东南大学田玉平自动控制原理参考答案4

合集下载

东南大学田玉平自动控制原理参考答案4

东南大学田玉平自动控制原理参考答案4

4.1 对于如下系统,求其传递函数。

并判别:系统是否由其传递函数完全表征?系统是否渐进稳定?是否输入-输出稳定?(1)[]0100001061161310x x u y x⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦= 解:由3261160sI A s s s -=+++=得极点为:1231,2,3s s s =-=-=-所以系统渐进稳定。

13231()()6116(1)(2)s G s C sI A B s s s s s -+=-==+++++ 所以系统为输入-输出稳定,但不能由G (s )完全表征。

(2)[]010000102500550510x x u y x⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦=-解:由3252500sI A s s -=+-=得1235,55,55s s i s i ==-+=--所以不是渐进稳定。

G(s)=C(sI-A)1-B=C 1502501001-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---s s sB=)5)(55)(55()5(50--+++-s j s j s s .=)55)(55(50j s j s -+++所以系统是输入-输出稳定,但不能由G (s )完全表征。

(3)[]110001010002110x x u y x-⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=- 解:由3220sI A s s s -=++=得1230,1,1s s s ==-=-所以系统不是渐进稳定。

12()()(1)sG s C sI A B s --=-=+ 所以系统是输入-输出稳定,但不能由G (s )完全表征。

(4)(a )解:25()27s G s s s -=+-,1,21s =-± 所以既不是渐进稳定,又不是输入-输出稳定。

系统可由其传递函数完全表征。

.(b )解:)54)(1()1)(3()(2++-++=s s s s s S G .,有极点在右半平面所以既不是渐进稳定,又不是输入-输出稳定。

东南大学田玉平自控原理参考答案

东南大学田玉平自控原理参考答案

2.8试对下图所示的系统方块图进行化简并求出其闭环传递函数C(s)/R(s)化简得:C(s) ____________ GGG H i) _______________R(s) 1 G2H2 -G3H3(H i G2) GGG H i)2.9化简得:C(s) G1G2G3G4丽-(1 GH i)(1 G4H4MI G2H2X I G3H3) G2G3H5] GG2G3G4H62.10求信号流图的传递函数(a)解:有6个前向通道:Q i(s) =GGG7Q2(S)二GGG8Q3(S)二G2G4G8Q4(S)二G2G5G7Q5(s)二-GGH2G5G7Q e(s)八G2G5HGG8共有三个回路,分别为:L,(s)八G3H1L2(s) = -G4H2L_3(S)=G5G6H I H2(s^1 G3H1 G4H^G5G6H1H2 G3H1G4H2,s) =1 G4H22(s) -13(S)- 1 G3H14(S) =15(S) =16(S)=1GQG7(1 G4H2) GGA QG q G g。

G3H1) G2G5G - GQH2G5G7 - G2G5H1GJG8 G (s)-1+G3H<H G4H^G5G6H1H<H G3H1G4H2(b)共有4条前向通道,分别为:Q i(s) = G1G2G3G4G5G6Q2(S)二G3G4G5G6Q3(s)二GGQ4(S)八G e H i共有9条回路,分别为:L|(s)二-G?H iL2(s) = - G4 H 2L3G)八GetL4(s) = -G3G4G5H4L5G)八GG2G3G4G5G6H5Q(s)十出( s) - - G3G4G5G6 H5L7L B(S)二H1H5G6L9(s^ -G6H5G1(s) =1 G2H1 G4H2 G6H3 G1G2G3G4G5G6H5 G2H1G4H2G2HGH3 G4H2G6H3 G2H1G4H2G6H3 -H i H4 G3G4G5G6H5-G1H5G6 G6H5G -G q H z H i H s G e G4H2GH5G6-G4H2H i H4、1(S)=12(S)=1、3(S)=1 G4H2、4(S)=1 G4H2G1G2G3G4G5G6 G3G4G5G6 G1G6(1 G4H2)- G6H1(1 G4H2)(s)(c)共有2条前向通路,分别是:Q[(s) =abcdQ2(s)二aed共有6条回路,分别是:J(s)二bgL2(s) =chL3G) = fL4(s) =kbcl_5(s)二keL s(s)二eghabed + aed(1- f)1 - bg - ch - f - kbc - ke - egh kfe(d)有4条前向通道,分别是:Q1 (s)二adeQ2(s)二aQ3(s)二bcdeQ4(s)二bc有4条回路,分别是:LJs)「-cfL2(s)八egR(s)「-adehL4(s)「-bcdehade a aeg bcde be bceg G(S)- 1 + cf + eg + adeh + bcdeh+ cfeg G(s)-1 +G1G 3H 1H ^G 1G 2H 1H 22.13画出极坐标图,求与实轴相交的频率和相应的幅值。

东南大学田玉平自控原理参考-答案~2

东南大学田玉平自控原理参考-答案~2
2.8试对下图所示的系统方块图进行化简并求出其闭环传递函数C(s)/R(s)
化简得:
2.9
化简得:
2.10求信号流图的传递函数
(a)
解:有6个前向通道:
共有三个回路,分别为:
(b)
共有4条前向通道,分别为:
共有9条回路,分别为:
(c)
共有2条前向通路,分别是:
共有6条回路,分别是:
(d)
有4条前向通道,分别是:
当 ,可得K=6.6
所以
2.16设三个最小相位系统的折线对数幅频特性
(1)写出对应的传递函数
(2)绘出对数相频曲线和幅相曲线。
(a)解:比例环节、两个惯性环节构成,传递函数为:
G(s)= ,G(jw)= ,
由伯得图可得20lgK=40;K=100;
(b)解:积分环节、惯性环节、一阶微分环节构成
传递函数为:
转折点为1,10;
相频特性: =-0.1w- -arctanw-arctan0.1w
当截止频率w =5rad/s时,|G(jw)|=1,
20lgK-20lgw| -20lgw| =0
K=25;
2.15
解:通过作图,得到三个转折点分别为(0.48,20.5),(3,-10)和(8,-17.5),
因此, , , ,可写出如下传递函数:
2.14 (1) G(jw)= =
幅频特性:|G(jw)|=
L(w)=20lg|G(jw)|=20lg
转折点为5,50.
相频特性: = -arctan
当截止频率w =5rad/s时,|G(jw)|=1,所以增益K= ,
(2) G(jw)= =
幅频特性:|G(jw)|=
L(w)=20lg|G(jw)|=20lg

自动控制原理课后习题答案

自动控制原理课后习题答案

第1章控制系统概述【课后自测】1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。

解:开环控制——半自动、全自动洗衣机的洗衣过程。

工作原理:被控制量为衣服的干净度。

洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。

系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。

闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。

工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。

水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。

当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。

一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。

开环控制和闭环控制的优缺点如下表1-2 自动控制系统通常有哪些环节组成各个环节分别的作用是什么解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。

各个基本单元的功能如下:(1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。

(2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。

(3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。

(4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。

常用的比较元件有差动放大器、机械差动装置和电桥等。

(5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。

自动控制原理课后习题答案

自动控制原理课后习题答案

第1章控制系统概述【课后自测】1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。

解:开环控制——半自动、全自动洗衣机的洗衣过程。

工作原理:被控制量为衣服的干净度。

洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。

系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。

闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。

工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。

水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。

当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。

一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。

开环控制和闭环控制的优缺点如下表1-2 自动控制系统通常有哪些环节组成?各个环节分别的作用是什么?解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。

各个基本单元的功能如下:(1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。

(2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。

(3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。

(4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。

常用的比较元件有差动放大器、机械差动装置和电桥等。

(5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。

自动控制原理第四版习题答案

自动控制原理第四版习题答案
(b) R 2C C u ( t ) + ( RC + 2 RC )u ( t ) + u ( t ) 1 2 &&o 2 1 &o o
&& & = RC 1 C 2 u i ( t ) + 2 RC 1 u i ( t ) + u i ( t )
(2-5题~2-10题) 题 题 2-5(1) 运动模态: 0.5 t 运动模态: e (2) 运动模态: 0.5 t 运动模态: e
sin
3 2
t
x( t ) = t - 2 + 2e 0.5 t x ( t ) = 2 3 3 e 0.5 t sin 23 t
x ( t ) = 1 ( 1 + t )e t
(3) 运动模态: (1+t)e-t 运动模态: 2-6 2-7 2-8
Q =
F = 12 .11 y ed = E do (sin α o )( α α o )
0.0125 s + 1.25
(2) Φ ( s ) =
ξ = 0.6 ωn = 2 r = 1.0066 ω n = 1
t r = 1.45 s
0.1 5 50 ( s + 4 ) (3) Φ ( s ) = + s( 3 s + 1 ) s2 s 2 + 16 σ % = 9.478% t p = 1.96 s t s = 2.917 s
dc(t ) k (t ) = = δ(t ) + 2e 2t e t dt
k2 2 Qo
P
s 2 + 4s + 2 2-9 Φ (s) = (s + 1)(s + 2)

东南大学自控原理试卷(11-12)答案

东南大学自控原理试卷(11-12)答案

自控原理试卷(11-12)标准答案一、简答题1、开环控制系统无反馈回路,结构简单,成本较低,但是控制精度低,容易受到外界干扰,输出出现误差无法进行补偿;闭环控制结构相对复杂,但能在有不可预知的干扰的情况下,使得输出量和参考输入量之间的偏差尽可能小。

2、如果系统开环传递函数在右半平面没有零、极点,那么该系统为最小相位系统; 有延迟环节的系统不属于最小相位系统。

3、一个连续时间线性定常系统输入-输出稳定的充分必要条件是其微分方程的特征方程的根(即传递函数的极点)全部具有负的实部。

4、存在矛盾之处,三阶系统例子。

5、状态反馈不会改变系统的能控性,输出反馈也不会改变系统的能控性; 输出反馈不会改变系统的能观性,状态反馈有可能改变系统的能观性。

二、综合题1、 13223232143211s (H G G H G G G G G G G G G G -++=)2、 解: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=11126621641k Q 验证:0=k Q ,可以知道n rankQ k <,所以系统不完全可控。

⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1016104101g Qn rankQ k <=2 系统不完全可观3、 解:由已知条件可知91=a ,52=a ,33=a ,00=b ,11=b ,42=b ,13=b 选取状态变量 y x =1,y x =2,yx =3, 则 00=β,11=β,52-=β,413=β于是得到系统状态空间表达式为u X X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=4151953100010 []X y 001= 4、26313,2js ±=,12=K5、⎥⎦⎤⎢⎣⎡+-+---=-=-t t tt t t tt e e e e e e e e t t 222212222)()(ΦΦ6、系统的闭环传递函数为Ks s s s Ks R s C ++++=)2)(1()()(2所以系统的特征方程为D (s )=0233234=++++K s s s s 劳斯表如下:Ks K s Ks s Ks 01234792372331-需满足:0792,0>->kK解得系统闭环稳定的K 的取值范围为:0<K<14/97、①6,5,3321-=-=-=λλλ;②-A⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=6-5-3-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-3/12/16/1B。

自动控制原理部分习题参考答案

自动控制原理部分习题参考答案

Js 2 1 (2) e d () ed 1 ( ) ed 2 ( ) 0 0; 2 s 0 Js K 1 s K 2 s s ( s a) as Kh T T T 3-12(1) S K ;(2) S a ;(3) S h 2 2 2 s as K s as K s as Kh G ( s ) T L 3-13 S H 1 G L (s) K T s ( s 1) 500 T T T 3-14(1) S K (2) S K ; (3) S G 1 1; 2 1 2 s ( s 1) 500 T K1 s s 500 3-15(1) (a) h 0.01 ; (b) h 0.364 ; (c) h 0.099 ;
2-8 2-9
2-10(1) G c1 ( s ) (2)
K T2 T3
R1C1 s 1 U (s) R C s 1 , G c2 ( s ) 2 2 2 RC1 s U 1 ( s) RC 2 s
( s ) K ( 2 s 2 1s 1) ,其中 U r ( s ) T4 s 4 T3 s 3 T2 s 2 T1s 1
R C K K R 2 C 2 K 1 K m RC1 K 2 1 , 1 C1 R1 C 2 R2 , 2 C1C 2 R1 R 2 , T1 1 1 1 m K1 K1 K m R2 2 C1C 2 K 2 K p RC1 (Tm C 2 R 2 ) K 1 K p K m C1C 2 R1 R 2 K1 K p K m RC1C 2 ( RT p RTm K 2 K p Tm R 2 ) K1 K p K m
1 s 2 (s a)

自动控制原理-课后习题答案

自动控制原理-课后习题答案

第1章控制系统概述【课后自测】1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。

解:开环控制——半自动、全自动洗衣机的洗衣过程。

工作原理:被控制量为衣服的干净度。

洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。

系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。

闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。

工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。

水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。

当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。

一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。

开环控制和闭环控制的优缺点如下表1-2 自动控制系统通常有哪些环节组成各个环节分别的作用是什么解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。

各个基本单元的功能如下:(1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。

(2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。

(3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。

(4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。

常用的比较元件有差动放大器、机械差动装置和电桥等。

(5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。

自动控制原理-课后习题及答案

自动控制原理-课后习题及答案

第一章 绪论1-1 试比较开环控制系统和闭环控制系统的优缺点.解答:1开环系统(1) 优点:结构简单,成本低,工作稳定。

用于系统输入信号及扰动作用能预先知道时,可得到满意的效果。

(2) 缺点:不能自动调节被控量的偏差。

因此系统元器件参数变化,外来未知扰动存在时,控制精度差。

2 闭环系统⑴优点:不管由于干扰或由于系统本身结构参数变化所引起的被控量偏离给定值,都会产生控制作用去清除此偏差,所以控制精度较高。

它是一种按偏差调节的控制系统。

在实际中应用广泛。

⑵缺点:主要缺点是被控量可能出现波动,严重时系统无法工作。

>1-2 什么叫反馈为什么闭环控制系统常采用负反馈试举例说明之。

解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反馈。

闭环控制系统常采用负反馈。

由1-1中的描述的闭环系统的优点所证明。

例如,一个温度控制系统通过热电阻(或热电偶)检测出当前炉子的温度,再与温度值相比较,去控制加热系统,以达到设定值。

1-3 试判断下列微分方程所描述的系统属于何种类型(线性,非线性,定常,时变)(1)22()()()234()56()d y t dy t du t y t u t dt dt dt ++=+(2)()2()y t u t =+(3)()()2()4()dy t du t ty t u t dt dt +=+ (4)()2()()sin dy t y t u t tdt ω+=(5)22()()()2()3()d y t dy t y t y t u t dt dt ++=—(6)2()()2()dy t y t u t dt +=(7)()()2()35()du t y t u t u t dtdt =++⎰解答: (1)线性定常 (2)非线性定常 (3)线性时变(4)线性时变 (5)非线性定常 (6)非线性定常 (7)线性定常1-4 如图1-4是水位自动控制系统的示意图,图中Q1,Q2分别为进水流量和出水流量。

自动控制原理 课后习题答案

自动控制原理 课后习题答案

第1章控制系统概述【课后自测】1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。

解:开环控制——半自动、全自动洗衣机的洗衣过程。

工作原理:被控制量为衣服的干净度。

洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。

系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。

闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。

工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。

水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。

当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。

一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。

开环控制和闭环控制的优缺点如下表1-2 自动控制系统通常有哪些环节组成各个环节分别的作用是什么解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。

各个基本单元的功能如下:(1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。

(2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。

(3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。

(4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。

常用的比较元件有差动放大器、机械差动装置和电桥等。

(5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。

自动控制原理课后习题答案

自动控制原理课后习题答案

第1章控制系统概述【课后自测】1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。

解:开环控制——半自动、全自动洗衣机的洗衣过程。

工作原理:被控制量为衣服的干净度。

洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。

系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。

闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。

工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。

水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。

当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。

一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。

开环控制和闭环控制的优缺点如下表1-2 自动控制系统通常有哪些环节组成各个环节分别的作用是什么解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。

各个基本单元的功能如下:(1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。

(2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。

(3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。

(4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。

常用的比较元件有差动放大器、机械差动装置和电桥等。

(5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。

自动控制原理第四版习题答案

自动控制原理第四版习题答案
02
鲁棒控制系统的设计目标是使系统在不确定性和干扰作用下 仍能保持其稳定性和性能。
03
鲁棒控制理论中常用的方法有鲁棒性分析、鲁棒控制器设计 等。
06
习题答案解析
第1章习题答案解析
1.1
简述自动控制系统的基本组成。答案:一个典型的自动控制系统由控制器、受控对象、执行器、传感 器等部分组成。
1.2
简述开环控制系统和闭环控制系统的区别。答案:开环控制系统是指系统中没有反馈环节的系统,输 出只受输入的控制,结构相对简单;而闭环控制系统则有反馈环节,输出对输入有影响,结构相对复 杂。
20世纪60年代末至70年代,主要研究多变量线 性时不变系统的最优控制问题,如线性二次型最 优控制、极点配置等。
智能控制理论
20世纪80年代至今,主要研究具有人工智能的 控制系统,如模糊逻辑控制、神经网络控制等。
02
控制系统稳定性分析
稳定性定义
01
内部稳定性
系统在平衡状态下受到扰动后,能 够回到平衡状态的性能。
步骤
时域分析法包括对系统进行数学建模、 系统稳定性分析、系统性能分析和系 统误差分析等步骤。
缺点
时域分析法需要对系统的数学模型进 行详细的分析,对于复杂系统的分析 可能会比较困难。
频域分析法
步骤
频域分析法包括对系统进行数学建模、系 统稳定性分析和系统性能分析等步骤。
定义
频域分析法是在频率域中对控制系 统进行分析的方法。它通过对系统 的频率响应进行分析,来描述系统
它通过分析系统的频率响 应,并根据频率响应的性 质来判断系统的稳定性。
如果频率响应曲线超出奈 奎斯特圆,则系统是不稳 定的。
根轨迹法
根轨迹法是一种图解方法,用 于分析线性时不变系统的稳定

自控原理习题答案(全)

自控原理习题答案(全)

第一章 习题答案1-11-21-3 闭环控制系统主要由被控对象,给定装置,比较、放大装置,执行装置,测量和变送装置,校正装置等组成。

被控对象:指要进行控制的设备和过程。

给定装置:设定与被控量相对应给定量的装置。

比较、放大装置:对给定量与测量值进行运算,并将偏差量进行放大的装置。

执行装置:直接作用于控制对象的传动装置和调节机构。

测量和变送装置:检测被控量并进行转换用以和给定量比较的装置。

校正装置:用以改善原系统控制性能的装置。

题1-4 答:(图略)题1-5 答:该系统是随动系统。

(图略) 题1-6 答:(图略)第二章习题答案题2-1 解:(1)F(s)=12s 1+-Ts T(2)F(s)=0.5)421(2+-s s(3)F(s)=428+⋅s es sπ (4)F(s)=25)1(12+++s s(5)F(s)=32412ss s ++ 题2-2 解:(1) f(t)=1+cost+5sint(2) f(t)=e -4t(cost-4sint) (3) f(t)=t t t te e e 101091811811----- (4) f(t)= -t t tte e e ----+-3118195214 (5) f(t)= -t te e t 4181312123--+++ 题2-3 解:a)dtduu C R dt du R R c c r 22111=++)( b)r c c u CR dt du R R u C R dt du R R 1r 12112111+=++)( c) r r r c c c u dtdu C R C R dtu d C C R R u dtdu C R C R C R dtu d C C R R +++=++++)()(1211222121122111222121 题2-4 解:a) G(s)=1)(212++s T T sT (T 1=R 1C, T 2=R 2C )b) G(s)=1)(1212+++s T T s T (T 1=R 1C, T 2=R 2C )c) G(s)= 1)(1)(32122131221+++++++s T T T s T T s T T s T T (T 1=R 1C 1, T 2=R 1C 2, T 3=R 2C 1, T 4=R 2C 2 ) 题2-5 解:(图略) 题2-6 解:33)(+=Φs s 题2-7 解:a) ksf ms s +-=Φ21)(b) )()()(1))(1)(()(21221s G s G s G s G s G s +++=Φc) )()(1)())()(()(31321s G s G s G s G s G s ++=Φd) )()()()(1))()()(323121s G s G s G s G s G s G s -+-=Φe) G(s)=[G 1(s)- G 2(s)]G 3(s)f) )()()()()()()()()()(1)()()()()(43213243214321s G s G s G s G s G s G s G s G s G s G s G s G s G s G s +-++=Φg) )()()()()()()()(1)()()()(43213212321s G s G s G s G s G s G s G s G s G s G s G s -+-=Φ题2-8 解:102310)1()()(k k s s T Ts k k s R s C ⋅++++⋅=1023101)1()()(k k s s T Ts k k s N s C ⋅++++⋅=1023102)1()()(k k s s T Ts s T k k s N s C ⋅++++⋅⋅⋅= 题2-9 解:)()()()(1)()()(4321111s G s G s G s G s G s R s C +=)()()()(1)()()(4321222s G s G s G s G s G s R s C +=)()()()(1)()()()()(432142121s G s G s G s G s G s G s G s R s C +=)()()()(1)()()(4321412s G s G s G s G s G s R s C +=题2-10 解:(1)3212321)()(k k k s k k k s R s C +=3212032143)()()(k k k s s G k k k s k k s N s C +⋅+=(2) 2140)(k k sk s G ⋅-= 题2-11 解:122212211111)()1()()(z z s T s T T C s T T s T k k s s m m d e L ⋅++⋅+++⋅=ΘΘ (T 1=R 1C, T 2=R 2C, T d =L a /R a , T m =GD 2R a /375C e C m )第三章 习题答案3-1. s T 15=(取5%误差带) 3-2. 1.0=H K K=2 3-3.当系统参数为:2.0=ξ,15-=s n ω时,指标计算为:%7.52%222.0114.32.01===-⨯---e eξξπσs t ns 352.033=⨯==ξωs t n p 641.02.01514.3122=-⨯=-=ξωπ当系统参数为:0.1=ξ,15-=s n ω时,系统为临界阻尼状态,系统无超调,此时有:st ns 95.057.10.145.67.145.6=-⨯=-=ωξ3-4.当110-=s K 时,代入上式得:110-=s n ω,5.0=ξ,此时的性能指标为:%3.16%225.0114.35.01===-⨯---e eξξπσs t ns 6.0105.033=⨯==ξωs t n p 36.05.011014.3122=-⨯=-=ξωπ当120-=s K 时,代入上式得:11.14-=s n ω,35.0=ξ,此时的性能指标为:%5.30%2235.0114.335.01===-⨯---e eξξπσs t ns 6.01.1435.033=⨯==ξω由本题计算的结果可知:当系统的开环放大倍数增大时,其阻尼比减小,系统相对稳定性变差,系统峰值时间变短,超调量增大,响应变快,但由于振荡加剧,调节时间不一定短,本题中的调节时间一样大。

自动控制原理 课后习题答案

自动控制原理 课后习题答案

第1章控制系统概述【课后自测】1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。

解:开环控制——半自动、全自动洗衣机的洗衣过程。

工作原理:被控制量为衣服的干净度。

洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。

系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。

闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。

工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。

水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。

当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。

一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。

开环控制和闭环控制的优缺点如下表1-2 自动控制系统通常有哪些环节组成各个环节分别的作用是什么解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。

各个基本单元的功能如下:(1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。

(2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。

(3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。

(4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。

常用的比较元件有差动放大器、机械差动装置和电桥等。

(5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。

自动控制原理课后习题答案

自动控制原理课后习题答案
• 第一章 作业答案:
• 1、什么叫控制系统?
• 简答:控制系统是由动态被控对象和控制机构等独立体(单元)有机结合,实现某种控制 目的的综合体。

• • •
2、什么是反馈控制?反馈控制原理?
简答:①从被控对象获取信息,并将其作为调节被控量的作用馈送给被控对象,参与形成 控制作用的控制方法。 ②将从被控对象检测出来的输出量馈送到输入端,并与输入信号比较形成控制作用 的控制方法。 反馈控制原理-通过反馈信息形成反馈控制作用的原理,称为反馈控制原理。
劳斯表第1列全为正数,系统稳定;变符号0次,右半复平面有根0个。
(c) s6+4s5-4s4+4s3-7s2-8s+10=0
1 4 -1 0(-4) -1 -1 4 -4 4 -1 0(-2) 4 -7 -8 2 一行同乘4/20 辅助多项式-s4-s2+2 一行同乘4/2 一行同乘1/18 10
a.输入量:体现引起运动原因的物理量。本例中 u(t)是输入量。 b.特征受控量:体现运动特征的物理量。本例中 电流i(t)、uc(t)是受控量。 c.输出量uc(t) :需要重点研究的受控量(个数 非唯一)。 d.中间变量i(t) :某些受控量选为输出量后, 其余的受控量就视作中间变量。
R i(t)
L uc(t)
输 出
+ + _ y _
_
di U ( t ) L Ri u C dt
iC
2
(2.2.2) (2.2.3)
2、按照机理分析法建微分方程:
根据电路定律写出单体微分方程式(2.2.2)和 (2.2.3)。把特征受控量uc(t)选作输出量,依 据式(2.2.2)和(2.2.3),消除中间量i(t) , 则可得到输入输出微分方程(2.2.4)。 3、利用Laplace变换求出传递函数

自动控制原理习题及答案.doc

自动控制原理习题及答案.doc

第一章 习题答案1-1 根据题1—1图所示的电动机速度控制系统工作原理图(1) 将a ,b 与c ,d 用线连接成负反馈状态;(2) 画出系统方框图。

解 (1)负反馈连接方式为:d a ↔,c b ↔;(2)系统方框图如图解1-1 所示.1—2 题1—2图是仓库大门自动控制系统原理示意图。

试说明系统自动控制大门开闭的工作原理,并画出系统方框图。

题1-2图 仓库大门自动开闭控制系统解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。

与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置.反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制.系统方框图如图解1-2所示.1-3 题1—3图为工业炉温自动控制系统的工作原理图。

分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图.题1—3图 炉温自动控制系统原理图解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。

炉子的实际温度用热电偶测量,输出电压f u 。

f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压.在正常情况下,炉温等于某个期望值T °C ,热电偶的输出电压f u 正好等于给定电压r u .此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值.这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定.当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程:控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1 对于如下系统,求其传递函数。

并判别:系统是否由其传递函数完全表征?系统是否渐进稳定?是否输入-输出稳定?(1)[]0100001061161310x x u y x⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦= 解:由3261160sI A s s s -=+++=得极点为:1231,2,3s s s =-=-=-所以系统渐进稳定。

所以系统为输入-输出稳定,但不能由G (s )完全表征。

(2)[]010000102500550510x x u y x⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦=-解:由3252500sI A s s -=+-=得1235,55,55s s i s i ==-+=--所以不是渐进稳定。

G(s)=C(sI-A)1-B=C 1502501001-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---s s sB=)5)(55)(55()5(50--+++-s j s j s s .=)55)(55(50j s j s -+++所以系统是输入-输出稳定,但不能由G (s )完全表征。

(3)[]110001010002110x x u y x-⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=- 解:由3220sI A s s s -=++=得1230,1,1s s s ==-=-所以系统不是渐进稳定。

所以系统是输入-输出稳定,但不能由G (s )完全表征。

(4)(a )解:25()27s G s s s -=+-,1,21s =-±,有极点在右半平面 所以既不是渐进稳定,又不是输入-输出稳定。

系统可由其传递函数完全表征。

.(b )解:)54)(1()1)(3()(2++-++=s s s s s S G .,有极点在右半平面 所以既不是渐进稳定,又不是输入-输出稳定。

系统可由其传递函数完全表征。

(c )解:1()(1)(3)s G s s s -=++,有对消的零极点s=1在右半平面,所以系统不能由传递函数完全表征,不是渐进稳定,是输入-输出稳定4.2 已知系统的特征方程如下,分别用劳斯和霍尔维茨判据判别稳定性。

(1)010092023=+++s s s100410020910123ss s s , D=10020091010020 D 1>0, D 2=80>0, D 3=8000>0故该系统将近稳定。

(2)322092000s s s +++=解:3211920020010200s s s s -123202000190020200200,200,40000D D D D =∴=>=-<=-<所以,系统不稳定(3)025103234=++++s s s s147/5317.411025301234s s s s s -,D=2531100025300110D 1=10>0; D 2=47>0, D 3=-153<0, D 4=-306<0 ; 所以系统不稳定;(4)6543244478100s s s s s s +-+--+=解:6543210147104480551020102.5109010s s s s s s s ---------辅助多项式423()5510()2010p s s s p s s s=--+=-- 所以不稳定(5)025.666)256)(4)(2(2=+++++s s s s 解: 025.8661986912234=++++s s s s25.866025.8665.521981225.86669101234s s s ss ε←,D=25.8666910198120025.8666910019812D 1=12>0 , D 2=630>0 , D 3=0 , D 4=0; 所以该系统临界稳定;(6)4328181650s s s s ++++=解:4321011858161652725s s s s s 12348160011850081600118580,1280,4480,22400D D D D D ==>=>=>=> 所以系统稳定 4.3 确定使系统稳定的12K K 和(a )解:132111(1)()(21)K s G s s K s K s K +=++++ 由劳斯判据得1K >0(b )解:32210(1)()2(101)1010s G s s K s s +=++++ 由劳斯判据得2K >0.14.4 某单位反馈系统的开环传递函数为02()(717)KG s s s s =++ (1)确定使系统稳定的K 的临界值。

(2)若要求闭环节点的实部均小于-2,求K 的取值范围 解:(1)闭环传递函数为:32()717KG s s s s K=+++ 由劳斯判据:321117711907s s K K ss K-得0119K<< 故临界值时 K=119(2)令2s p =-,得32140p p p K +++-=由劳斯判据:32101111415014p p K p K p K ---得1415K <<4.5 已知系统的开环传递函数为0(1)()(1)(21)K s G s s s s τ+=++,试用劳斯判据确定使系统稳定的参数,K τ的范围。

解:32(1)()2(2)(1)K s G s s s K s Kττ+=+++++由劳斯判据:321212(22)2s K s K K K ss Kτττττ++-+++得002K τ>⎧⎨<<⎩ 或 2202K τττ>⎧⎪⎨+<<⎪-⎩4.6 已知系统做等幅震荡,确定系统参数,K α的值 解:其特征方程为:32(2)10s s K s K α+++++=由劳斯判据:321121(2)(1)1s K s K K K ss K ααα+++-++若(2)(1)KK α+-+=0则辅助多项式2()1()2p s s K p s sαα=++=判据为:32112121s K s K s s K αα+++所以系统参数应满足01(2)1K K K αα≥⎧⎪≥-⎨⎪+=+⎩4.9 由零极点确定根轨迹草图。

4.10(1) (2)利用劳斯判据,可求的:01.08.07.1123=++++K s s s 因为该系统极点都在左半平面,所以该系统稳定1111231.07.126.11.07.18.01K s K s K s s +-+ 所以20K >求得:0<K 1<1.26(3) (4)340>K 3>0402K <<4.11证明:∴ 所以1s 是根轨迹上的一点。

4.12(1)1,1,2N P Z ===,系统不稳定 (2)1,1,0N P Z =-==,系统稳定 (3)0,2,2N P Z ===,系统不稳定 (4)2,0,2N P Z ===,系统不稳定 (5)2,2,0N P Z =-==,系统稳定 (6)0,0,0N P Z ===,系统稳定 (7)1,1,0N P Z =-==,系统稳定 (8)1,1,2N P Z ===,系统不稳定4.13 绘制开环系统奈奎斯特曲线,并判断系统稳定性和K 的关系(1)0()(0.11)(0.51)KG s s s s =++012K <<时系统稳定(2)0()(1)(2)(3)KG s s s s =+++060K <<时系统稳定 (3)0(21)()(1)K s G s s s +=-0.5K >时系统稳定4.14 (1)由图得:系统稳定(2)相角裕度为33度,幅值裕度为9.2dB 。

(3)临界稳定时,K=28670(4)相角裕度为40度时,K=7366。

4.15 开环传递函数为021()s G s sτ+=,计算相角裕度为45度时,τ的值解:0()180135c G j ωγ∠=-+=-︒即arctan()180135c τω-︒=-︒,得c τω=1 又由0()1c G j ω=得0.252c ω=所以0.2520.84τ-==4.16 420)1()(5)(+=-jw e jw jw G jwτ 当|G(jw)|=1 时 求得c w 解得: τ = 43.1所以当τ < 43.1时,系统稳定 4.17(1)幅值裕度无穷大,相角裕度12度。

(3)幅值裕度18dB ,相角裕度180度。

(5)不稳定 (7)不稳定4.18 解: 系统的传递函数为: 10)110(10)()(1)()()(2+-+=+=s K s S H s G s G s R s C h 由劳斯判据可进行解决,10110101012s K s s h - 当10K h -1>0时,系统稳定,当10K h -1=0时,系统临界稳定,此时传递函数的极点2,1s =±10j ,K h =0.1。

相关文档
最新文档