江西省樟村中学数列多选题试题含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省樟村中学数列多选题试题含答案
一、数列多选题
1.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设213
2
n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S > C .若1
4q =-
,则n n T S > D .若3
4
q =-
,则n n T S > 【答案】BD 【分析】
先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】
由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q
-=
>-,即
101n
q q ->-,上式等价于1010
n q q ⎧->⎨->⎩①或10
10
n q q ⎧-<⎨
-<⎩②.解②得1q >.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.
综上所述,q 的取值范围是()
()1,00,-+∞.
2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛
⎫=- ⎪⎝
⎭,所以
()2311222n n n n T S S q q S q q ⎛⎫⎛
⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝
⎭,而0n S >,且()()1,00,q ∈-⋃+∞.
所以,当1
12
q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误. 当1
2(0)2
q q -
<<≠时,0n n T S -<,即n n T S <. 当12
q =-
或2q 时,0,n n n n T S T S -==,A 选项错误.
综上所述,正确的选项为BD. 故选:BD 【点睛】
本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数
学思想方法,考查分类讨论的数学思想方法,属于中档题.
2.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第(
)*
n n ∈N
次得到数列1,
123,,,,k x x x x ,2;…记1212n k a x x x =+++
++,数列{}n a 的前n 项为n S ,
则( ) A .12n k += B .133n n a a +=- C .()2
332
n a n n =
+
D .()1
33234
n n S n +=
+- 【答案】ABD 【分析】
根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可. 【详解】
由题意可知,第1次得到数列1,3,2,此时1k = 第2次得到数列1,4,3,5,2,此时3k = 第3次得到数列1, 5,4,7,3,8,5,7,2,此时 7k =
第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k = 第n 次得到数列1,123,
,,,k x x x x ,2 此时21n k =-
所以12n k +=,故A 项正确;
结合A 项中列出的数列可得: 12
3433339339273392781
a a a a =+⎧⎪=++⎪⎨=+++⎪⎪=++++⎩
123333(*)n n a n N ⇒=+++
+∈
用等比数列求和可得(
)33132
n n a -=+
则 (
)12
1
331
3
3332
2
n n n a
+++--=+
=+2
3
3
22
n +=+ 又 (
)331
333339
2n n a ⎡⎤
-⎢⎥-=+
-=⎢⎥⎣
⎦
22393332222
n n +++--=+ 所以 133n n a a +=-,故B 项正确; 由B 项分析可知(
)()
3313
3312
2
n n
n
a -=+=+
即()
2
332
n a n n ≠
+,故C 项错误. 123n n S a a a a =++++
23
1
333322
22n n +⎛⎫=++++ ⎪⎝⎭()
23133132
2
n
n --=
+ 2339424n n +=+-()
133234n n +=+-,故D 项正确. 故选:ABD. 【点睛】
本题需要根据数列的构造方法先写出前面几次数列的结果,寻找规律,对于复杂问题,著名数学家华罗庚指出:善于“退”,足够的“退”,退到最原始而不失重要的地方,是学好数学的一个诀窍.所以对于复杂问题我们应该先足够的退到我们最容易看清楚的地方,认透了,钻深了,然后再上去,这就是以退为进的思想.
3.设数列{}n a 前n 项和n S ,且21n n S a =-,21log n n b a +=,则( ) A .数列{}n a 是等差数列 B .12n n a
C .22222123
21
3
n n
a a a a -++++= D .
122334
1
1111
1n n b b b b b b b b +++++
< 【答案】BCD 【分析】
利用n S 与n a 的关系求出数列{}n a 的通项公式,可判断AB 选项的正误;利用等比数列的求和公式可判断C 选项的正误;利用裂项求和法可判断D 选项的正误. 【详解】
对任意的n *∈N ,21n n S a =-.
当1n =时,11121a S a ==-,可得11a =; 当2n ≥时,由21n n S a =-可得1121n n S a --=-, 上述两式作差得122n n n a a a -=-,可得12n n a a -=,
所以,数列{}n a 是首项为1,公比为2的等比数列,11
122n n n a --∴=⨯=,A 选项错误,B
选项正确;
()
2
211
2
4
n n n
a --==,所以,2222123
1441
143
n
n n a a a a --==
-+++
+,C 选项正确; 212log log 2n n n b a n +===,
()11111
11
n n b b n n n n +==-++, 所以,
122334
1111111111
111
11122334
11
n n b b b b b b b b n n n +++++
=-+-+-++
-=-<++, D 选项正确. 故选:BCD. 【点睛】
方法点睛:数列求和的常用方法:
(1)对于等差等比数列,利用公式法直接求和;
(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;
(3)对于{}n n a b +型数列,利用分组求和法;
(4)对于11n n a a +⎧⎫
⎨⎬⎩⎭
型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法
求和.
4.下列说法正确的是( )
A .若{}n a 为等差数列,n S 为其前n 项和,则k S ,2k k S S -,32k k S S -,…仍为等差数列
()k N *
∈
B .若{}n a 为等比数列,n S 为其前n 项和,则k S ,2k k S S -,32k k S S -,
仍为等比数列
()k N *
∈
C .若{}n a 为等差数列,10a >,0d <,则前n 项和n S 有最大值
D .若数列{}n a 满足2
1159,4n n n a a a a +=-+=,则
1211
1
122
2
n a a a +++
<--- 【答案】ACD 【分析】
根据等差数列的定义,可判定A 正确;当1q =-时,取2k =,得到20S =,可判定B 错误;根据等差数列的性质,可判定C 正确;化简得到1111
233
n n n a a a +=----,利用裂项法,可判定D 正确. 【详解】
对于A 中,设数列{}n a 的公差为d , 因为12k k S a a a =++
+,2122k k k k k S S a a a ++-=++
+,
3221223k k k k k S S a a a ++-=+++,
,
可得()()()()22322k k k k k k k S S S S S S S k d k N *--=---==∈,
所以k S ,2k k S S -,32k k S S -,
构成等差数列,故A 正确;
对于B 中,设数列{}n a 的公比为()0q q ≠,
当1q =-时,取2k =,此时2120S a a =+=,此时不成等比数列,故B 错误; 对于C 中,当10a >,0d <时,等差数列为递减数列, 此时所有正数项的和为n S 的最大值,故C 正确;
对于D 中,由2
159n n
n a a a +=-+,可得()()2135623n n n n n a a a a a +-=-+=-⋅-, 所以2n a ≠或3n a ≠, 则
()()
111
113
2332n n n n n a a a a a +=
=
------,所以1111
233
n n n a a a +=----, 所以
121223111
11111
11
2223333
33
n n n a a a a a a a a a ++++
=-+-++
---------- 111111
1333
n n a a a ++=
-=----. 因为14a =,所以2
159n n
n n a a a a +=-+>,可得14n a +>,所以11113
n a +-<-,故D 正确.
故选:ACD 【点睛】
方法点睛:由2
159n n
n a a a +=-+,得到()()2135623n n n n n a a a a a +-=-+=-⋅-,进而得出1111
233
n n n a a a +=----,结合“裂项法”求解是解答本题的难点和关键.
5.设n S 是等差数列{}n a 的前n 项和,且12a =,38a =则( ) A .512a = B .公差3d =
C .()261n S n n =+
D .数列11n n a a +⎧⎫⎨⎬⎩⎭
的前n 项和为
64n
n + 【答案】BCD 【分析】
根据已知条件求出等差数列{}n a 的通项公式和前n 项和公式,即可判断选项A 、B 、
C ,
再利用裂项求和即可判断选项D. 【详解】
因为数列{}n a 是等差数列,则312228a a d d =+=+=,解得:3d =,故选项B 正确; 所以()21331n a n n =+-⨯=-,
对于选项A :535114a =⨯-=,故选项A 不正确;
对于选项C :()()
2222132612
n n S n n n ++-⨯⎡⎤⎣⎦=⨯=+,所以故选项C 正确;
对于选项D :()()111111313233132n n a a n n n n +⎛⎫
==- ⎪-+-+⎝⎭
, 所以前n 项和为1111111
1132558811
3132n n ⎛⎫
-+-+-++
-
⎪-+⎝⎭
()611132322324
n n n n n ⎛⎫=-== ⎪
++⎝⎭+,故选项D 正确, 故选:BCD. 【点睛】
方法点睛:数列求和的方法
(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法
(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;
(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;
(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;
(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如
()()1n
n a f n =-类型,可采用两项合并求解.
6.关于等差数列和等比数列,下列四个选项中正确的有( ) A .若数列{}n a 的前n 项和22n S n =,则数列{}n a 为等差数列
B .若数列{}n a 的前n 项和1
22n n S +=-,则数列{}n a 为等比数列
C .若等比数列{}n a 是递增数列,则{}n a 的公比1q >
D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,仍为等比数
列 【答案】AB 【分析】
对于A ,求出 42n a n =-,所以数列{}n a 为等差数列,故选项A 正确;对于B , 求出
2n n a =,则数列{}n a 为等比数列,故选项B 正确;对于选项C ,有可能
10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,比如公比1q =-,n 为偶
数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 【详解】
对于A ,若数列{}n a 的前n 项和2
2n S n =,所以212(1)(2)n S n n -=-≥,所以
142(2)n n n a S S n n -=-=-≥,适合12a =,所以数列{}n a 为等差数列,故选项A 正
确;
对于B ,若数列{}n a 的前n 项和1
22n n S +=-,所以122(2)n
n S n -=-≥,所以
12(2)n n n n a S S n -=-=≥,又1422a =-=,2218224a S S =-=--=, 212a a =
则数列{}n a 为等比数列,故选项B 正确;
对于选项C ,若等比数列{}n a 是递增数列,则有可能10,01a q <<<,不一定 1q >,所以选项C 错误;
对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 故选:AB 【点睛】
方法点睛:求数列的通项常用的方法有:(1)公式法;(2)归纳法;(3)累加法;(4)累乘法;(5)构造法. 要根据已知条件灵活选择方法求解.
7.在数列{}n a 中,如果对任意*
n N ∈都有
21
1n n n n
a a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0
C .若32n
n a =-+,则数列{}n a 是等差比数列
D .若等比数列是等差比数列,则其公比等于公差比 【答案】BCD 【分析】
考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】
对于数列{}n a ,考虑121,1,1n n n a a a ++===,21
1n n n n
a a a a +++--无意义,所以A 选项错误;
若等差比数列的公差比为0,21
2110,0n n n n n n
a a a a a a +++++---==,则1n n a a +-与题目矛盾,所
以B 选项说法正确; 若32n
n a =-+,
21
13n n n n
a a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确;
若等比数列是等差比数列,则1
1,1n n q a a q -=≠,
()()
11211111111111n n n
n n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确.
故选:BCD
【点睛】
易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1.
8.斐波那契数列{}n a :1,1,2,3,5,8,13,21,34,…,又称黄金分割数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数
列”
,其通项公式1122n n
n a ⎡⎤⎛⎛-⎢⎥=- ⎢⎥⎝⎭⎝⎭⎣⎦
,是用无理数表示有理数的一个范例,该数列从第三项开始,每项等于其前相邻两项之和,即21n n n a a a ++=+,记该数列
{}n a 的前n 项和为n S ,则下列结论正确的是( )
A .10711S a =
B .2021201920182a a a =+
C .202120202019S S S =+
D .201920201S a =-
【答案】AB 【分析】
选项A 分别求出710S a ,可判断,选项B 由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+可判断,选项C ,由202112342021S a a a a a =++++
+,
202012S a a =+++2020a ,
两式错位相减可判断.选项D.由
()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-可判断.
【详解】
因为10143S =,711143a =,所以10711S a =,则A 正确;
由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+, 所以2021201920182a a a =+,所以B 正确; 因为202112342021S a a a a a =++++
+,202012S a a =+++2020a ,
两式错位相减可得202120201220192019101S S a a a S -=+++++=+,
所以2021202020191S S S =++,所以C 错误; 因为
()()()()()123324354652122
n n n n n S a a a a a a a a a a a a a a a a +++=+++
+=-+-+-+-++-=-21n a +=-,所以201920211S a =-,所以D 错误.
故选:AB. 【点睛】
关键点睛:本题考查数列的递推关系的应用,解答本题的关键是由
202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得
202120201220192019101S S a a a S -=+++++=+,以及由递推关系可得
()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-,属于中档题.
二、平面向量多选题
9.对于给定的ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论正确的是( ) A .21
2
AO AB AB ⋅
=
B .OA OB OA O
C OB OC ⋅=⋅=⋅
C .过点G 的直线l 交AB AC 、于E F 、,若AE AB λ=,AF AC μ=,则
1
1
3λ
μ
+
=
D .AH 与
cos cos AB AC AB B
AC C
+
共线
【答案】ACD 【分析】
根据外心在AB 上的射影是AB 的中点,利用向量的数量积的定义可以证明A 正确;利用向量的数量积的运算法则可以OA OB OA OC =即OA BC ⊥,在一般三角形中易知这是不一定正确的,由此可判定B 错误;利用三角形中线的定义,线性运算和平面向量基本定理中的推论可以证明C 正确;利用向量的数量积运算和向量垂直的条件可以判定
cos cos AB AC AB B
AC C
+
与BC 垂直,从而说明D 正确.
【详解】
如图,设AB 中点为M,则OM AB ⊥,AO cos OAM AM ∴∠=
()
21
·cos cos ?22
AB
AO AB AO AB OAB AB AO OAB AB AB ∴=∠=∠==,故A 正
确;
··OAOB OAOC =等价于()
·0OA OB OC -=等价于·0OACB =,即OA BC ⊥,
对于一般三角形而言,O 是外心,OA 不一定与BC 垂直,比如直角三角形ABC 中, 若B 为直角顶点,则O 为斜边AC 的中点,OA 与BC 不垂直.故B 错误; 设BC 的中点为D ,
则()
2111111
33333AG AD AB AC AE AF AE AF λμλμ⎛⎫=
=+=+=+ ⎪⎝⎭
, ∵E,F,G 三点共线,11133λμ∴
+=,即11
3λμ
+=,故C 正确; cos cos cos cos AB AC AB BC AC BC BC AB B AC C AB B AC C ⎛⎫⋅⋅ ⎪+
⋅=+ ⎪⎝⎭
()
cos cos cos cos AB BC B AC BC C AB B
AC C
π⋅-⋅=
+
0BC BC =-+=,
∴
cos cos AB AC AB B
AC C
+
与BC 垂直,又AH BC ⊥,∴
cos cos AB AC AB B
AC C
+
与AH
共线,故D 正确. 故选:ACD. 【点睛】
本题考查平面向量线性运算和数量及运算,向量垂直和共线的判定,平面向量分解的基本定理,属综合小题,难度较大,关键是熟练使用向量的线性运算和数量积运算,理解三点共线的充分必要条件,进而逐一作出判定.
10.在ABC 中,D ,E ,F 分别是边BC ,AC ,AB 中点,下列说法正确的是( ) A .0AB AC AD +-= B .0DA EB FC ++=
C .若
3 |||||
|
AB AC AD
AB AC AD
+=,则BD 是BA在BC的投影向量
D.若点P是线段AD上的动点,且满足BP BA BC
λμ
=+,则λμ的最大值为
1
8
【答案】BCD
【分析】
对选项A,B,利用平面向量的加减法即可判断A错误,B 正确.对选项C,首先根据已知得到AD为BAC
∠的平分线,即AD BC
⊥,再利用平面向量的投影概念即可判断C正确.对选项D,首先根据,,
A P D三点共线,设(1)
BP tBA t BD,01
t
≤≤,再根据已知得
到1
2
t
t
λ
μ
=
⎧
⎪
⎨-
=
⎪⎩
,从而得到2
1111
()()
2228
t
y t t,即可判断选项D 正确.
【详解】
如图所示:
对选项A,20
AB AC AD AD AD AD
+-=-=≠,故A 错误.
对选项B,
111
()()()
222
DA EB FC AB AC BA BC CA CB
++=-+-+-+
111111
222222
AB AC BA BC CA CB
=------
111111
222222
AB AC AB BC AC BC
=--+-++=,故B正确.
对选项C,
||
AB
AB
,
||
AC
AC
,
||
AD
AD
分别表示平行于AB,AC,AD的单位向量,
由平面向量加法可知:
||||
AB AC
AB AC
+为BAC
∠的平分线表示的向量.
因为
3
||||||
AB AC AD
AB AC AD
+=,所以AD为BAC
∠的平分线,
又因为AD为BC的中线,所以AD BC
⊥,如图所示:
BA 在BC 的投影为cos BD BA
B BA BD BA ,
所以BD 是BA 在BC 的投影向量,故选项C 正确.
对选项D ,如图所示: 因为P 在AD 上,即,,A P D 三点共线, 设(1)BP tBA t BD ,01t ≤≤.
又因为12BD BC =,所以(1)2
t BP tBA BC . 因为BP BA BC λμ=+,则12t t λμ=⎧⎪⎨-=⎪⎩
,01t ≤≤. 令21111()2
228
t y t t , 当12t =时,λμ取得最大值为18
.故选项D 正确. 故选:BCD
【点睛】 本题主要考查平面向量的加法,减法的几何意义,数形结合为解决本题的关键,属于中档题.。