《3.3.1函数的单调性与导数》教学案
函数的单调性与导数教案
函数的单调性与导数教案一、教学目标1. 让学生理解函数的单调性的概念,能够判断函数的单调性。
2. 让学生掌握导数的定义,能够计算常见函数的导数。
3. 让学生理解导数与函数单调性的关系,能够利用导数判断函数的单调性。
二、教学内容1. 函数的单调性定义:如果函数f(x)在区间I上,对于任意的x1, x2∈I,当x1 < x2时,都有f(x1) ≤f(x2),则称f(x)在区间I上为增函数;如果对于任意的x1, x2∈I,当x1 < x2时,都有f(x1) ≥f(x2),则称f(x)在区间I上为减函数。
2. 导数的定义定义:函数f(x)在点x处的导数定义为函数在点x处的切线斜率,记作f'(x),即f'(x) =lim┬(h→0)〖(f(x+h)-f(x))/h〗。
3. 常见函数的导数(1)常数函数f(x) = c,其导数为f'(x) = 0。
(2)幂函数f(x) = x^n,其导数为f'(x) = nx^(n-1)。
(3)指数函数f(x) = a^x,其导数为f'(x) = a^x ln(a)。
(4)对数函数f(x) = ln(x),其导数为f'(x) = 1/x。
4. 导数与函数单调性的关系(1)如果f'(x) > 0,则f(x)在区间(-∞, +∞)上为增函数。
(2)如果f'(x) < 0,则f(x)在区间(-∞, +∞)上为减函数。
(3)如果f'(x) = 0,则f(x)可能在某点处改变单调性。
三、教学方法1. 采用讲解法,讲解函数的单调性和导数的定义及计算方法。
2. 采用案例分析法,分析导数与函数单调性的关系。
3. 采用练习法,让学生通过练习巩固所学知识。
四、教学步骤1. 导入:回顾函数的概念,引导学生思考函数的单调性。
2. 讲解:讲解函数的单调性的定义,并通过实例演示如何判断函数的单调性。
3. 讲解:引入导数的定义,讲解常见函数的导数计算方法。
数学《函数单调性与导数》教案
数学《函数单调性与导数》教案教学目标:1. 知道函数单调性的定义,掌握判断单调性的方法。
2. 知道导数的定义,掌握求导的方法。
3. 熟练掌握函数单调性与导数的关系,能够应用相关知识解决实际问题。
教学重点:1. 函数单调性与导数的概念及其关系。
2. 求导数的方法和技巧。
3. 应用函数单调性和导数解决实际问题。
教学难点:1. 求高阶导数,各种复杂函数的单调性判断。
2. 应用函数单调性与导数解决实际问题。
教学方法:1. 讲授法:讲解相关知识点,示范演示,点拨解释。
2. 实验法:以具体例子演示如何判断函数的单调性。
3. 问题解决法:提供丰富的例题及作业,引导学生自主思考,解决问题。
教学过程设计:Part 1:函数单调性的引入1. 通过一个具体的例子引入函数单调性的概念,让学生理解函数单调性的含义。
2. 介绍单调递增和单调递减的概念,以及如何判断一个函数的单调性。
3. 引导学生思考,研究不同类型函数单调性的特点和判断方法。
Part 2:导数的定义和求导方法1. 导数的概念:定义导数,解释导数的几何意义和物理意义。
2. 求导方法:讲解求导过程,引导学生掌握基本的求导技巧。
3. 常用函数的导数:讲解常用函数的导数公式,让学生记忆。
Part 3:函数单调性与导数1. 函数单调性与导数的关系:引导学生研究函数单调性与导数之间的关系。
2. 求解函数单调性:利用导数判断函数单调性,让学生掌握方法。
3. 应用导数求解实际问题:让学生通过实际问题应用导数,求解函数单调性问题。
Part 4:案例分析1. 给出一些实际问题,让学生通过函数单调性和导数的方法求解。
2. 分组讨论,展示各自的解题思路和方法,互相学习。
Part 5:练习与总结1. 提供一些例题给学生练习,巩固所学知识。
2. 学生自己整理笔记,总结函数单调性与导数的概念及其应用教具准备:1. 教师演示用的白板或黑板、彩色粉笔或白板笔。
2. 学生实验用的计算器。
3. 相关练习题和例题。
3.3.1函数的单调性与导数(二)
• 解法二:(数形结合) • 如图所示,f′(x)=(x-1)[x-(a-1)].若在 (1,4) 内 f′(x)≤0 , (6 ,+ ∞ ) 内 f′(x)≥0 ,且 f′(x) =0有一根为1,则另一根在[4,6]上.
f′(4)≤0, 所以 f′(6)≥0,
3(5-a)≤0, 即 5(7-a)≥0,
x3
因为函数在(0,1]上单调递增
2 f '(x)>0,即a - 3 在x (0, 1]上恒成立 x 1 而g(x) 3 在(0, 1]上单调递增, x g(x)max g(1)=-1
a〉 -1
11
2 当a 1时,f '(x) 2 3 x 所以a的范围是[-1,+) 练习1 1 1
所以 5≤a≤7.
9
• 解法三:(转化为不等式的恒成立问题) • f′(x) = x2 - ax + a - 1. 因为 f(x) 在 (1,4) 内单调递减,所 以f′(x)≤0在(1,4)上恒成立.即a(x-1)≥x2-1在(1,4)上 恒成立,所以a≥x+1,因为2<x+1<5,所以当a≥5时, f′(x)≤0在(1,4)上恒成立, • 又因为f(x)在(6,+∞)上单调递增,所以f′(x)≥0在 (6,+∞)上恒成立,
象“陡峭”,在 (b, )
或 ( , a )
内的图象平缓.
5
练习
函数 y f 的大致形状
( x ) 的图象如图所示, 试画出导函数 f ( x )图象
6
题型:根据函数的单调性求参数的取值范围
例2:求参数的范围 若函数f(x) ax 3 - x 2 x - 5在(-,+)上单调递增, 求a的取值范围
3.3.1 函数的单调性与导数
A.
π 2
,
3π 2
B.(π,2π)
C.
3π 2
,
5π 2
D.(2π,3π)
思路分析:只需判断在哪个区间上导函数的值大于零即可.
答案:B
解析:y'=cos x-xsin x-cos x=-xsin x,若 y=f(x)在某区间内是增
函数,只需在此区间内 y'恒大于零即可.
∴只有选项 B 符合题意,当 x∈(π,2π)时,y'>0 恒成立.
(2)求函数 f(x)=x2-ln x 的单调区间.
思路分析:求函数的单调区间,即求定义域上满足 f'(x)>0 或 f'(x)<0 的区间.
解:函数 f(x)的定义域为(0,+∞),
f'(x)=2x-1������ = (
∴当 t<0 时,f(x)的递增区间为
-∞,
������ 2
,(-t,+∞),递减区间为
������ 2
,-t
;
当 t>0 时,f(x)的递增区间为(-∞,-t),
������ 2
,
+
∞
,递减区间为
-������,
������ 2
.
迁移与应用 已知函数 f(x)=12ax2+ln x(a∈R),求 f(x)的单调区间.
则(-9,0)是 3x2-2mx<0 的解集,
∴3×(-9)2-2×(-9)×m=0,m=-227.
∴a≤(2x3)min.∵x∈[2,+∞),y=2x3 是增函数,
3.3.1、函数的单调性与导数教案
3.3.1、函数的单调性与导数【教学目标】1、了解函数的单调性与导数的关系;2、能利用导数研究函数的单调性,会求函数的单调区间。
【教学重点】利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。
【教学难点】利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。
【教学过程】 一、创设情景函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用. 二、新课讲授1、提出问题:图3.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?2、知识探究:通过观察图像,我们可以发现:(1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2)从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<.3、函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系.如图3.3-3,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数()f x 在0x 附近单调递增; 在1x x =处,'0()0f x <,切线是“左上右下”式的,这时,函数()f x 在1x 附近单调递减. 4、知识归纳:函数的单调性与导数的关系在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增;如果'()0f x <,那么函数()y f x =在这个区间内单调递减.说明:(1)特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常函数.5、求解函数()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域; (2)求导数''()y f x =;(3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 三、典例分析例1、已知导函数'()f x 的下列信息:当14x <<时,'()0f x >; 当4x >,或1x <时,'()0f x <; 当4x =,或1x =时,'()0f x = 试画出函数()y f x =图像的大致形状.解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增;当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减;当4x =,或1x =时,'()0f x =,这两点比较特殊,我们把它称为“临界点”. 综上,函数()y f x =图像的大致形状如图3.3-4所示. 例2、判断下列函数的单调性,并求出单调区间.(1)3()3f x x x =+; (2)2()23f x x x =--(3)()sin (0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+解:(1)因为3()3f x x x =+,所以, '22()333(1)0f x x x =+=+>因此,3()3f x x x =+在R 上单调递增,如图3.3-5(1)所示.(2)因为2()23f x x x =--,所以, ()'()2221f x x x =-=- 当'()0f x >,即1x >时,函数2()23f x x x =--单调递增; 当'()0f x <,即1x <时,函数2()23f x x x =--单调递减; 函数2()23f x x x =--的图像如图3.3-5(2)所示.(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-< 因此,函数()sin f x x x =-在(0,)π单调递减,如图3.3-5(3)所示. (4)因为32()23241f x x x x =+-+,所以 .当'()0f x >,即 时,函数2()23f x x x =-- ; 当'()0f x <,即 时,函数2()23f x x x =-- ; 函数32()23241f x x x x =+-+的图像如图3.3-5(4)所示. 注:(3)、(4)生练例3、如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图像.分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A )符合上述变化情况.同理可知其它三种容器的情况.解:()()()()()()()()1,2,3,4B A D C →→→→思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些. 如图3.3-7所示,函数()y f x =在()0,b 或(),0a 内的图像“陡峭”, 在(),b +∞或(),a -∞内的图像“平缓”.例4、求证:函数3223121y x x x =+-+在区间()2,1-内是减函数.证明:因为()()()'22661262612y x x x x x x =+-=+-=-+当()2,1x ∈-即21x -<<时,'0y <,所以函数3223121y x x x =+-+在区间()2,1-内是减函数.小结:证明可导函数()f x 在(),a b 内的单调性步骤:(1)求导函数()'f x ;(2)判断()'fx 在(),a b 内的符号;(3)做出结论:()'0fx >为增函数,()'0f x <为减函数.例5、已知函数 232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的取值范围.解:'2()422f x ax x =+-,因为()f x 在区间[]1,1-上是增函数,所以'()0f x ≥对[]1,1x ∈-恒成立,即220x ax --≤对[]1,1x ∈-恒成立,解之得:11a -≤≤所以实数a 的取值范围为[]1,1-.说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则'()0f x ≥;若函数单调递减,则'()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解.例6、已知函数y =x +x1,试讨论出此函数的单调区间.解:y ′=(x +x1)′ =1-1·x -2=222)1)(1(1xx x x x -+=- 令2)1)(1(xx x -+>0. 解得x >1或x <-1. ∴y =x +x1的单调增区间是(-∞,-1)和(1,+∞).令2)1)(1(xx x -+<0,解得-1<x <0或0<x <1. ∴y =x +x1的单调减区间是(-1,0)和(0,1)四、随堂训练1、求下列函数的单调区间: (1) f (x )=2x 3-6x 2+7 (2) f (x )=x1+2x (3) f (x )=sin x , x ]2,0[π∈ (4) y=xlnx 2、函数()2sin f x x x =-在(,)-∞+∞上( )A 、是增函数B 、是减函数C 、有最大值D 、有最小值 3、函数y=x+2x(x>0)的单调减区间为( )A. (2,+∞)B. (0,2)C. ( 2 ,+∞)D. (0, 2 ) 4、若在区间(,)a b 内有'()0f x >,且()0f a ≥,则在(,)a b 有( )A 、()0f x >B 、()0f x <C 、()0f x =D 、不能确定5、函数24y x x a =-+的增区间是 ;减区间是 ;6、函数3()f x x x =-的增区间是 和 ;减区间是 ;7、32()41f x x x x =-+-在区间 递增。
人教版高中数学优质教案1:3.3.1 函数的单调性和导数 教学设计
3.3.1 函数的单调性与导数教学目标重点:利用导数研究函数的单调性,会求函数的单调区间. 难点:⒈探究函数的单调性与导数的关系;⒉如何用导数判断函数的单调性. 知识点:1.探索函数的单调性与导数的关系;2.会利用导数判断函数的单调性并求函数的单调区间.能力点:1.通过本节的学习,掌握用导数研究单调性的方法.2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想.教具准备:多媒体课件,三角板 课堂模式:学案导学 一.引入新课师:判断函数的单调性有哪些方法?比如判断2x y =的单调性,如何进行? 生:用定义法、图像法.师:因为二次函数的图像我们非常熟悉,可以画出其图像,指出其单调区间,再想一下,有没有需要注意的地方? 生:注意定义域.师:如果遇到函数x x y 33-=,如何判断单调性呢?你能画出该函数的图像吗? 师:定义是解决问题的最根本方法,但定义法较繁琐,又不能画出它的图像,那该如何解决呢?揭示并板书课题:函数的单调性与导数【设计意图】通过复习回顾,巩固旧知.从已学过的知识(判断二次函数的单调性)入手,提出新的问题(判断三次函数的单调性),引起认知冲突,激发学习的兴趣.师:函数是描述客观世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.函数的单调性与函数的导数一样都是反映函数变化情况的,那么函数的单调性与函数的导数是否有着某种内在的联系呢? 二.探究新知师:如图(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别? 生:通过观察图像,可以发现:(1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2)从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<.【设计意图】从具体的实际情景出发,提出本节课要探索的问题,函数的单调性与导数的关系.为学生提供一个联想的“源”,巧妙设问,把学习任务转移给学生;让学生完成对函数单调性与导数关系的第一次认识,明确研究课题.师:导数的几何意义是函数在该点处的切线的斜率,函数图象上每个点处的切线的斜率都是变化的,那么函数的单调性与导数有什么关系呢?观察下面函数的图像,探讨函数的单调性与其导数正负的关系.(1)函数x y =的定义域为R ,并且在定义域上是增函数,其导数01/>=y ; (2)函数2x y =的定义域为R ,在),(+∞-∞上单调递减,在),0(+∞上单调递增;而x y 2/=,当0<x 时,其导数0/<y ;当0>x 时,其导数0/>y ;当0=x 时,其导数0/=y .(3)函数3x y =的定义域为R ,在定义域上为增函数;而2/3x y =,若0≠x ,则其导数032>x ,当0=x 时,其导数032=x ;(4)函数x y 1=的定义域为),0()0,(+∞⋃-∞,在)0,(-∞上单调递减,在),0(+∞上单调递减,而2/1xy -=,因为0≠x ,所以0/<y .师:以上四个函数的单调性及其导数符号的关系说明,在区间),(b a 内,如果0)(/>x f ,那么函数)(x f y =在这个区间内单调递增;如果0)(/<x f ,那么函数)(x f y =在这个区间内单调递减.【设计意图】从具体的函数出发,体会数形结合思想的运用.让学生体会从特殊到一般,从具体到抽象的过程,降低思维难度,让学生在老师的引导下自主学习和探索,提高学习的成就感和自信心. 三. 理解新知师:如图,导数'0()f x 表示函数)(x f 在点00(,)x y 处的切线的斜率.观察图像回答,函数在某个点处的导数值与函数在该点处的单调性是怎样的关系?生:在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数)(x f 在0x 附近单调递增;在1x x =处,0)(1/<x f ,切线是“左上右下”式的,这时,函数)(x f 在1x 附近单调递减.师生共同总结:函数的单调性与导数的关系: 在某个区间),(b a 内,如果0)(/>x f ,那么函数)(x f y =在这个区间内单调递增;如果0)(/<x f ,那么函数)(x f y =在这个区间内单调递减.说明:如果0)(/=x f ,那么函数)(x f y =在这个区间内是常函数.【设计意图】通过导数的几何意义来验证由具体函数所得到的结论,形成一般性结论.让学生经历观察、分析、归纳、发现规律的过程,体会函数单调性与导数的关系. 四.运用新知例1、已知导函数'()f x 的下列信息:当14x <<时,'()0f x >; 当4x >,或1x <时,'()0f x <; 当4x =,或1x =时,'()0f x = 试画出函数()y f x =图像的大致形状.解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增;当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减; 当4x =,或1x =时,'()0f x =,这两点比较特殊,我们把它称为“临界点”. 综上,函数()y f x =图像的大致形状如图所示. 学生思考,并在纸上画出函数图像教师投影若干学生的作业情况,学生共同分析.【设计意图】让学生通过此题加深理解导函数是如何影响原函数的,这是今后利用 导函数研究函数的必备技能.这里让学生切实理解,为今后学习扫清障碍. 例2、判断下列函数的单调性,并求出单调区间. (1)3()3f x x x =+;(2)2()23f x x x =--(3)()sin (0,)f x x x x π=-∈;(4)32()23241f x x x x =+-+ 解:(1)因为3()3f x x x =+,所以,'22()333(1)0f x x x =+=+>因此,3()3f x x x =+在R 上单调递增,如图1所示.(2)因为2()23f x x x =--,所以,()'()2221f x x x =-=-当'()0f x >,即1x >时,函数2()23f x x x =--单调递增; 当'()0f x <,即1x <时,函数2()23f x x x =--单调递减; 函数2()23f x x x =--的图像如图2所示.(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-<因此,函数()sin f x x x =-在(0,)π单调递减,如图3所示. (4)因为32()23241f x x x x =+-+,所以.当'()0f x >,即时,函数2()23f x x x =--; 当'()0f x <,即时,函数2()23f x x x =--; 函数32()23241f x x x x =+-+的图像如图4所示.【设计意图】让学生初步体会用导数的方法确定函数单调性的简便. 【师生活动】总结求()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域;(2)求导数''()y f x =;(3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 例3.已知函数xx y 1+=,试讨论出此函数的单调区间. 解:2222//)1)(1(111)1(x x x x x x x x y +-=-=-=+=2令0)1)(1(2>+-xx x . 解得11-<>x x 或∴xx y 1+=的单调增区间是:),1()1-,(+∞-∞和 令0)1)(1(2<+-x x x ,解得1001<<<<-x x 或 ∴xx y 1+=的单调减区间是:)1,0()0,1(和-五.课堂小结(1)函数的单调性与导数的关系 (2)求解函数()yf x =单调区间【设计意图】通过师生共同反思,优化学生的认知结构. 六. 布置作业 必做:课本A 组 1,2【设计意图】体现了分层、有梯度的教学,学生动手练习,加强学生的应用意识. 七、板书设计。
函数的单调性与导数 说课稿 教案 教学设计
函数的单调性与导数教学目标:1.了解可导函数的单调性与其导数的关系;2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次.教学重点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;教学难点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间. 教学过程设计(一)、情景引入,激发兴趣。
【教师引入】黑暗中,你是怎样通过远处汽车自身的灯光判断该车是上坡还是下坡的?(二)、探究新知,揭示概念探究1.问题:图1.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像. 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?通过观察图像,我们可以发现:(1) 运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<.探究2.2.函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系.如图1.3-3,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.猜想:导数与函数的单调性有什么联系呢?在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数()f x 在0x 附近单调递增; 在1x x =处,'0()0f x <,切线是“左上右下”式的,这时,函数()f x 在1x 附近单调递减.(三)、分析归纳,抽象概括 函数的单调性与导数的关系曲线 切线斜率k >0 上升函数()y f x = ()0f x '> ? 递增()x I ∈在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增; 如果'()0f x <,那么函数()y f x =在这个区间内单调递减.说明:(1)特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常函数.(2)“某区间”指的是定义域的子集,研究函数单调性问题“定义域优先”. (四)、知识应用,深化理解例1.已知导函数'()f x 的下列信息: 当14x <<时,'()0f x >; 当4x >,或1x <时,'()0f x <; 当4x =,或1x =时,'()0f x = 试画出函数()y f x =图像的大致形状.解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增; 当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减; 当4x =,或1x =时,'()0f x =,这两点比较特殊,我们把它称为“临界点”. 综上,函数()y f x =图像的大致形状如图3.3-4所示. 例2.判断下列函数的单调性,并求出单调区间.(1)3()3f x x x =+; (2)2()23f x x x =--(3)()sin (0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+ 解:(1)因为3()3f x x x =+,所以, '22()333(1)0f x x x =+=+>因此,3()3f x x x =+在R 上单调递增,如图3.3-5(1)所示.(2)因为2()23f x x x =--,所以, ()'()2221f x x x =-=-当'()0f x >,即1x >时,函数2()23f x x x =--单调递增; 当'()0f x <,即1x <时,函数2()23f x x x =--单调递减; 函数2()23f x x x =--的图像如图3.3-5(2)所示.(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-< 因此,函数()sin f x x x =-在(0,)π单调递减,如图3.3-5(3)所示. (4)因为32()23241f x x x x =+-+,所以 .当'()0f x >,即 时,函数2()23f x x x =-- ; 当'()0f x <,即 时,函数2()23f x x x =-- ; 函数32()23241f x x x x =+-+的图像如图3.3-5(4)所示. 注:(3)、(4)生练课堂练习1.求下列函数的单调区间1.f (x )=2x 3-6x 2+7 2.f (x )=x1+2x3. f (x )=sin x , x ]2,0[π∈4. y=xlnx(五)、归纳小结、布置作业。
人教版高中数学优质教案5:3.3.1 函数的单调性与导数 教学设计
3.3.1 函数的单调性与导数一、教学设计: 内容和内容[解析]该部分的内容主要讲述的是函数的单调性与导数之间的关系,为函数的单调性研究提供了一个更为便捷的方法.在学习本节课之前,学生在必修1的《函数性质》内容中学习了函数单调性的定义以及利用图像得出单调区间的方法,另外还学习了导数的几何意义就是函数图象上的点所在的切线斜率.在函数单调性定义中提到:在定义域中的某个区间内任取两个不相等的自变量12,x x ,通过求1()f x 与2()f x 的大小关系可以判断函数的单调性.同时注意到导数的定义中的描述:000()()'()limx x f x f x f x x x →-=-.将导数的定义结合1212()()0f x f x x x ->-时,()f x 为增函数;1212()()0f x f x x x -<-时,()f x 为减函数.可以判定()f x 在某个区间上如果满足'()0f x >,则()f x 在该区间上为增函数;反之,如果'()0f x <,则()f x 在该区间上为减函数.另外,相比于利用单调性定义判定1()f x 与2()f x 的大小关系来确定函数单调性的繁琐运算,求导函数的过程要简洁许多,这就为学生判断一些相对比较复杂的函数的单调性提供一个有力的方法.目标和目标[解析] 1.知识与技能目标:(1)了解函数的单调性与导函数之间的关系;(2)能利用导数研究简单函数的单调性,并掌握原函数与导函数之间的关系; (3)掌握函数单调性的求法,用以解决一些简单的问题. 2.过程与方法目标: (1)利用函数1()f x x x=+回顾单调性的定义和利用图象求单调区间的方法; (2)利用一个函数作为引入,让学生明确本节课学习之后将要达到的学习效果; (3)借助一个函数图象和几何画板让学生体验单调区间与导函数之间的关系;(4)利用所得的结论,让学生研究三个函数的单调区间;(5)利用三个函数图像,作出相应的原函数与导函数的图像草图,让学生体会原函数与导函数之间的图象联系;(6)利用引入中的例题,对本节课所学的内容进行应用并作适当的拓展、总结.3.情感、态度与价值观目标:通过例题的设计培养学生的阅读与理解能力,在图象的研究中培养学生的观察能力,鼓励学生之间的相互协作,培养学生友善的社会主义核心价值观.教学过程由图可得,()f x 的增区间为(,1)-∞-,(1,)+∞,减区间为(1,0)-,(0,1)例2:已知函数()f x 的图象如图所示,且'()f x 是()f x 的导函数.(1)写出()f x 的单调增区间; (2)在你所写出的单调增区间中任选五点作切线.观察所得切线的斜率,归纳出相应的规律,并与你的组员分享你的结论;(3)写出()f x 的单调减区间; (4)在你所写出的单调减区间中任选五点作切线.观察所得切线的斜率,归纳出相应的规律,并与你的组员分享你的 结论;(5)结合切线的斜率与导数的关系,求'()0f x >与'()0f x <的解集;(6)观察单调区间与(5)的解集之间的关系,并总结单调区间和导函数之间的关系.解:(1)增区间是:(1,1)-;如果出于教学进度的考虑,教师可以直接用几何画板向学生演示()f x 图象中各个点的切线斜率特征,并给出相应的结论.但是这样只能使学生成为课堂教学的旁观者.通过让学生自己在纸上作出几条切线观察,进行归纳后与其他组员分享,能极大的提高 学生课堂的参与度,即使自己不会也会被其他组员感染而参与研究.若其他同学与他教师一条条的放映处题目,让学生依序解答每道题,切忌一次性将所有的问题投影出来,使学生产生畏难心理.然后观察学生的活动情况,根据学生的反应作出是否放映下一个问题的判断.同时对学生学习过程中存在的问题及时给予点拨.在学生得出猜想之后,教师再利用几何画板多次演示切点所在的单调区间对斜线斜率的符号的影响. 最后再总结函数的单调区间与导函数之间的关系,让学生对所给出的结论有更好的理解.学生通过阅读题目要求,对图象进行独立研究,将所得到的结果与其他组员分享,并根据所得结论的异同进行及时的纠正或讨论.学情预设:学生在此处会出现端点处作切线,得到导函数在单调区间上可以等于0的结论,对于这个问题可以放到后续的图象中一句话带过,教师不必纠缠.教学实践心得《函数的单调性与导数》的教学价值的挖掘与思考导数部分的内容在高中数学教学中占据着举足轻重的地位,这从对导数时常作为压轴题进行考察就可见一斑.而在压轴题中时常都是以探究式的出题方式要求学生在摸索中找到解题的方法,这既要求学生对相关知识点有较为熟练的基本解题能力,还需要有较为扎实的探究问题的技能.这就要求在本阶段的教学绝对不能依靠以教师为主体的精英化教育时代留下的经验,用绝对量的题目和不断加大的题目难度进行教学,并要求学生如法炮制的在解题过程中应用.它可以综合应用高中阶段所有的知识点进行命题,同时内容本身的解题步骤就比较复杂,如果教师在课堂上以讲为主,时常会发现学生心不在焉,甚至在课堂上睡觉.那么应该用怎样的方法来启发学生对问题进行探究呢?在解答这个问题之前,先分析一下当前时代下人们学习方式的转变.在工业时代,人们的学习方式主要还是以口口相传或者经验传授的方式进行学习.而在网络时代,人们在学习的过程中更加注重主体参与、体验式的学习方式,因为所有的信息都能够信手拈来为我所用.那么面对杂乱无章的海量信息,教师更多的应该扮演引导者的角色,把探究过程中的操作步骤留给学生,让学生在合作探究的过程中慢慢去体会知识的形成与应用的过程.以软件为例,现在的软件首先会用step by step的方式对你进行指导,让你能够尽快了解软件的基本功能和操作方式.客户在了解了产品的基本功能之后,就可以在熟练操作的基础上对该软件的功能进行进一步的开发,另外对于复杂的软件则可以不断通过搜索引擎找到相关的案例进行手把手的操作,提升自我的应用能力,让软件更好的为我服务.这给导数的探究式教学提供了宝贵的借鉴.1.设置问题必须低起点.将导数应用在函数的研究中,学生之前从来没有使用过.所以在课程学习的最初阶段,教师应当努力维护学生对新鲜事物所拥有的本能的好奇,努力避免用复杂的问题瞬间将学生的学习热情扼杀在萌芽的状态.华罗庚先生曾经说过:“(数学教育)要尽可能的退,退到数学最本质的内容.”而这种“退”主要是要让学生能够在学习的最初阶段能够较好的抓住所学内容的本质.图象作为函数研究中的重要工具有着直观与便捷的特点,在《导数与函数单调性》的例题中先用图象作为探究的切入点,可以让学生直接开始对所给的图象作切线,尽可能靠近学生的“最近发展区”,可操作性比较强.2.一步一步引导最初学习.学生刚开始接触将导数作为方法研究函数的内容,教师不能要求学生一下就直接懂得探究的方法,应当对探究中的每一步都进行指点,让学生将自己的“最近发展区”在教师的指导下不断的向前推进并逐步形成自己的方法.另外结合心理学研究的结果:相比于耳朵听到的内容,眼睛看到的内容在记忆中留下的印象要更为深刻.教师可以在课堂的一开始将学生的基础定位定位尽可能低,以便于让尽可能多的学生能够参与到课堂的学习.3.便捷化的操作.操作越简单越能激起学习者的探究热情.在最初的引入阶段利用单调性的定义探究函数的单调性需要的步骤和技巧极多.而在学习导数的内容之后,学生可以对比两种解法,导数所具备的的明显的便捷性与普适性将会引导学生不断深入的学习下去.在得到导数与函数单调性的代数上的意义之后,紧接着又能够得到导数与函数单调性在图象上的相互关系.4.建立学生智能的概念.学生是一个具有主观能动性的人,教师其实并不需要一开始就将复杂的题目向学生进行传授,而更应该回归到本源,将原本复杂的题目进行分解,让学生通过自主探究完成简单的问题,接着再慢慢的熟练掌握知识的内涵与作用.这时他就能对这些知识和技能进行重构,最终完成复杂的任务,这是大脑进行思考的基本顺序.所以在设置《导数和函数单调性》的问题时,在文字或者语言提示中不断的为学生铺路,尽可能让学生自主的解答学习过程中所存在的问题,不断挖掘知识的潜在价值,这甚至可以为后续的研究提供借鉴.当教师在后续的课程中设置同样的语言可以触发学生相同的思考,为后续的学习铺路.本节课由于是第一课时,所以教学的过程中依然停留在课堂内的学习.在网络化的时代,甚至可以鼓励学生在课堂上使用手机搜索自己存在的问题,还可以将自己在学习过程中的体会发布到网络上与其他同学进行分享,将课堂内的学习延伸到网络上,提高学生的学习乐趣和应用手机解决实际问题的能力.。
3.3.1单调性 学案(含答案)
3.3.1单调性学案(含答案)3.3导数在研究函数中的应用3.3.1单调性学习目标1.结合实例,直观探索并掌握函数的单调性与导数的关系.2.能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式.3.会用导数法求函数的单调区间其中多项式函数一般不超过三次知识点函数的单调性与导函数正负的关系思考1观察下列各图,完成表格内容.函数及其图象切线斜率k正负导数正负单调性正正1,上单调递增正正R上单调递增负负0,上单调递减负负0,上单调递减负负,0上单调递减思考2依据上述分析,可得出什么结论答案一般地,设函数yfx,在区间a,b上,如果fx0,则fx在该区间上单调递增;如果fx0,则fx在该区间上单调递减梳理1导数值切线的斜率倾斜角曲线的变化趋势函数的单调性fx0k0锐角上升单调递增fx0k0钝角下降单调递减2在区间a,b内函数的单调性与导数有如下关系函数的单调性导数单调递增fx0,且fx在a,b的任何子区间上都不恒为零单调递减fx0,且fx在a,b的任何子区间上都不恒为零常函数fx01如果函数yfx在区间a,b上都有fx0,那么fx在区间a,b内单调递增2如果函数yfx在区间a,b上单调递增,那么它在区间a,b上都有fx0.3函数yx3x25x5的单调递增区间是和1,4函数fxlnxaxa0的单调增区间为.类型一求函数的单调区间命题角度1求不含参数的函数的单调区间例1求fx3x22lnx的单调区间解fx3x22lnx的定义域为0,fx6x,由x0,解fx0,得x;由x0,解fx0,得0x.所以函数fx3x22lnx的单调递增区间为,单调递减区间为.反思与感悟求函数yfx的单调区间的步骤1确定函数yfx的定义域;2求导数yfx;3解不等式fx0,函数在定义域内的解集上为增函数;4解不等式fx0,函数在定义域内的解集上为减函数跟踪训练1求函数fx的单调区间解函数fx的定义域为,22,fx.因为x,22,,所以ex0,x220.由fx0,得x3,所以函数fx的单调递增区间为3,;由fx0,得x3.又函数fx的定义域为,22,,所以函数fx的单调递减区间为,2和2,3命题角度2求含参数的函数的单调区间例2讨论函数fxx2alnxa0的单调性解函数fx的定义域是0,,fx2x.设gx2x2a,由gx0,得2x2a.当a0时,fx2x0,函数fx在区间0,上为增函数;当a0时,由gx0,得x或x舍去当x时,gx0,即fx0;当x时,gx0,即fx0.所以当a0时,函数fx在区间上为减函数,在区间上为增函数综上,当a0时,函数fx的单调增区间是0,;当a0时,函数fx的单调增区间是,单调减区间是.引申探究若将本例改为fxax2lnxaR呢解fx2ax,当a0时,且x0,,fx0,函数fx在0,上为减函数;当a0时,令fx0,解得x或x 舍去当x时,fx0,fx为减函数;当x时,fx0,fx为增函数综上所述,当a0时,函数fx在0,上为减函数;当a0时,fx在上为减函数,在上为增函数反思与感悟1在判断含有参数的函数的单调性时,不仅要考虑到参数的取值范围,而且要结合函数的定义域来确定fx的符号,否则会产生错误2分类讨论是把整个问题划分为若干个局部问题,在每一个局部问题中,原先的不确定因素就变成了确定性因素,当这些局部问题都解决了,整个问题就解决了跟踪训练2已知函数fx4x33tx26t2xt1,其中xR,tR.当t0时,求fx的单调区间解fx12x26tx6t26xt2xt,令fx0,得x1t,x2.当t0,x时,fx0,此时fx为减函数;当x时,fx0,此时fx为增函数,同理当xt,时,fx也为增函数当t0时,fx的增区间为和t,,fx的减区间为;当t0,x时,fx0,此时fx为减函数,当x,t和x时,fx0,此时fx为增函数,当t0时,fx的增区间为,t,,fx的减区间为.综上所述,当t0时,fx的单调增区间是,t,,单调减区间是.当t0时,fx的单调增区间是,t,,单调减区间是.类型二证明函数的单调性问题例3证明函数fx在区间上单调递减证明fx,又x,则cosx0,sinx0,xcosxsinx0,fx0,fx在上是减函数反思与感悟关于利用导数证明函数单调性的问题1首先考虑函数的定义域,所有函数性质的研究必须保证在定义域内这个前提下进行2fx或0,则fx为单调递增或递减函数;但要特别注意,fx为单调递增或递减函数,则fx或0.跟踪训练3证明函数fx在区间0,e上是增函数证明fx,fx.又0xe,lnxlne1.fx0,故fx在区间0,e上是增函数类型三已知函数的单调性求参数范围例4已知函数fxx2x0,常数aR若函数fx在x2,上单调递增,求a的取值范围解fx2x.要使fx在2,上单调递增,则fx0在x2,时恒成立,即0在x2,时恒成立x20,2x3a0,a2x3在x2,时恒成立a2x3min.当x2,时,y2x3是单调递增的,2x3min16,a16.当a16时,fx0x2,,有且只有f20,a的取值范围是,16反思与感悟已知函数的单调性,求函数解析式中参数的取值范围,可转化为不等式恒成立问题,一般地,函数fx在区间I上单调递增或减,转化为不等式fx0fx0在区间I上恒成立,再用有关方法可求出参数的取值范围跟踪训练4已知函数fxx3ax2a1x2在区间1,2上为减函数,求实数a的取值范围解方法一fxx2axa1,因为函数fx在区间1,2上为减函数,所以fx0,即x2axa10,解得ax1.因为在1,2上,ax1恒成立,所以ax1max1.所以a的取值范围是1,方法二fxx1xa1,由于函数fx在区间1,2上为减函数,所以fx0,当a2时,解得1xa1,即减区间为1,a1,则1,21,a1,得a1.当a2时,解得减区间为a1,1,则函数fx不可能在1,2上为减函数,故a1.所以实数a的取值范围是1,1函数fx2x33x21的单调递增区间是________,单调递减区间是________答案,0和1,0,1解析fx6x26x,令fx0,得x0或x1,令fx0,得0x1.2函数fxx1ex的单调递增区间是________答案0,解析fxx1exx1exxex,令fx0,解得x0.3函数fxlnxaxa0的单调递增区间为________答案解析fx的定义域为x|x0,由fxa0,得0x.4若函数yx3ax24在0,2上单调递减,则实数a的取值范围为________答案3,解析y3x22axx3x2a,由题意知x0,2,y0,即x3x2a0,得0xa,则2,即a3.5求函数fxxkex的单调区间解fxexxkexxk1ex,当xk1时,fx0;当xk1时,fx0,所以fx的单调递减区间是,k1,单调递增区间为k1,1导数的符号反映了函数在某个区间上的单调性,导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度2利用导数求函数fx的单调区间的一般步骤1确定函数fx的定义域;2求导数fx;3在函数fx的定义域内解不等式fx0和fx0;4根据3的结果确定函数fx的单调区间。
函数的单调性与导数教案
函数的单调性与导数教案教案标题:函数的单调性与导数教案教案目标:1. 理解函数的单调性的概念及其在数学中的应用。
2. 掌握使用导数判断函数的单调性的方法。
3. 能够应用函数的单调性和导数的概念解决实际问题。
教案步骤:引入:1. 引导学生回顾函数的概念,并提醒他们函数图像上的一些特征,如上升、下降、水平等。
2. 引出函数的单调性的概念,解释函数在特定区间上的单调性表示函数值的增减趋势。
探究:1. 提供一个简单的函数图像,让学生观察并讨论函数在不同区间上的单调性。
2. 引导学生思考如何使用导数来判断函数的单调性。
3. 解释导数的概念,以及导数与函数单调性之间的关系。
4. 通过几个例子,演示如何使用导数来判断函数的单调性。
实践:1. 提供一些函数的导数表达式,让学生根据导数的正负判断函数的单调性。
2. 给学生一些函数图像,让他们通过观察图像判断函数的单调性,并用导数来验证他们的结论。
3. 给学生一些实际问题,让他们应用函数的单调性和导数的概念解决问题。
总结:1. 总结函数的单调性的概念及其判断方法。
2. 强调导数与函数单调性之间的关系。
3. 鼓励学生在实际问题中运用所学知识。
拓展:1. 提供更复杂的函数图像和问题,让学生进一步应用函数的单调性和导数解决问题。
2. 引导学生思考如何使用函数的单调性和导数来优化问题的解决方案。
评估:1. 设计一些练习题,考察学生对函数的单调性和导数的理解和应用能力。
2. 给学生一些实际问题,让他们运用所学知识解决问题,并评估他们的解决方案的合理性和准确性。
教案扩展:1. 引导学生探究函数的凹凸性与导数的关系。
2. 拓展教案内容,介绍更高级的函数性质和导数应用。
注意事项:1. 根据学生的学习水平和理解能力,适当调整教案的难度和深度。
2. 鼓励学生积极参与讨论和实践,培养他们的数学思维和问题解决能力。
3. 提供足够的练习和实践机会,巩固学生对函数单调性和导数的掌握程度。
《函数的单调性与导数》公开课教学设计
公开课《函数的单调性与导数》教学设计(泉州市级公开周)学情分析:导数与函数的单调性是导数应用中最基本、最重要的知识点,导数的所有应用都离不开单调性,而单调性的基础是解不等式,这类题型是历年高考的热点,也是难点,针对这类基础薄弱的学生,起点不宜太高,只能从最基础的部分拾起,以题目贯穿内容,逐级而上.教学方法:提示练习探讨法高考解读教学过程一、复习引入1.回顾基本函数的导数公式2.回顾导数运算法则3.函数的导数与单调性的关系函数y=f(x)在某个区间内可导,(1)若f '(x)>0,则f(x)在这个区间内单调递增 ;(2)若f '(x)<0,则f(x)在这个区间内单调递减 ;(3)若f '(x)=0,则f(x)在这个区间内是常数函数 .问题:为什么有这种关系?(由导数的几何意义来解释)如图,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数()f x 在0x 附近单调递增; 在1x x =处,'0()0f x <,切线是“左上右下”式的,这时,函数()f x 在1x 附近单调递减. 结论:函数的单调性与导数的关系在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增; 如果'()0f x <,那么函数()y f x =在这个区间内单调递减;说明:特别地,如果'()0f x =,那么函数()y f x =在这个区间内是常函数.4.用充分必要条件诠释导数与函数单调性的关系(1)0('〉x f ( 或0)('〈x f )是)(x f 在(a ,b )内单调递增(或递减)的充分不必要条件 (2)0)('≥x f (或0)('≤x f )是)(x f 在(a,b )内单调递增(或递减)的必要不充分条件 (0)('=x f 不恒成立).二、新课讲授B. 典例分析问题一:不含参数的函数的单调性典例1 (2018河北唐山质检)求函数f (x )=2121ln 2-+-x x x 的单调区间.选题意图:熟练基本函数导数公式,巩固导数运算法则,掌握分式不等式的解法,掌握导数与函数单调性的密切关系导数法求函数单调区间的一般步骤[提醒](1)求函数的单调区间时,一定要先确定函数的定义域,否则极易出错.如本例易忽视定义域为(0,+∞)而导致解题错误.(2)个别导数为0的点不影响函数在该区间上的单调性,如函数f (x )=x 3, f '(x )=3x 2≥0(x ≠0时, f '(x )=0),但f (x )=x 3在R 上是增函数.触手小试:1.函数y =f (x )的导函数y =f '(x )的图象如图所示,则下面判断正确的是( )A.在区间(-3,1)上f (x )是增函数B.在区间(1,3)上f (x )是减函数C.在区间(4,5)上f (x )是增函数D.在区间(3,5)上f (x )是增函数选题意图:导数与函数单调性的关系体现在图形上,信息在图形上寻找. (渗透数形结合的思想)2.函数f (x )=cos x -x 在(0,π)上的单调性是 ( )A.先增后减B.先减后增C.单调递增D.单调递减 选题意图:巩固基本函数导数公式,三角函数图象及性质. 3.函数f (x )=x 3-3x +1的单调增区间是 ( )A.(-1,1)B.(-∞,1)C.(-1,+∞)D.(-∞,-1),(1,+∞)选题意图:掌握常用函数导数公式,巩固一元二次不等式的解法.4.函数y =21x 2-ln x 的单调递减区间为 .选题意图:巩固导数运算法则,掌握分式不等式的解法. 课堂变式练习1.函数y =xx 142+的单调增区间为 ( )A.(0,+∞)B.⎪⎭⎫ ⎝⎛+∞,21 C.(-∞,-1)D.⎪⎭⎫ ⎝⎛-∞-21, 2.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是 .问题二:含参数的函数的单调性典例2(2017新课标Ⅰ改编)已知函数f (x )=()12++x ax e x (a >0),试讨论f (x )的单调性.选题意图:巩固基本函数导数公式和导数运算法则,理解参数的取值对函数单调区间的影响,进而掌握对参数进行分类讨论的要点,贯穿分类讨论的思想.课堂变式练习已知函数x e a ae x f x x --+=)2()(2,试讨论f (x )的单调性.三、归纳小结1.求解函数()y f x =单调区间的步骤:(1)确定函数()y f x =的定义域; (2)求导数''()y f x =;(3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间.2.涉及含参数的单调性或单调区间的问题,首先弄清楚参数对导数f '(x )在某一区间的符号是否影响,若有影响,必须分类讨论.四、布置作业: 全品P13-14已知函数x e a ae x f x x --+=)2()(2,试讨论f (x )的单调性. (答案)归纳:课后思考:若函数f(x)=kx-ln x在区间(1,+∞)上单调递增,则k的取值范围是 .选题意图:渗透分类讨论思想,巩固导数运算法则,熟悉解含参数的分式不等式进行分类时的解法要点,这类题是重点,也是难点,牵涉到数学基础知识,学生常常是弄不清怎么分类,找不到分界点,甚至在分类后解不等式组时还出现失误,各不等式组解出后下结论时是交集还是并集也糊涂。
【数学】3.3.1《函数的单调性和导数》教案(新人教A版选修1-1)
§3.3.1函数的单调性与导数【成功细节】严俏华谈导数的计算的方法本节主要是用函数的导数研究函数的单调性,学习过程中要深刻理解相关的结论以及方法,要学好本节内容,我认为应注意以下几个细节入手:(1)函数在某点处的单调性与该点处的切线的斜率(即函数在该点处的导数值)的符号相关;若导数值大于零,则函数在此处为增函数;(2)若函数在某个闭区间上的导数值恒为零,则该函数为常数函数;(3)在求函数的单调区间时,可直接解关于导数的不等式;(4)深刻理解函数的单调性与函数的导数之间的关系,包括连个方面:导数的符号说明函数的单调性,某区间内,导数值为正,则函数为增函数;导数绝对值得大小反映了函数图象的变化速度,绝对值越大,函数图象越陡峭。
如 这个题主要考查导数的基本运算以及应用导数解决函数的单调性,是一个简单题,可直接求解即可.1()ln ln 1f x x x x x'=+⨯=+,令()0f x '>可解得1x e>,所以函数的单调递增区间是1(,)e +∞.【高效预习】(核心栏目)“要养成学生阅读书籍的习惯就非教他们预习不可”。
——叶圣陶【精读·细化】1.用10分钟的时间阅读教材89~91页, 函数的单调性与导函数正负之间有怎样关系?某个区间内函数的平均变化率的几何意义与导数之间的联系呢?如果在某个区间恒有()f x '=0,那么函数有什么特征?细节提示:把握住单调性定义中y 的变化量与x 的变化量的比值与导数的定义之间的关系。
【提升·解决】1.在某个开区间内,导数值大于零,则函数在这个区间内单调递增,导数值小于零,则函数在这个区间内单调递减;若函数在某个区间内恒有导数值等于零,则函数为常数函数.【关注·思考】2.阅读课本92~93页,理解函数变化的快慢程度与函数导数值的绝对值的大小之间的关系.细节提示:函数图象,不仅体现函数的增减,还可以体现函数值变化的快慢.【提炼·发现】2.函数导数的绝对值较大,则函数在这个范围内变化得快,函数的图象就比较“陡峭”,反之就“平缓”一些.(2007年广东 文12)函数()ln (0)f x x x x =>的单调递增区间是____. 2007年广东省文科状元严俏华【学习细节】(核心栏目)A .基础知识导数的应用知识点1 函数的单调性与导数之间的关系【情景引入】函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.函数的单调性与函数的导数一样都是反映函数变化情况的,那么函数的单调性与函数的导数是否有着某种内在的联系吗?【思考】 如图(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.86.5v t h t t ==-+的图像.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?【引导】 随着时间的变化,运动员离水面的【探究】通过观察图像,我们可以发现:(1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2)从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<.【思考】 导数的几何意义是函数在该点处的切线的斜率,函数图象上每个点处的切线的斜率都是变化的,那么函数的单调性与导数有什么关系呢? 【引导】可先分析函数的单调性与导数的符号之间的关系.【探究】函数的单调性可简单的认为是:若2121()()f f x x xx-->0则函数f(x)为增函数.可把2121()()f f x x x x--看作y x∆∆=2121()()f f x x x x--.说明函数的变化率可以反映函数的单调性.即函数的导数与函数的单调性有着密切的联系.观察下面函数的图象,探讨函数的单调性与其导数正负的关系.(1)函数y x =的定义域为R ,并且在定义域上是增函数,其导数10y '=>; (2)函数2y x =的定义域为R ,在(,0)-∞上单调递减,在(0,)+∞上单调递增; 而2()2y x x ''==,当0x <时,0y '<;当0x >时,0y '>;当0x =时,0y '=。
函数的单调性与导数教学设计.doc
第一课时函数的单调性与导数(一)课堂设计理念先以具体问题引入,让学生意识到用定义法、图象法在处理一些单调性问题时难度之大,激发学生的学习兴趣,再让学生数形结合,通过观察分析、小组讨论的方式得出函数单调性与导数之间的联系。
(二)课堂设计意图建立函数单调性与导数之间的联系是本节课的关键。
课堂中先以具体问题引入,让学生意识到在处理一些单调性问题时定义法、图象法的不便,激发学生的求知欲;接下来让学生数形结合,通过小组讨论的方式得出函数单调性与导数间的联系,这样既有助于活跃课堂气氛又加深了学生对结论的理解。
在练习上,紧扣高考题,并采用小组竞赛的方式,有效地调动了学生的积极性。
(三)教材分析本节的教学内容属导数的应用,是在学生学习了导数的概念、计算、几何意义的基础上学习的内容,学好它既可加深对导数的理解,又可为后面研究函数的极值和最值打好基础。
由于学生在高一已经掌握了单调性的定义,并能用定义判定在给定区间上函数的单调性。
通过本节课的学习,应使学生体验到,用导数判断单调性要比用定义判断简捷得多(尤其对于三次和三次以上的多项式函数,或图象难以画出的函数而言),充分展示了导数解决问题的优越性。
高考要求:了解函数导数与单调性的关系,能利用导数研究函数单调性,会求函数单调区间。
这部分在高考中几乎每年都有涉及,所占分值比重较大(四〉教学目标知识目标:能探索并应用函数的单调性与导数的关系求单调区间,能由导数信息绘制函数大致图象。
能力目标:培养学生的观察能力、归纳能力,增强数形结合的思维意识。
情感目标:通过在教学过程中让学生多动手、多观察、勤思考、善总结,引导学生养成自主学习的学习习惯。
(五)教学重点、难点重点:探索并应用函数单调性与导数的关系求单调区间。
难点:利用导数信息绘制函数的大致图象。
(六)学生情况分析有利因素:1)已经学习了函数的单调性,会用图像法、定义法求函数的单调性;2)在物理学瞬时速度的辅助下掌握了导数概念及几何意义,会求简单函数的导函数;3)学生好奇心强,探究导数与函数单调性关系对他们而言是一个挑战,更能激发他们学习兴趣。
高中数学选修1课件1-3.3.1函数的单调性与导数
解析:方法一:f′(x)=x2-ax+a-1,由 f′(x)=0 得 x=1 或 x=a-1.
当 a-1≤1,即 a≤2 时,对于任意的 x∈(1,+∞),f′(x)>0, 即函数 f(x)在[1,+∞)上单调递增,不符合题意; 当 a-1>1,即 a>2 时,函数 f(x)在(-∞,1]和[a-1,+∞) 上单调递增,在[1,a-1]上单调递减, 依题意[1,4]⊆[1,a-1]且[6,+∞)⊆[a-1,+∞),从而 4≤a -1≤6,故 5≤a≤7. 综上,实数 a 的取值范围为[5,7].
(3)要特别注意函数的定义域.
跟踪训练 2 求下列函数的单调区间. (1)y=(1-x)ex; (2)y=x3-2x2+x;
(3)y=12x+sin x,x∈(0,π).
解析:(1)∵y=(1-x)ex, ∴y′=-xex,∴y′>0 时 x<0,y′<0 时 x>0, ∴函数 y=(1-x)ex 的增区间为(-∞,0),减区间为(0,+∞). (2)∵y=x3-2x2+x,∴y′=3x2-4x+1,x∈R, ①令 3x2-4x+1>0,得 x>1 或 x<13. ②令 3x2-4x+1<0,得13<x<1.
状元随笔
如图,函数 y=f(x)的图象在(0,a)内“陡峭”,在(a,+∞)内 “平缓”.
说明:通过函数图象,不仅可以看出函数的增减,还可以看出 函数增减的快慢.从导数的角度研究了函数的单调性及增减快慢 后,我们就能根据函数图象大致画出导函数的图象,反之也可行.
[小试身手]
1.已知函数 f(x)=x3-3x2-9x,则函数 f(x)的单调递增区间是
状元随笔 先求导数,再利用二次函数知识求 a.
3.函数 f(x)=2x-sin x 在(-∞,+∞)上( ) A.是增函数 B.是减函数 C.有最大值 D.有最小值
函数的单调性与导数教学案
七、课后作业 课堂讲义跟 1、跟 2、跟 3
教学反思
函数及其图像
y f(x) = x
o
x
学习好资料
欢迎下载 单调性
在 (, ) 上递增
y f(x)= x2
在 (, 0) 上递减
o
x
y f(x)= x3
o
x
在 (0, ) 上递增 在 (, ) 上递增
说明:求解函数 y f (x) 单调区间的步骤:
(1)确定函数 y f (x) 的定义域;(2)求导数 y' f ' (x) ;
(3)解不等式 f ' (x) 0 ,解集在定义域内的部分为增区间;
(4)解不等式 f ' (x) 0 ,解集在定义域内的部分为减区间.
例 2.已知导函数 f (x) 的下列信息
教学方法
讲练结合 教具: 多媒体 授课人: 张莉 授课班级: 高二、10 班
教学过程: 一.知识回顾:
1.基本初等函数的导数公式 二.引入新课
2.导数的运算法则
1. 回忆判断函数单调性的方法
2. 如何判断 y x2 的单调性,写出单调区间 3.还有没有其它方法?如果遇到函数: y x3 3x 如何判断单调性呢?
学习好资料
欢迎下载
(板书:特别的,如果 f ' (x) 0 ,那么函数 y f (x) 在这个区间内是常值函数.)
四.典例分析
例 1.求函数 y 3x2 3x 的单调区间 变式 1:求函数 y 3x3 3x2 的单调区间 变式 2:求函数 y 3e x 3x 的单调区间
导数的正负 f '(x) 1 0 f '(x) 2x 0 f '(x) 2x 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3.1《函数的单调性与导数》教学案
教学目标:
1.了解可导函数的单调性与其导数的关系;
2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次;
教学重点:
利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间
教学难点:
利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间
教学过程:
一.创设情景
函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用.
二.新课讲授
1.问题:图3.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像.
运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别? 通过观察图像,我们可以发现:
(1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.
(2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减
函数.相应地,'()()0v t h t =<.
2.函数的单调性与导数的关系
观察下面函数的图像,探讨函数的单调性与其导数正负的关系.
如图3.3-3,导数'0()f x 表示函数()f x 在
点00(,)x y 处的切线的斜率.
在0x x =处,'0()0f x >,切线是“左下右上”式的,
这时,函数()f x 在0x 附近单调递增;
在1x x =处,'0()0f x <,切线是“左上右下”式的,
这时,函数()f x 在1x 附近单调递减.
结论:函数的单调性与导数的关系
在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增;如
果'()0f x <,那么函数()y f x =在这个区间内单调递减.
说明:(1)特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常函数. 3.求解函数()y f x =单调区间的步骤:
(1)确定函数()y f x =的定义域;
(2)求导数''
()y f x =;
(3)解不等式'()0f x >,解集在定义域内的部分为增区间;
(4)解不等式'()0f x <,解集在定义域内的部分为减区间.
三.典例分析
例1.已知导函数'()f x 的下列信息:
当14x <<时,'()0f x >;
当4x >,或1x <时,'()0f x <;
当4x =,或1x =时,'()0f x =
试画出函数()y f x =图像的大致形状.
解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增;
当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减; 当4x =,或1x =时,'
()0f x =,这两点比较特殊,我们把它称为“临界点”. 综上,函数()y f x =图像的大致形状如图3.3-4所示.
例2.判断下列函数的单调性,并求出单调区间.
(1)3()3f x x x =+; (2)2()23f x x x =--
(3)()sin (0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+ 解:(1)因为3()3f x x x =+,所以,
'22()333(1)0f x x x =+=+>
因此,3()3f x x x =+在R 上单调递增,如图3.3-5(1)所示.
(2)因为2()23f x x x =--,所以, ()'
()2221f x x x =-=-
当'()0f x >,即1x >时,函数2()23f x x x =--单调递增;
当'()0f x <,即1x <时,函数2
()23f x x x =--单调递减;
函数2()23f x x x =--的图像如图3.3-5(2)所示.
(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-< 因此,函数()sin f x x x =-在(0,)π单调递减,如图3.3-5(3)所示.
(4)因为32()23241f x x x x =+-+,所以 .
当'()0f x >,即 时,函数2
()23f x x x =-- ;
当'()0f x <,即 时,函数2()23f x x x =-- ;
函数32()23241f x x x x =+-+的图像如图3.3-5(4)所示.
注:(3)、(4)生练
例3 如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图像.
分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A )符合上述变化情况.同理可知其它三种容器的情况.
解:()()()()()()()()1,2,3,4B A D C →→→→
思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?
一般的,如果一个函数在某一范围内导数的绝对值较大,
那么函数在这个范围内变化的快,
这时,函数的图像就比较“陡峭”;
反之,函数的图像就“平缓”一些.
如图3.3-7所示,函数()y f x =在()0,b 或(),0a 内的图像“陡峭”,
在(),b +∞或(),a -∞内的图像“平缓”.
例4 求证:函数3223121y x x x =+-+在区间()2,1-内是减函数. 证明:因为()
()()'22
661262612y x x x x x x =+-=+-=-+ 当()2,1x ∈-即21x -<<时,'0y <,所以函数3223121y x x x =+-+在区间()2,1-内是减函数.
说明:证明可导函数()f x 在(),a b 内的单调性步骤:
(1)求导函数()'f
x ;
(2)判断()'f x 在(),a b 内的符号; (3)做出结论:()'0f
x >为增函数,()'0f x <为减函数. 四.课堂练习
1.求下列函数的单调区间
1.f (x )=2x 3-6x 2+7
2.f (x )=
x 1+2x 3. f (x )=sinx , x ]2,0[π∈ 4. y =xlnx 2.已知函数 232()4()3f x x ax x x R =+-
∈在区间[]1,1-上是增函数,求实数a 的取值范围.
五.回顾总结
(1)函数的单调性与导数的关系
(2)求解函数()y f x =单调区间
(3)证明可导函数()f x 在(),a b 内的单调性。