曲线、曲面积分与定积分、重积分的关系
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲线、曲面积分与定积分、重积分的关系作者:李雪峰
来源:《文理导航·教育研究与实践》 2018年第12期
【摘要】定积分、重积分、曲线与曲面积分是积分学的重要组成部分,它们之间有着千丝万缕的联系。
本文将重点阐述曲线、曲面积分与定积分、重积分的关系。
【关键词】曲线积分;曲面积分;定积分;重积分;关系从定义上看,它们都是通过“大化小,常代变,近似和,取极限”这四步得到一个特殊和式极限的形式,而这一形式可以统一写成:
前面我们分别介绍了第一类曲线积分与定积分,第二类曲线积分与定积分、二重积分,第一类曲面积分与二重积分,第二类曲面积分与二、三重积分的关系。
而书中又介绍了两类曲线积分之间的关系和两类曲面积分之间的关系,还有斯托克斯公式又说明了曲线与曲面积分的关系。
综上所述,充分说明了虽然曲线、曲面积分与定积分、重积分它们有着不同的定义、积分域与计算方法,但同时又有着密不可分的关系。
它们之间的转化真是妙趣无穷。
【参考文献】
[1]同济大学数学系编.高等数学(第六版)下册[M].北京:高等教育出版社,2007。