NBD=180°-60°-60°=60°.
∵CP∥MN,∴∠PCB=∠MBC=60°,∴∠ACP=∠ACB-∠BCP=90°-60°=30°.
∵EF∥CP,∴∠EAC=∠ACP=30°
(2)解:∠GHB为定值50°.理由如下:
∵∠CBN是△CBG的外角,∴∠BCG=∠CBN﹣∠AGB.
∵GH平分∠AGB,BD平分∠CBN,∴∠HGB∠AGB,∠DBN∠CBN.
∵∠DBN是△HGB的外角,∴∠GHB=∠DBN﹣∠HGB∠CBN∠AGB(∠CBN ﹣∠AGB)∠BCG(180°-80°)=50°,故∠GHB是定值50°.
【解析】【分析】(1)过C作CP∥EF,进而得到EF∥MN∥CP,根据平行线的性质,求出∠DBN的度数,进而求出∠MBC、∠EAC的度数;(2)根据∠CBN是△CBG的外角,
得到∠BCG=∠CBN﹣∠AGB.根据角平分线的定义得到∠HGB∠AGB,∠DBN
∠CBN.由三角形外角的性质得到∠GHB=∠DBN﹣∠HGB∠CBN∠AGB
(∠CBN﹣∠AGB)∠BCG,即可得出结论.
7.如图,已知CD∥EF,A,B分别是CD和EF上一点,BC平分∠ABE,BD平分∠ABF
(1)证明:BD⊥BC;
(2)如图,若G是BF上一点,且∠BAG=50°,作∠DAG的平分线交BD于点P,求∠APD 的度数:
(3)如图,过A作AN⊥EF于点N,作AQ∥BC交EF于Q,AP平分∠BAN交EF于P,直接写出∠PAQ=________.
【答案】(1)证明:∵BC平分∠ABE,BD平分∠ABF
∴∠ABC= ∠ABE,∠ABD= ∠ABF
∴∠ABC+∠ABD= (∠ABE+∠ABF)= ×180°=90°
∴BD⊥BC
(2)解:∵CD∥EF
BD平分∠ABF
∴∠ADP=∠DBF= ∠ABF,∠DAB+∠ABF=180°
又AP平分∠DAG,∠BAG=50°
∴∠DAP= ∠DAG
∴∠APD=180°-∠DAP-∠ADP
=180°-∠DAG-∠ABF
=180°- (∠DAB-∠BAG)-∠ABF
=180°-∠DAB+ ×50°-∠ABF
=180°- (∠DAB+∠ABF)+25°
=180°- ×180°+25°
=115°
(3)45°
【解析】【解答】(3)解:如图,
∵AQ∥BC
∴∠1=∠4,∠2+∠3+∠4=180°,
∵BC平分∠ABE,
∴∠1=∠2=∠4,
∴∠3+∠4=90°,
又∵CD∥EF,AN⊥EF,AP平分∠BAN
∴∠PAN= (90°-∠3),∠NAQ=90°-∠4,
∴∠PAQ=∠PAN+∠NAQ= (90°-∠3)+(90°-∠4)
=45°- ∠3+90°-∠4
=135°-(∠3+∠4)
=135°-90°
=45°.
【分析】(1)根据角平分线和平角的定义可得∠CBD=90°,即可得出结论;(2)根据平行线的性质以及角平分线的定义可得∠ADP=∠DBF= ∠ABF,∠DAB+∠ABF=180°,∠DAP=
∠DAG,然后根据出三角形内角和即可求出∠APD的度数;(3)根据平行线的性质以及
角平分线的定义可得∠1=∠2=∠4,∠2+∠3+∠4=180°,即∠3+∠4=90°,根据垂直和平行线的性质以及角平分线的定义可得∠PAN= (90°-∠3),∠NAQ=90°-∠4,则∠PAQ=∠PAN+∠NAQ= (90°-∠3)+(90°-∠4),代入计算即可求解.
8.将一副直角三角板按如图1摆放在直线AD上直角三角板OBC和直角三角板MON,,,,,保持三角板OBC不
动,将三角板MON绕点O以每秒的速度顺时针方向旋转t秒
(1)如图2, ________度用含t的式子表示;
(2)在旋转的过程中,是否存在t的值,使?若存在,请求出t的值;若不存在,请说明理由.
(3)直线AD的位置不变,若在三角板MON开始顺时针旋转的同时,另一个三角板OBC 也绕点O以每秒的速度顺时针旋转.
当 ________秒时,;
请直接写出在旋转过程中,与的数量关系________ 关系式中不能含 .【答案】(1)
(2)解:当MO在∠BOC内部时,即t 时,根据题意得:
90﹣8t=4(45﹣8t)
解得:t ;
当MO在∠BOC外部时,即t 时,根据题意得:
90﹣8t=4(8t﹣45)
解得:t .
综上所述:t 或t
(3)5或10;3∠NOD+4∠BOM=270°.
【解析】【解答】(1)∠NOD一开始为90°,然后每秒减少8°,因此∠NOD=90﹣8t.
故答案为90﹣8t.
( 3 )①当MO在∠BOC内部时,即t 时,根据题意得:
8t﹣2t=30
解得:t=5;
当MO在∠BOC外部时,即t 时,根据题意得:
8t﹣2t=60
解得:t=10.
故答案为5或10.
②∵∠NOD=90﹣8t,∠BOM=6t,∴3∠NOD+4∠BOM=3(90﹣8t)+4×6t=270°.
即3∠NOD+4∠BOM=270°.
【分析】(1)把旋转前∠NOD的大小减去旋转的度数就是旋转后的∠NOD的大小.(2)相对MO与CO的位置有两种情况,所以要分类讨论,然后根据∠NOD=4∠COM建立关于t 的方程即可.(3)①其实是一个追赶问题,分MO没有追上CO与MO超过CO两种情况,然后分别列方程即可.②分别用t的代数式表示∠NOD和∠BOM,然后消去t即可得出它们的关系.
9.如图1,,点,分别在,上,射线绕点顺时针旋转至便立即逆时针回转,射线绕点顺时针旋转至便立即逆时针回转.射线转动的速度是每秒度,射线转动的速度是每秒度.
(1)直接写出的大小为________;
(2)射线、转动后对应的射线分别为、,射线交直线于点,若射线比射线先转动秒,设射线转动的时间为秒,求为多少时,直线直线?
(3)如图2,若射线、同时转动秒,转动的两条射线交于点,作
,点在上,请探究与的数量关系. 【答案】(1)60°
(2)解:设灯转动t秒,直线直线,
①当时,如图,






解得;
②当时,如图,
,,

,,
解得,
综上所述,当秒或秒时直线;
(3)解:和关系不会变化,
理由:设射线AM转动时间为m秒,
作,,,
,,

,,

而,




即,
和关系不变.
【解析】【解答】解:(1)∵

∴,
∴(两直线平行,内错角相等)
故结果为:;
【分析】(1)根据得到,再根据直线平行的性质即可得到答案;(2)设灯转动t秒,直线直线,分情况讨论重合前平行、重合后平行即可得到答案;(3)根据补角的性质表示出,再根据三角形内角和即可表示出,即可得到答案;
10.已知直线AB平行CD,直线EF分别截AB、CD于点E、F两点。

(1)如图①,有一动点P在线段CD之间运动(不与C,D两点重合),试探究∠1、∠2、∠3的等量等关系?试说明理由。

(2)如图②、③,当动点P在线段CD之外运动(不与C,D两点重合),问上述结论是否还成立?若不成立,试写出新的结论并说明理由。

【答案】(1)解:∠2=∠1+∠3理由如下:
如图,过点P作PQ∥AB,则∠1=∠APQ.
∵AB∥CD,PQ∥AB,
∴PQ∥CD.
∴∠3=∠CPQ.
∵∠2=∠APQ+∠CPQ
=∠1+∠3.
(2)解:解:②∠2=∠1+∠3不成立,新的结论为∠2=∠3 ∠1.理由如下:
如图,过点P作PQ∥AB,则∠1=∠APQ.
∵AB∥CD,PQ∥AB,
∴PQ∥CD.
∴∠3=∠CPQ.
∠2=∠CPQ ∠APQ
=∠3 ∠1.
③∠2=∠1+∠3不成立,新的结论为∠2=∠1 ∠3.理由如下:
如图,过点P作PQ∥AB,则∠1=∠APQ.
∵AB∥CD,PQ∥AB,
∴PQ∥CD.
∴∠3=∠CPQ.
∠2=∠APQ ∠CPQ
=∠1 ∠3.
综合②、③的结论,∠2= .
【解析】【分析】(1)∠2=∠1+∠3,理由如下:如图,过点P作PQ∥AB,利用平行线的判定与性质可得∠1=∠APQ,PQ∥CD∥AB,利用平行线的性质可得∠3=∠CPQ,由∠2=∠APQ+∠CPQ即得结论;
(2)不成立,新的结论为∠2=∠3∠1.理由:如图,过点P作PQ∥AB,利用平行线的判定与性质可得∠1=∠APQ,PQ∥CD∥AB,利用平行线的性质可得∠3=∠CPQ,由∠2=∠CPQ∠APQ即可求出结论;
(3)不成立,新的结论为∠2=∠1∠3.理由如下:同(1)可证∠1=∠APQ,∠3=∠CPQ,利用∠2=∠APQ∠CPQ即可求出结论.
11.如图所示,O为一个模拟钟面圆心,M、O、N 在一条直线上,指针OA、OB 分别从OM、ON 出发绕点 O 转动,OA 运动速度为每秒 30 ,OB 运动速度为每秒10 ,当一根指针与起始位置重合时,运动停止,设转动的时间为 t 秒,试解决下列问题:
(1)如图①,若OA顺时针转动,OB逆时针转动, =________秒时,OA与OB第一次重合;
(2)如图②,若OA、OB同时顺时针转动,
①当 =3秒时,∠AOB=________ ;
②当为何值时,三条射线OA、OB、ON其中一条射线是另两条射线夹角的角平分线?________
【答案】(1)4.5
(2);解:由题意知,
∴∠BON=10t ,∠AON=180-30t (0≤t≤6),∠AON=30t-180(6<t≤12).
当ON为∠AOB的角平分线时,有
180-30t =10t ,
解得:t =4.5;
当OA为∠BON的角平分线时,
10t =2(30t -180),
解得:t =7.2;
当OB为∠AON的角平分线时,
30t -180=2×10t ,
解得:t =18(舍去);
∴经过4.5,7.2秒时,射线OA、OB、ON其中一条射线是另外两条射线夹角的平分线
【解析】【解答】(1)解:若OA顺时针转动,OB逆时针转动,
∴∠AOM+∠BON=180 ,
∴,
解得:;
∴秒,OA与OB第一次重合;
故答案为:4.5
2)解:①若OA、OB同时顺时针转动,
∴,,
∴;
故答案为:120;
【分析】(1)设t秒后第一次重合.根据题意,列出方程,解方程即可;(2)①利用180 减去OA转动的角度,加上OB转动的角度,即可得到答案;
②先用t的代数式表示∠BON和∠AON,然后分为三种情况进行讨论:当ON、OA、OB为角平分线时,分别求出t的值,即可得到答案.
12.如图,∠AOB是平角,OD是∠AOC的角平分线,∠COE=∠BOE.
(1)若∠AOC= 50 ,则∠DOE=________ ;
(2)若∠AOC= 50 ,则图中与∠COD互补的角为________;
(3)当∠AOC的大小发生改变时,∠DOE的大小是否发生改变?为什么?
【答案】(1)
(2)∠BOD
(3)解:不发生改变,
设∠AOC=2x .
∵OD是∠AOC的平分线,
∴∠AOD =∠COD=x,
∴∠BOC=180 ̶2x,
∵∠COE=∠BOE,
∴∠COE==90 +x,
∴∠DOE=90 +x ̶x=90
【解析】【解答】(1)解:∵∠AOC=50 ,
∴∠BOC=180 130 ,
∵OD是∠AOC的角平分线,
∴∠AOD=∠COD=25 ,
∴∠COE=∠BOE= ,
∴∠DOE=115 ;
故答案为:90
( 2 )解:由(1)知∠AOD=∠COD=25 ,
∴∠BOD=155 ,
∴图中与∠COD互补的角为∠BOD;
故答案为:∠BOD
【分析】(1)由∠AOC=50 ,得到∠AOD=∠COD=25 ,∠BOC=130 ,求得∠COE=∠BOE=115 .即可求出∠DOE;(2)由(1)得∠AOD=∠COD=25 ,则∠BOD=155 ,即可得到答案;(3)设∠AOC=2x,则∠AOD =∠COD =x,得到∠COE=90 +x,即可得到∠DOE=90 .。

相关文档
最新文档