八年级数学平面直角坐标系优秀教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系〔第一课时〕导学案
复习有序实数对的含义:
展示图片,周雨佳位于第2列第3排,记作〔2,3〕
环节一:建立平面直角坐标系的必要性
问题1:数轴的三要素是什么?
问题2:请在数轴上标出A,B,C所对应的点。

数轴上的点与______是一一对应的关系。

问题3:图中A点可以用数轴上的点来表示吗?
〔不能,原因:数轴上只能表示一个数据,而要确定一个位置需要两个数据,有序实数对是两个数据〕
环节二:建立平面直角坐标系
问题一:可不可以利用数轴上点表示数的启示我们来表示平面上点的位置?
〔1〕需要几条数轴?怎么摆放?
〔2〕原点、正方向、单位长度怎么确定?
〔3〕那图中的点A的位置怎么表示?
主要概念:
〔学生阅读课本概念,再集体总结〕
在平面内,两条相互垂直且具有公共原点的数轴组成平面直角坐标系.
分别取向右、向上的方向为正方向,
水平的数轴叫做x轴〔横轴〕,铅直的数轴叫做y轴〔纵轴〕.x轴、y轴统称为坐标轴。

公共原点成为平面直角坐标系的原点。

建立平面直角坐标系后,平面上的点就可以用有序实数对表示,称有序实数对〔a,b〕叫做点P的坐标。

先用A〔1,2〕举例。

〔要点:先横后纵、逗号隔开、外加括号〕
练习:写出图中A,B,C,D,E各点的坐标。

两条坐标系将坐标平面分成四局部.右上为第一象限,逆时针旋转依次为第二象限、第三象限、第四象限。

坐标轴不属于任何象限。

y
x
–1
–2
–3
–4
–5
–6
1
2
3
4
5
6
–1
–2
–3
–4
–5
–6123456
C
D
E
B
A
O
环节三:探究平面直角坐标系中的点与有序实数对的关系。

例:写出多边形ABCDEF 各个顶点的坐标。

结论:平面直角坐标系中的任意一点都可以用唯一的一个有序实数对表示。

问题4:在图3-10所示的平面直角坐标系中,〔1〕描出以下各点:A 〔-5,0〕、B 〔1,4〕、C 〔3,3〕、D 〔1,0〕、E 〔3,-3〕、F 〔1,-4〕.
〔2〕依次连接A,B,C,D,E,F,A ,你得到什么图形?
总结:平面直角坐标系的点与___________
练习:
1.:A 〔0,1〕,B 〔2,0〕,C 〔4,3〕,
〔1〕在坐标系中描出各点,画出△ABC;
〔2〕求△ABC 的面积。

2.如图,Rt △ABC 中,∠C=90°,AC=3,BC=4标系.求B,C 两点的坐标。

小结:1、根本概念 平面直角坐标系、原点、坐标轴、坐标、象限 2、平面直角坐标系中的点与有序实数对的关系。

相关文档
最新文档