数学学科的六大核心素养
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学学科的六大核心素养
数学是研究数量、结构、变化、空间以及信息等概念的一门学科。
以下是本站分享的数学学科的六大核心素养,希望能帮助到大家!
数学学科的六大核心素养
我国近现代的数学教育走过了一段复杂曲折的历程。
上世纪初,主要“仿日”,通过日本间接地学习西方教育,以“癸卯学制”为标志,主张“中学为体,西学为用”。
辛亥革命后,这个学制废止,转而“仪美”,系统学习美国教育,杜威的教育思想被广为传播,产生巨大影响。
新中国成立后开始全面“学苏”,机械移植和翻译苏联教材,缩短学制,减少教学内容。
半个多世纪的时间,在学习和模仿中,有收获,也有教训。
虽然鲜有自己的特色,但“遍尝各家风味”,对世界各主要国家数学教育的优缺点都有所了解和体会。
上世纪60年代以来,以“双基教学”为特征的我国数学教学理论体系逐渐形成。
双基教学即注重基础知识、基本技能的教学和基本能力的培养,以教师为主导,以学生为主体,以学法为基础,注重教法,具有启发性、问题驱动性、示范性、层次性、巩固性的特征。
双基教学理论既是中国古代教育思想的发扬,又深受中国传统考试文化的影响。
在重视“双基教学”的口号下,一些学校大搞题海战术,只顾成绩,不管其它,加重了师生负担,造成应试教育和片面追求升学率的严重后果。
为了改变这种情况,“三基教学”和“四基教学”的概念相继出现,目的是在继承双基教学传统的基础上,进一步适应和体现时代的要求。
三基教学即在基础知识和基本能力技能之外,增加“基本思想和基本方法”,四基教学则指在三基之外再增加一项“基本活动经验”。
新一轮基础教育课程改革实施以来,新的思潮和观点不断涌现,其中影响较大的,一是素质教育的口号,二是情感态度价值观的培养。
围绕这两个主题,多年来,教育工作者进行了艰苦的探索实践,取得了一定的成绩,推动了我国基础教育事业的发展。
然而,素质教育和情感态度价值观是较为宏观的概念,如何使其落到实处,便于操作,易于实施呢?学科核心素养的提出很好地解决了这个问题。
20XX年4月,教育部印发《关于全面深化课程改革落实立德树人根本任务的意见》,要求统筹各方面的力量,根据学生的成长规律和社会对人才的需求,把对学生德智体美全面发展总体要求和社会主义核心价值观的有关内容细化,研究制定各学段学生发展的核心素养体系。
各学科核心素养的内容和要求既相互区别又相互联系,不能截然分开。
就数学学科而言,研究表明,数学核心素养包含数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析等六个方面。
数学学科核心素养的培养,要通过学科教学和综合实
践活动课程来具体实施。
第一,数学学科教学活动是数学学科素养培养的主要途径。
数学核心素养的六个方面在小学、初中、高中、本专科、研究生教育等五个阶段的内涵、学科价值和教育价值、表现等方面的要求各不相同,要仔细推敲,准确把握,切实贯穿到学科教学活动中去。
第二,研究性学习综合实践活动课程是数学学科素养培养的重要途径。
由于研究性学习属于综合课程,所以必然包含数学学科的相关知识内容,又由于其实践活动课程的特点,对数学建模、数学抽象、数学推理等方面都有较高的要求。
第三,青少年科技创新活动是数学学科素养培养的很好途径。
全国青少年科技创新大赛是一项具有20多年历史的全国性青少年科技创新成果和科学探究项目的综合性科技竞赛,是面向在校中小学生开展的具有示范性和导向性的科技教育活动之一,是目前我国中小学各类科技活动优秀成果集中展示的一种形式。
大赛竞赛项目分为数学、物理学、化学、微生物学等13个研究领域,具有科学性、先进性、实用性的特点。
在活动中培养和提高相关的数学学科素养,可以起到单纯的学科教学难以起到的作用。
第四,通用技术课程也是数学学科素养培养的有效途径。
通用技术课程立足实践,注重创造,高度综合,融科学与人文于一体,课程学习与实践中,必然涉及相关的数学核心素养,与其它素养相辅相成,使学生的身心素质得到全面健康的发展。
从双基教学的产生,到素质教育、情感态度价值观、学生学科核心素养等一系列理念的提出、研究和实施,不难发现,在这
个变化发展的过程中,教育教学目标的实施一步步具体、明确、可操作,充分体现了基础教育科学研究的不断深入,体现了教育研究水平的不断提高。
我们要深刻体会这种变化,最大限度地提高教学效率和教育质量,为现代化建设事业培养全面发展的合格接班人。
中国学生数学学习应培养好六大核心素养
11月6日下午,浙江省基础教育研究中心基地校数学学科课程纲要建设推进研讨会主办者,请来了教育部《普通高中数学课程标准》修订组组长、博士生导师王尚志教授作了“关于普通高中数学课程标准修订”的专题报告,提出中国学生在数学学习中应培养好数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析六大核心素养。
这个报告内容新鲜深刻,昭示了高中数学课程进一步改革的思想,也映射出整个高中课程改革的发展方向,有着极其重要的意义。
王尚志教授首先介绍了高中数学课程修订的三大背景:即科学技术迅猛发展,21世纪对人才基本能力的要求,教育的深入发展逐步建立法制化、制度化的标志。
他阐述了高中课程修订的思路,切入点为国家教育立德树人工程;这一工程要求落实到从幼儿园到研究生的所有课程中。
而且,高中课程的修订作为了突破口。
王教授指出,1962年的大纲提出了运算、空间想象、逻辑推
理三大能力;本世纪初的高中数学的课改大纲发展为抽象概括、逻辑推理、空间想象、运算求解、数据处理五大能力。
而数学建模目前仍然是短板。
短板应当补齐。
数学建模强调应用。
数学有对思维训练、实用价值以及备考训练的三大作用。
数学对思维的训练,主要是演绎与归纳的逻辑推理能力。
近代统计学的发展促进了对归纳推理的发展。
演绎在高中乃至整个基础教育阶段的数学学习中的展现形式就是运算。
直观想象非常重要。
证明的思路是看出来的,要教育学生学会用图形来探测与表达结果。
高中数学教育的现状要继续改革发展。
小学、初中的数学教育也要贯彻课改精神,做好过渡。
怎样提高高中学生的数学能力?王教授指出,必修课程要减少。
要给学生充分的自修与钻研时间。
学有余力者让他们先修大学课程。
加拿大等教育先进的国家,高中生已经达到大二水平。
而且都是自学的。
中国高中数学教学大量刷题练速度的风气要扭转过来。
教师的思路要开,胸怀要大。
数学教学中不要无原则地搞一题多解。
数学高考要延长考试时间,或者减少题量。
考试要着眼于能力,不能变成考技巧。
让平时拼命刷题、反复复习、机械操练的考生占不了便宜。
高考出的题目要有弹性,要出一些背景题。
要进一步减少选择题。
增加点阅卷成本,为了真正培养好学生,也是值得的。
再说,数学运算题、背景题的阅卷再烦,也烦不过语文考试的作文题。
修订组向浙江省考试院提出建议,得到认可。
王教授说,我们通过调查研究,形成共同声音,帮助领导科学决策。
我们的意见和建议,教育部部长也认同了,以后不设考纲,高考以课标为标准。
王教授举了一个发人深省的例子:有一所“985”高校,学生的高考数学平均分在125以上,入学后的10月份组织学生做过的高考题目的考试,平均分降到100;到同一年的12月再考一次同样的题目,平均分只有及格。
这说明很多题目学生做过就忘了。
考那样的题目,高中那样的教法,没有多大积极意义。
高考制度与高中课程的改革,要给学生脱颖而出的机会与条件。
我们可以通过数学建模等形式,让学生的才华呈现出来。
以后高校录取不会斤斤计较一分两分,要着眼于学生的核心素养。
数学学科的六大核心素养
一数学抽象
数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程。
主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并且用数学符号或者数学术语予以表征。
数学抽象是数学的基本思想,是形成理性思维的重要基础,反映了数学的本质特征,贯穿在数学的产生、发展、应用的过程中。
数学抽象使得数学成为高度概括、表达准确、结论一般、有序多级的系统。
在数学抽象核心素养的形成过程中,积累从具体到抽象的活
动经验。
学生能更好地理解数学概念、命题、方法和体系,能通过抽象、概括去认识、理解、把握事物的数学本质,能逐渐养成一般性思考问题的习惯,能在其他学科的学习中主动运用数学抽象的思维方式解决问题。
二逻辑推理
逻辑推理是指从一些事实和命题出发,依据逻辑规则推出一个命题的思维过程。
主要包括两类:一类是从特殊到一般的推理,推理形式主要有归纳、类比;一类是从一般到特殊的推理,推理形式主要有演绎。
逻辑推理是得到数学结论、构建数学体系的重要方式,是数学严谨性的基本保证,是人们在数学活动中进行交流的基本思维品质。
在逻辑推理核心素养的形成过程中,学生能够发现问题和提出命题;能掌握推理的基本形式,表述论证的过程;能理解数学知识之间的联系,建构知识框架;形成有论据、有条理、合乎逻辑的思维品质,增强数学交流能力。
三数学建模
数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程。
主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,求解结论,验证结果并改进模型,最终解决实际问题。
数学模型构建了数学与外部世界的桥梁,是数学应用的重要
形式。
数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力。
在数学建模核心素养的形成过程中,积累用数学解决实际问题的经验。
学生能够在实际情境中发现和提出问题;能够针对问题建立数学模型;能够运用数学知识求解模型,并尝试基于现实背景验证模型和完善模型;能够提升应用能力,增强创新意识。
四直观想象
直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用图形理解和解决数学问题的过程。
主要包括:借助空间认识事物的位置关系、形态变化与运动规律;利用图形描述、分析数学问题;建立形与数的联系;构建数学问题的直观模型,探索解决问题的思路。
直观想象是发现和提出数学问题、分析和解决数学问题的重要手段,是探索和形成论证思路、进行逻辑推理、构建抽象结构的思维基础。
在直观想象核心素养的形成过程中,学生能够进一步发展几何直观和空间想象能力,增强运用图形和空间想象思考问题的意识,提升数形结合的能力,感悟事物的本质,培养创新思维。
五数学运算
数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的过程。
主要包括:理解运算对象,掌握运算法则,探究运算方向,选择运算方法,设计运算程序,求得运算结果等。
数学运算是数学活动的基本形式,也是演绎推理的一种形式,是得到数学结果的重要手段。
数学运算是计算机解决问题的基础。
在数学运算核心素养的形成过程中,学生能够进一步发展数学运算能力;能有效借助运算方法解决实际问题;能够通过运算促进数学思维发展,养成程序化思考问题的习惯;形成一丝不苟、严谨求实的科学精神。
六数据分析
数据分析是指针对研究对象获得相关数据,运用统计方法对数据中的有用信息进行分析和推断,形成知识的过程。
主要包括:收集数据,整理数据,提取信息,构建模型对信息进行分析、推断,获得结论。
数据分析是大数据时代数学应用的主要方法,已经深入到现代社会生活和科学研究的各个方面。
在数据分析核心素养的形成过程中,学生能够提升数据处理的能力,增强基于数据表达现实问题的意识,养成通过数据思考问题的习惯,积累依托数据探索事物本质、关联和规律的活动经验。