数学七年级上册数学期末试卷(带答案)-百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学七年级上册数学期末试卷(带答案)-百度文库
一、选择题
1.当x 取2时,代数式
(1)2x x -的值是( ) A .0 B .1
C .2
D .3 2.将连续的奇数1、3、5、7、…、,按一定规律排成如表:
图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( )
A .22
B .70
C .182
D .206 3.一周时间有604800秒,604800用科学记数法表示为( )
A .2604810⨯
B .56.04810⨯
C .66.04810⨯
D .60.604810⨯ 4.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()
A .60°
B .80°
C .150°
D .170°
5.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( )
A .50°
B .130°
C .50°或 90°
D .50°或 130° 6.解方程121123
x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1
C .3(x +1)﹣2(2x ﹣1)=6
D .3(x +1)﹣2×2x ﹣1=6 7.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )
A.48°B.42°C.36°D.33°
8.下列各数中,有理数是( )
A.2B.πC.3.14 D.37
9.下列调查中,最适合采用全面调查(普查)的是( )
A.对广州市某校七(1)班同学的视力情况的调查
B.对广州市市民知晓“礼让行人”交通新规情况的调查
C.对广州市中学生观看电影《厉害了,我的国》情况的调查
D.对广州市中学生每周课外阅读时间情况的调查
10.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x人到甲处,则所列方程是()
A.2(30+x)=24﹣x B.2(30﹣x)=24+x
C.30﹣x=2(24+x)D.30+x=2(24﹣x)
11.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是()
A.设B.和C.中D.山
12.把1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是()
A.1685 B.1795 C.2265 D.2125
二、填空题
∠的度13.如图,点A在点B的北偏西30方向,点C在点B的南偏东60︒方向.则ABC
数是__________.
14.已知方程22x a ax +=+的解为3x =,则a 的值为__________.
15.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米.
16.把5,5,35按从小到大的顺序排列为______.
17.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______.
18.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是
___________.
19.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.
20.计算:()222a -=____;()2323x x ⋅-=_____.
21.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.
22.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)
23.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.
24.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.
三、压轴题
25.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.
(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC =,BE=;
(2)当线段CE运动到点A在C、E之间时,
①设AF长为x,用含x的代数式表示BE=(结果需化简
.....);
②求BE与CF的数量关系;
(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.
26.借助一副三角板,可以得到一些平面图形
(1)如图1,∠AOC=度.由射线OA,OB,OC组成的所有小于平角的和是多少度?
(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;
(3)利用图3,反向延长射线OA到M,OE平分∠BOM,OF平分∠COM,请按题意补全图(3),并求出∠EOF的度数.
27.如图,数轴上点A表示的数为4
-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度
向左匀速运动.设运动时间为t秒(t0)
>.
()1A,B两点间的距离等于______,线段AB的中点表示的数为______;
()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______; ()3求当t 为何值时,1PQ AB 2
=? ()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.
28.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A ,B 在数轴上分别对应的数为a ,b (a <b ),则AB 的长度可以表示为AB =b -a .
请你用以上知识解决问题:
如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A 点,再向右移动3个单位长度到达B 点,然后向右移动5个单位长度到达C 点.
(1)请你在图②的数轴上表示出A ,B ,C 三点的位置.
(2)若点A 以每秒1个单位长度的速度向左移动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t 秒.
①当t =2时,求AB 和AC 的长度;
②试探究:在移动过程中,3AC -4AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.
29.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点
(1)若AP=2时,PM=____;
(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;
(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.
30.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.
(1)点D 表示的数是 ;(直接写出结果)
(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时.
①求t 的值;
②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若
不存在,请说明理由.
31.(阅读理解)
若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.
例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)
如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.
(1)数所表示的点是(M,N)的优点;
(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?
32.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).
(1)当甲追上乙时,x = .
(2)请用含x的代数式表示y.
当甲追上乙前,y= ;
当甲追上乙后,甲到达C之前,y= ;
当甲到达C之后,乙到达C之前,y= .
问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.
(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.
(2)若从4:00起计时,求几分钟后分针与时针第一次重合.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
把x 等于2代入代数式即可得出答案.
【详解】
解:
根据题意可得:
把2x =代入(1)2
x x -中得: (1)21==122
x x -⨯, 故答案为:B.
【点睛】
本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.
2.D
解析:D
【解析】
【分析】
根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +,
根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案.
【详解】
设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +
2x -,x ,2x +这三个数在同一行
∴x 的个位数只能是3或5或7
∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+
A .令41022x += 解得3x =,符合要求;
B .令41070x += 解得15x =,符合要求;
C .令410182x +=解得43x =,符合要求;
D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D.
【点睛】
本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.
3.B
解析:B
【解析】
【分析】
科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.
【详解】
604800的小数点向左移动5位得到6.048,
所以数字604800用科学记数法表示为56.04810⨯,
故选B .
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.
4.A
解析:A
【解析】
【分析】
延长CD 交直线a 于E .由∠ADC =∠AED +∠DAE ,判断出∠ADC >70°即可解决问题.
【详解】
解:延长CD 交直线a 于E .
∵a ∥b ,
∴∠AED =∠DCF ,
∵AB∥CD,
∴∠DCF=∠ABC=70°,
∴∠AED=70°
∵∠ADC=∠AED+∠DAE,
∴∠ADC>70°,
故选A.
【点睛】
本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
5.D
解析:D
【解析】
【分析】
根据题意画出图形,再分别计算即可.
【详解】
根据题意画图如下;
(1)
∵OC⊥OD,
∴∠COD=90°,
∵∠AOC=40°,
∴∠BOD=180°﹣90°﹣40°=50°,
(2)
∵OC⊥OD,
∴∠COD=90°,
∵∠AOC=40°,
∴∠AOD=50°,
∴∠BOD=180°﹣50°=130°,
故选D.
【点睛】
此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.
6.C
解析:C
【解析】
【分析】
方程两边都乘以分母的最小公倍数即可.
【详解】
解:方程两边同时乘以6,得:3(1)2(21)6x x +--=,
故选:C .
【点睛】
本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.
7.A
解析:A
【解析】
【分析】
首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果.
【详解】
解:OB 平分AOC ∠,18AOB ∠=︒,
236AOC AOB ∴∠=∠=︒,
又84AOD ∠=︒, 843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.
故选:A .
【点睛】
本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.
8.C
解析:C
【解析】
【分析】
根据有理数及无理数的概念逐一进行分析即可得.
【详解】
B. π是无理数,故不符合题意;
C. 3.14是有理数,故符合题意;
D.
故选C.
【点睛】
本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.
9.A
解析:A
【解析】
【分析】
根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.
【详解】
A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;
B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;
C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;
D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,
故选A.
【点睛】
本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.
10.D
解析:D
【解析】
【分析】
设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.
【详解】
设应从乙处调x人到甲处,依题意,得:
30+x=2(24﹣x).
故选:D.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.
11.A
解析:A
【解析】
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“美”与“设”是相对面,
“和”与“中”是相对面,
“建”与“山”是相对面.
故选:A .
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
12.B
解析:B
【解析】
【分析】
寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9.
【详解】
解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,
A 选项51685,357a a ==,可以作为中间数;
B 选项51795,359a a ==,不能作为中间数;
C 选项52265,453a a ==,可以作为中间数;
D 选项52125,425a a ==,可以作为中间数.
故选:B
【点睛】
本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.
二、填空题
13.【解析】
【分析】
由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.
【详解】
解:如图:
由题意,得∠ABD=30°,∠EBC=60°,
∴∠FBC
解析:150︒
【解析】
【分析】
由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.
【详解】
解:如图:
由题意,得∠ABD=30°,∠EBC=60°,
∴∠FBC=90°-∠EBC=90°-60°=30°,
∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,
故答案为150 .
【点睛】
本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.14.2
【解析】
【分析】
把x=3代入方程计算即可求出a的值.
【详解】
解:把x=3代入方程得:6+a=3a+2,
解得:a=2.
故答案为:2
【点睛】
此题考查了一元一次方程的解,方程的解即为能
解析:2
【解析】
【分析】
把x=3代入方程计算即可求出a的值.
【详解】
解:把x=3代入方程得:6+a=3a+2,
解得:a=2.
故答案为:2
【点睛】
此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.【解析】
【分析】
根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.
【详解】
解:20﹣(﹣9)=20+9=29,
故答案为:29.
【点睛】
此题主要考查了有理数的减法,关键是
解析:【解析】
【分析】
根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.
【详解】
解:20﹣(﹣9)=20+9=29,
故答案为:29.
【点睛】
此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.
16.【解析】
【分析】
分别对其进行6次方,比较最后的大小进而得出答案.
【详解】
解:,5,都大于0,
则,
,
故答案为:.
【点睛】
本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进
5<<
【解析】
【分析】
分别对其进行6次方,比较最后的大小进而得出答案.
【详解】
解:50,
则62636555=<=<,
5<<,
5<
<. 【点睛】
本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可.
17.1
【解析】
【分析】
把x=2代入转换成含有a的一元一次方程,求解即可得
【详解】
由题意可知2×(a+1)−4a=0
∴2a+2−4a=0
∴2a=2
∴a=1
故本题答案应为:1
【点睛】
解
解析:1
【解析】
【分析】
把x=2代入转换成含有a的一元一次方程,求解即可得
【详解】
由题意可知2×(a+1)−4a=0
∴2a+2−4a=0
∴2a=2
∴a=1
故本题答案应为:1
【点睛】
解一元一次方程是本题的考点,熟练掌握其解法是解题的关键
18.-3
【解析】
【分析】
根据题意将代入方程即可得到关于a,b的代数式,变形即可得出答案. 【详解】
解:将代入方程得到,变形得到,所以=
故填-3.
【点睛】
本题考查利用方程的对代数式求值,将方
解析:-3
【解析】
【分析】
x=-代入方程即可得到关于a,b的代数式,变形即可得出答案.根据题意将1
【详解】
解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以
241a b -+=2(2)1 3.a b -+=-
故填-3.
【点睛】
本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可. 19.5
【解析】
【分析】
根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.
【详解】
解:∵学生总人数=25÷50%=50(人),
∴不合格的学生人数=50×(1-5
解析:5
【解析】
【分析】
根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.
【详解】
解:∵学生总人数=25÷50%=50(人),
∴不合格的学生人数=50×(1-50%-40%)=5(人),
故答案为:5.
【点睛】
本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.
20.【解析】
【分析】
根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答
【详解】
【点睛】
此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -
【解析】
【分析】
根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答
【详解】
()222a-=44a
()
23
⋅-=5
x x
23
-
6x
【点睛】
此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键
21.56
【解析】
【分析】
由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案
【详解】
样本容量为80,某组样本的频率为0.7,
该组样本的频数=0.7×80
解析:56
【解析】
【分析】
由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案
【详解】
样本容量为80,某组样本的频率为0.7,
该组样本的频数=0.7×80=56
故答案为:56
【点睛】
此题考查频率分布表,掌握运算法则是解题关键
22.>
【解析】
【分析】
根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.
【详解】
解:,,
.
故答案为:
【点睛】
本题考查了多重符号化简和有理数的大小比较,
解析:>
【解析】
【分析】
根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.
【详解】
解:(9)9--=,(9)9-+=-,
(9)(9)∴-->-+.
故答案为:>
【点睛】
本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.
23.5
【解析】
【分析】
根据平移的性质可得BC=3cm ,继而由BE=8cm ,CE=BE-BC 即可求得答案.
【详解】
∵△ABE 向右平移3cm 得到△DCF,
∴BC=3cm,
∵BE=8cm,
∴C
解析:5
【解析】
【分析】
根据平移的性质可得BC=3cm ,继而由BE=8cm ,CE=BE-BC 即可求得答案.
【详解】
∵△ABE 向右平移3cm 得到△DCF ,
∴BC=3cm ,
∵BE=8cm ,
∴CE=BE-BC=8-3=5cm ,
故答案为:5.
【点睛】
本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键. 24.6040
【解析】
【分析】
根据前3个图,得出基础图形的个数规律,写出第n 个图案中的基础图形个数
表达式,代入2013即可得出答案.
【详解】
第1个图案中有1+3=4个基础图案,
第2个图案中有1
解析:6040
【解析】
【分析】
根据前3个图,得出基础图形的个数规律,写出第n 个图案中的基础图形个数表达式,代入2013即可得出答案.
【详解】
第1个图案中有1+3=4个基础图案,
第2个图案中有1+3+3=7个基础图案,
第3个图案中有1+3+3+3=10个基础图案,
……
第n 个图案中有1+3+3+3+…3=(1+3n)个基础图案,
当n=2013时,1+3n=1+3×2013=6040,
故答案为:6040.
【点睛】
本题考查图形规律问题,由前3个图案得出规律,写出第n 个图案中的基础图形个数表达式是解题的关键.
三、压轴题
25.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或
487或527 【解析】
【分析】
(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;
(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案
(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解
【详解】
(1)数轴上A 、B 两点对应的数分别是-4、12,
∴AB=16,
∵CE=8,CF=1,∴EF=7,
∵点F 是AE 的中点,∴AF=EF=7,
,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,
故答案为16,6,2;
(2)∵点F 是AE 的中点,∴AF=EF ,
设AF=EF=x,∴CF=8﹣x ,
∴BE=16﹣2x=2(8﹣x ),
∴BE=2CF.
故答案为①162x -②2BE CF =;
(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,
=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,
解得:t=1或3;
②当6<t ≤8时,P 对应数()33126t 22
t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12
t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527
; 故答案为t=1或3或
487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健
26.(1)75°,150°;(2)15°;(3)15°.
【解析】
【分析】
(1)根据三角板的特殊性角的度数,求出∠AOC 即可,把∠AOC 、∠BOC 、∠AOB 相加即可求出射线OA ,OB ,OC 组成的所有小于平角的和;
(2)依题意设∠2=x ,列等式,解方程求出即可;
(3)依据题意求出∠BOM ,∠COM ,再根据角平分线的性质得出∠MOE ,∠MOF ,即可求出∠EOF .
【详解】
解:(1)∵∠BOC =30°,∠AOB =45°,
∴∠AOC =75°,
∴∠AOC +∠BOC +∠AOB =150°;
答:由射线OA ,OB ,OC 组成的所有小于平角的和是150°;
故答案为:75;
(2)设∠2=x ,则∠1=3x +30°,
∵∠1+∠2=90°,
∴x +3x +30°=90°,
∴x =15°,
∴∠2=15°,
答:∠2的度数是15°;
(3)如图所示,∵∠BOM =180°﹣45°=135°,∠COM =180°﹣15°=165°,
∵OE 为∠BOM 的平分线,OF 为∠COM 的平分线,
∴∠MOF =
12∠COM =82.5°,∠MOE =12
∠MOB =67.5°, ∴∠EOF =∠MOF ﹣∠MOE =15°.
【点睛】
本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.
27.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.
【解析】
【分析】
(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;
(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;
Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.
(3)由题意,1PQ AB 2
=
表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.
【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,
A ∴,
B 两点间的距离等于41620--=,线段AB 的中点表示的数为
41662
-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,
∴点P 表示的数为:43t -+,
点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,
∴点Q 表示的数为:162t -,
故答案为43t -+,162t -
()13PQ AB 2
= ()43t 162t 10∴-+--=
t 2∴=或6
答:t 2=或6时,1PQ AB 2
= ()4线段MN 的长度不会变化,
点M 为PA 的中点,点N 为PB 的中点,
1PM PA 2∴=,1PN PB 2
= ()1MN PM PN PA PB 2∴=-=
- 1MN AB 102
∴== 【点睛】
本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.
28.(1)详见解析;(2)①16;②在移动过程中,3AC ﹣4AB 的值不变
【解析】
【分析】
(1)根据点的移动规律在数轴上作出对应的点即可;
(2)①当t =2时,先求出A 、B 、C 点表示的数,然后利用定义求出AB 、AC 的长即可; ②先求出A 、B 、C 点表示的数,然后利用定义求出AB 、AC 的长,代入3AC -4AB 即可得到结论.
【详解】
(1)A ,B ,C 三点的位置如图所示:
.
(2)①当t =2时,A 点表示的数为-4,B 点表示的数为5,C 点表示的数为12,∴AB =5-(-4)=9,AC =12-(-4)=16.
②3AC -4AB 的值不变.
当移动时间为t 秒时,A 点表示的数为-t -2,B 点表示的数为2t +1,C 点表示的数为3t +6,则:AC =(3t +6)-(-t -2)=4t +8,AB =(2t +1)-(-t -2)=3t +3,∴3AC -4AB =3(4t +8)-4(3t +3)=12t +24-12t -12=12.
即3AC ﹣4AB 的值为定值12,∴在移动过程中,3AC ﹣4AB 的值不变.
【点睛】
本题考查了数轴上的动点问题.表示出对应点所表示的数是解答本题的关键.
29.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127
t =
或6t =. 【解析】
【分析】
(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;
(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;
(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.
【详解】
(1)5 ;
(2)∵点A 表示的数是5-
∴点B 表示的数是7
∵点P 运动3秒是9个单位长度,M 为PB 的中点
∴PM=
12
PB=4.5,即点M 表示的数是2.5 ∵FM=2PM
∴FM=9
∴点F 表示的数是11.5或者-6.5
(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,
则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=
12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127
; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,
则PB=2QB ,
则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.
【点睛】
本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.
30.(1)16;(2)①t 的值为3或
143秒;②存在,P 表示的数为314. 【解析】
【分析】
(1)由数轴可知,AB=3,则CD=6,所以D 表示的数为16,
(2)①当运动时间是t 秒时,在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t, C 点表示的数为10-t ,D 点表示的数为16-t ,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=143
秒时,满足3BD PA PC -=的点P , 注意P 为线段
AB 上的点对x 的值的限制.
【详解】
(1)16
(2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.
当BC =2,点B 在点C 的右边时,
由题意得:32-10-2BC t t =+=(),
解得:t =3,
当AD=2,点A 在点D 的左边时,
由题意得:16--22AD t t ==,
解得:t =143
. 综上,t 的值为3或
143秒 ②存在,理由如下:
当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13. 则13-94-6|-7|BD PA x PC x ====,,,
-3BD PA PC =,
()4--6|-7|x x ∴=, 解得:314x =或112, 又P 点在线段AB 上,则69x ≤≤
314
x ∴=. 当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163
,D 点表示的数为343
. 则37343816-1-|-|3333
BD PA x PC x ====,,, -3BD PA PC =, ∴ 28161--|-|33x x ⎛
⎫= ⎪⎝
⎭, 解得:7912x =或176, 又283733
x ≤≤, x ∴无解
综上,P 表示的数为
314
. 【点睛】 本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)由路程=速度×时间结合运动方向找出运动t 秒时点A 、B 、C 、D 所表示的数,(2)根据3BD PA PC -=列出关于t 的含绝对值符号的一元一次方程.
31.(1)2或10;(2)当t 为5秒、10秒或7.5秒时,P 、A 和B 中恰有一个点为其余两点的优点.
【解析】
【分析】
(1)设所求数为x ,根据优点的定义分优点在M 、N 之间和优点在点N 右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P 为(A ,B )的优点;②P 为(B ,A )的优点;③B 为(A ,P )的优点.设点P 表示的数为x ,根据优点的定义列出方程,进而得出t 的值.
【详解】
解:(1)设所求数为x ,
当优点在M 、N 之间时,由题意得x ﹣(﹣2)=2(4﹣x ),解得x=2;
当优点在点N 右边时,由题意得x ﹣(﹣2)=2(x ﹣4),解得:x=10;
故答案为:2或10;
(2)设点P 表示的数为x ,则PA=x+20,PB=40﹣x ,AB=40﹣(﹣20)=60,
分三种情况:
①P 为(A ,B )的优点.
由题意,得PA=2PB ,即x ﹣(﹣20)=2(40﹣x ),
解得x=20,
∴t=(40﹣20)÷4=5(秒);
②P 为(B ,A )的优点.
由题意,得PB=2PA ,即40﹣x=2(x+20),
解得x=0,
∴t=(40﹣0)÷4=10(秒);
③B 为(A ,P )的优点.
由题意,得AB=2PA ,即60=2(x+20)
解得x=10,
此时,点P 为AB 的中点,即A 也为(B ,P )的优点,
∴t=30÷4=7.5(秒);
综上可知,当t 为5秒、10秒或7.5秒时,P 、A 和B 中恰有一个点为其余两点的优点.
【点睛】
本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.。