高一数学下学期第一次月考试题(答案不全)
陕西省西安高新第一中学2023-2024学年高一下学期第一次月考数学试题
![陕西省西安高新第一中学2023-2024学年高一下学期第一次月考数学试题](https://img.taocdn.com/s3/m/357f774fbfd5b9f3f90f76c66137ee06eff94ee5.png)
陕西省西安高新第一中学2023-2024学年高一下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}1N|24x A x -=∈<,集合{}3|log (1)1B x x =+<,则A B =I ( )A .(3),-∞B .(1,3)-C .{0,1}D .{0,1,2}2.如图,在△OAB 中,点P 在边AB 上,且32AP PB =.则OP =u u u r ( )A .3255OA OB +u u u r u u u r B .2355OA OB +u u u r u u u rC .3255OA OB -u u u r u u u rD .2355OA OB -u u ur u u u r3.已知向量,a b r r 为非零向量,向量,a b rr 之间夹角为,:p θθ为钝角,:0q a b ⋅<r r ,则p 是q 的( )条件.A .充要B .必要不充分C .充分不必要D .既非充分也非必要4.如图,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30m ,并在点C 测得塔顶A 的仰角为60°,则塔高AB 等于( )A .B .C .D .5.函数2()1cos 1e xf x x ⎛⎫=- ⎪+⎝⎭的部分图象为( ) A . B .C .D .6.已知()f x 为R 上偶函数,且对1212,[0,),x x x x ∀∈+∞≠时,都有()()12120f x f x x x -<-成立,若()1.1,(sin1),2a fb fc f -⎛=== ⎝则( ) A .a b c << B .b a c << C .c a b << D .b<c<a7.在锐角ABC V 中,内角,,A B C 的对边分别为a ,b ,c ,且1b =,cos cos A a B a -=,则( ) A .ππ64A <<B .ππ63A << C .ππ43A << D .ππ42A << 8.已知ABC V 中,,,ABC 所对的边为,,,a b c 若,,O P H 为ABC V 所在平面内点,则下列说法正确的个数为( )①若1()3PO PA PB PC =++u u u r u u u r u u u r u u u r,则O 为三角形ABC 的重心;②若222222HA BC HB CA HC AB +=+=+u u u r u u u r u u u r u u u r u u u r u u u r ,则点H 是ABC V 的垂心;③若O 是ABC V 的外心,则sin2sin2sin20A OA B OB C OC ⋅+⋅+⋅=u u u r u u u r u u u r r;④若O 是ABC V 的内心,则0a OA b OB c OC ⋅+⋅+⋅=u u u r u u u r u u u r r.A .1个B .2个C .3个D .4个二、多选题9.已知平面向量()2,1a =-r,(2,)b t =r ,则下列说法错误的是( )A .若6t =,则向量a r 与b r的夹角为锐角B .若a b r r=,则1t =C .a r方向上的单位向量为⎝⎭D .若3t =,则向量a r 在b r上的投影为10.已知函数()sin (0)f x x x ωωω=>的最小正周期为π,则下列各选项正确的是( )A .2ω=B .将()f x 图象上所有的点向右平移π6个单位长度,可得到2sin 2y x =的图象C .()f x 在π5π,612⎛⎫⎪⎝⎭上单调递增D .直线π6x =是图象的一条对称轴11.在ABC V 中,,,a b c 分别为,,A B C 的对边,则下列叙述正确的是( )A .若cos cos b C cB b +=,则ABC V 是等腰三角形. B .若A B >,则cos2cos2A B <.C .若2,3,30a b A ︒==∠=,则解此三角形的结果有一解.D .若角C 为钝角,则333a b c +<. 12.下列说法正确的是( )A .若12x <,则1221x x +-的最大值是1- B .若,,x y z 都是正数,且2x y z ++=,则411x y z+++的最小值是3 C .若0,0,228x y x xy y >>++=,则2x y +的最小值是3 D .若实数,x y 满足22228x xy y ++=,则2x y +的最大值是4三、填空题13.已知平面向量,a b r r 满足||1a =r ,||2,b a =r r与b r 的夹角为60︒,则|2|a b +r r 的值.14.ABC V 的内角,,A B C 所对应边为,,a b c ,若π2,4a A ==,则sin sin +=+b cB C . 15.若ABC V为边长为P 满足2CP =u u u r ,则AP BP ⋅u u u r u u u r 的取值范围为. 16.已知函数241,1()log 3,1xx f x x x ⎧-⎪=⎨+>⎪⎩…集合21()2()02M x f x t f x t ⎧⎫⎛⎫=-++=⎨⎬ ⎪⎝⎭⎩⎭∣,若集合M中有3个元素,则实数t 的取值范围为.四、解答题17.已知向量()2,1a =r ,()1,3b =-r.(1)当实数k 为何值时,()()ka b a b -⊥+r r r r?(2)若2AB a b =-u u u r r r,BC a mb =+u u u r r r ,且A 、B 、C 三点共线,求实数m 的值.18.(1)已知函数()log (2)4,(0a f x x a =-->且1),()a f x ≠图像过定点M ,若角α的顶点在坐标原点,始边与x 轴非负半轴重合,角α终边经过点M ,求3sin(π)cos π2cos(2π)sin()αααα⎛⎫++- ⎪⎝⎭-+-的值.(2)已知()3sin 30,901805αα︒︒︒+=<<,求cos α的值.19.如图所示,在平面四边形ABCD中,1,2,AD CD AC ===(1)求cos CAD ∠的值.(2)若B为锐角,2,sin BC BAC =∠=B . 20.已知函数()πsin )(0,0,||)2(f x A x B A ωϕωϕ=++>><的部分图象如图所示.(1)求函数()f x 的解析式及其单调递增区间; (2)将函数()y f x =的图象上所有的点向右平移π12个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象.若方程()0g x m -=在7π0,3⎡⎤⎢⎥⎣⎦上有三个不相等的实数根()123123,,x x x x x x <<,求()123tan 2x x x ++的值.21.在锐角ABC V 中,内角A B C ,,的对边分别为a b c ,,,且满足cos cos cos c a bC A B+=+ (1)求角C 的大小;(2)若c A 与角B 的内角平分线相交于点D ,求ABD △面积的取值范围. 22.如图,在边长为1的正三角形ABC 中,O 为中心,过点O 的直线交边AB 与点M ,交边AC 于点N .(1)用AB u u u r ,AC u u ur 表示AO u u u r ;(2)若34AM =,求AN 的值; (3)求22OM ON +的最大值与最小值.。
四川省成都市2023-2024学年高一下学期第一次月考数学试题含答案
![四川省成都市2023-2024学年高一下学期第一次月考数学试题含答案](https://img.taocdn.com/s3/m/db574a3c1fb91a37f111f18583d049649b660e34.png)
武侯高中高2023级2023——2024下期第一次月考试题数学(答案在最后)学校:__________姓名:__________班级:__________考号:__________一、单选题1.如图,四边形ABCD 中,AB DC =,则必有()A.AD CB= B.DO OB= C.AC DB= D.OA OC= 【答案】B 【解析】【分析】根据AB DC =,得出四边形ABCD 是平行四边形,由此判断四个选项是否正确即可.【详解】四边形ABCD 中,AB DC =,则//AB DC 且AB DC =,所以四边形ABCD 是平行四边形;则有AD CB =-,故A 错误;由四边形ABCD 是平行四边形,可知O 是DB 中点,则DO OB =,B 正确;由图可知AC DB≠,C 错误;由四边形ABCD 是平行四边形,可知O 是AC 中点,OA OC =-,D 错误.故选:B .2.下列说法正确的是()A.若a b ∥ ,b c ∥,则a c∥ B.两个有共同起点,且长度相等的向量,它们的终点相同C.两个单位向量的长度相等D.若两个单位向量平行,则这两个单位向量相等【答案】C 【解析】【分析】A.由0b =判断;B.由平面向量的定义判断;C.由单位向量的定义判断; D.由共线向量判断.【详解】A.当0b = 时,满足a b ∥ ,b c ∥,而,a c 不一定平行,故错误;B.两个有共同起点,且长度相等的向量,方向不一定相同,所以它们的终点不一定相同,故错误;C.由单位向量的定义知,两个单位向量的长度相等,故正确;D.若两个单位向量平行,则方向相同或相反,但大小不一定相同,则这两个单位向量不一定相等,故错误;故选:C3.若a b ,是平面内的一组基底,则下列四组向量中能作为平面向量的基底的是()A.,a b b a --B.21,2a b a b++ C.23,64b a a b-- D.,a b a b+- 【答案】D 【解析】【分析】根据基底的知识对选项进行分析,从而确定正确答案.【详解】A 选项,()b a a b -=-- ,所以a b b a -- ,共线,不能作为基底.B 选项,1222a b a b ⎛⎫+=+ ⎪⎝⎭ ,所以12,2a b a b ++ 共线,不能作为基底.C 选项,()64223a b b a -=-- ,所以64,23a b b a --共线,不能作为基底.D 选项,易知a b a b +-,不共线,可以作为基底.故选:D4.将函数2cos 413y x π⎛⎫=-+ ⎪⎝⎭图象上各点的横坐标伸长到原来的2倍,再向左平移3π个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()A.12x π=B.6x π=-C.3x π=-D.12x π=-【答案】B 【解析】【分析】根据图像的伸缩和平移变换得到2cos(2)13y x π=++,再整体代入即可求得对称轴方程.【详解】将函数2cos 413y x π⎛⎫=-+ ⎪⎝⎭图象上各点的横坐标伸长到原来的2倍,得到2cos 213y x π⎛⎫=-+ ⎪⎝⎭,再向左平移3π个单位,得到2cos[2()]12cos(2)1333y x x πππ=+-+=++,令23x k π+=π,Z k ∈,则26k x ππ=-,Z k ∈.显然,=0k 时,对称轴方程为6x π=-,其他选项不符合.故选:B5.设a ,b 是非零向量,“a a bb =”是“a b =”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据向量相等、单位向量判断条件间的推出关系,结合充分、必要性定义即知答案.【详解】由a a b b =表示单位向量相等,则,a b 同向,但不能确定它们模是否相等,即不能推出a b =,由a b =表示,a b 同向且模相等,则a a b b = ,所以“a a bb =”是“a b =”的必要而不充分条件.故选:B6.已知向量,a b ,且2,52,72AB a b BC a b CD a b =+=-+=+,则下列一定共线的三点是()A.,,A B CB.,,B C DC.,,A B DD.,,A C D【答案】C 【解析】【分析】利用向量的共线来证明三点共线的.【详解】2,52,72AB a b BC a b CD a b =+=-+=+,则不存在任何R λ∈,使得AB BC λ=,所以,,A B C 不共线,A 选项错误;则不存在任何R μ∈,使得BC CD μ=,所以,,B C D 不共线,B 选项错误;由向量的加法原理知242BD BC CD a b AB =+=+=.则有//BD AB ,又BD 与AB有公共点B ,所以,,A B D 三点共线,C 选项正确;44AB BC a b AC ==-++,则不存在任何R t ∈,使得AC tCD = ,所以,,A C D 不共线,D 选项错误.故选:C .7.已知sin α=5,且α为锐角,tan β=-3,且β为钝角,则角α+β的值为()A.4π B.34π C.3π D.23π【答案】B 【解析】【分析】先求出tan α12=,再利用两角和的正切公式求出tan(α+β)=-1,判断出角α+β的范围,即可求出α+β的值.【详解】sin α,且α为锐角,则cos α5=,tan αsin 1cos 2αα==.所以tan(α+β)=tan tan 1tan tan αβαβ+-=13211(3)2--⨯-=-1.又α+β∈3(,22ππ,故α+β=34π.故选:B8.筒车亦称“水转筒车”,是一种以水流作动力,取水灌田的工具,唐陈廷章《水轮赋》:“水能利物,轮乃曲成.升降满农夫之用,低徊随匠氏之程.始崩腾以电散,俄宛转以风生.虽破浪于川湄,善行无迹;既斡流于波面,终夜有声.”如图,一个半径为4m 的筒车按逆时针方向每分钟转一圈,筒车的轴心O 距离水面的高度为2m .在筒车转动的一圈内,盛水筒P 距离水面的高度不低于4m 的时间为()A.9秒B.12秒C.15秒D.20秒【答案】D 【解析】【分析】画出示意图,结合题意和三角函数值可解出答案.【详解】假设,,A O B 所在直线垂直于水面,且4AB =米,如下示意图,由已知可得12,4OA OB OP OP ====,所以1111cos 602OB POB POB OP ∠==⇒∠=︒,处在劣弧 11PP 时高度不低于4米,转动的角速度为360660︒=︒/每秒,所以水筒P 距离水面的高度不低于4m 的时间为120206=秒,故选:D.二、多选题9.已知函数()cos f x x x =+,则下列判断正确的是()A.()f x 的图象关于直线π6x =对称 B.()f x 的图象关于点π,06⎛⎫- ⎪⎝⎭对称C.()f x 在区间2π,03⎡⎤-⎢⎥⎣⎦上单调递增 D.当π2π,33x ⎛⎫∈-⎪⎝⎭时,()()1,1f x ∈-【答案】BC 【解析】【分析】利用辅助角公式化简函数()f x 的解析式,利用正弦型函数的对称性可判断AB 选项;利用正弦型函数的单调性可判断C 选项;利用正弦型函数的值域可判断D 选项.【详解】因为()πcos 2sin 6f x x x x ⎛⎫=+=+ ⎪⎝⎭,对于A选项,ππ2sin 63f ⎛⎫==⎪⎝⎭,故函数()f x 的图象不关于直线π6x =对称,A 错;对于B 选项,π2sin 006f ⎛⎫-== ⎪⎝⎭,故函数()f x 的图象关于点π,06⎛⎫- ⎪⎝⎭对称,B 对;对于C 选项,当2π03x -≤≤时,πππ266x -≤+≤,则函数()f x 在区间2π,03⎡⎤-⎢⎥⎣⎦上单调递增,C 对;对于D 选项,当π2π33x -<<时,ππ5π666x -<+<,则1πsin 126x ⎛⎫-<+≤ ⎪⎝⎭,所以,()(]π2sin 1,26f x x ⎛⎫=+∈- ⎪⎝⎭,D 错.故选:BC.10.下图是函数()sin()(0π)f x A x ωϕϕ=+<<的部分图像,则()A.2πT =B.π3ϕ=C.π,06⎛⎫-⎪⎝⎭是()f x 的一个对称中心 D.()f x 的单调递增区间为5πππ,π1212k k ⎡⎤-++⎢⎥⎣⎦(Z k ∈)【答案】BCD 【解析】【分析】由图象可得πT =,由2πT ω=可求出ω,再将π12⎛⎝代入可求出ϕ可判断A ,B ;由三角函数的性质可判断C ,D .【详解】根据图像象得35ππ3ππ246124T T =-=⇒=⇒=ω,故A 错误;π12x =时,πππ22π2π1223k k ⨯+=+⇒=+ϕϕ,0πϕ<< ,π3ϕ∴=,故()π23f x x ⎛⎫=+ ⎪⎝⎭,故B 正确;因为πππ20663f ⎡⎤⎛⎫⎛⎫-=⋅-+= ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦,所以π,06⎛⎫- ⎪⎝⎭是()f x 的一个对称中心,C 正确;令πππ2π22π232k x k -+≤+≤+,解得5ππππ1212k x k -+≤≤+,Z k ∈.故D 正确.故选:BCD .11.潮汐现象是地球上的海水受月球和太阳的万有引力作用而引起的周期性涨落现象.某观测站通过长时间观察,发现某港口的潮汐涨落规律为πcos 63y A x ω⎛⎫=++ ⎪⎝⎭(其中0A >,0ω>),其中y (单位:m )为港口水深,x (单位:h )为时间()024x ≤≤,该观测站观察到水位最高点和最低点的时间间隔最少为6h ,且中午12点的水深为8m ,为保证安全,当水深超过8m 时,应限制船只出入,则下列说法正确的是()A.π6ω=B.最高水位为12mC.该港口从上午8点开始首次限制船只出入D.一天内限制船只出入的时长为4h 【答案】AC 【解析】【分析】根据题意可求得6π=ω,可知A 正确;由12点时的水位为8m 代入计算可得4A =,即最高水位为10m ,B 选项错误;易知ππ4cos 663y x ⎛⎫=++⎪⎝⎭,解不等式利用三角函数单调性可得从上午8点开始首次开放船只出入,一天内开放出入时长为8h ,即可判断C 正确,D 错误.【详解】对于A ,依题意π62T ω==,所以6π=ω,故A 正确;对于B ,当12x =时,ππcos 126863y A ⎛⎫=⨯++=⎪⎝⎭,解得4A =,所以最高水位为10m ,故B 错误;对于CD ,由上可知ππ4cos 663y x ⎛⎫=++⎪⎝⎭,令8y ≥,解得812x ≤≤或者2024x ≤≤,所以从上午8点开始首次开放船只出入,一天内开放出入时长为8h ,故C 正确,D 错误.故选:AC.三、填空题12.设e为单位向量,2a =r ,当,a e 的夹角为π3时,a 在e 上的投影向量为______.【答案】e【解析】【分析】利用投影向量的定义计算可得结果.【详解】根据题意可得向量a 在e 上的投影向量为22π21cos 31a e e a e e e e ee e⨯⨯⋅⋅⋅=== .故答案为:e13.已知向量a 、b 满足5a = ,4b = ,a 与b 的夹角为120,若()()2ka b a b -⊥+ ,则k =________.【答案】45##0.8【解析】【分析】运用平面向量数量积公式计算即可.【详解】因为5a = ,4b = ,a 与b的夹角为120 ,所以1cos12054102a b a b ⎛⎫⋅==⨯⨯-=- ⎪⎝⎭.因为()2ka b -⊥()a b +r r ,所以()()()()222222521610215120ka b a b kab k a b k k k -⋅+=-+-⋅=-⨯--=-=,解得45k =.故答案为:45.14.已知1tan 3x =,则1sin 2cos 2x x +=______【答案】2【解析】【分析】根据二倍角公式以及齐次式即可求解.【详解】2222222211121sin 2cos sin 2sin cos 1tan 2tan 332cos 2cos sin 1tan 113x x x x x x x x x x x ⎛⎫++⨯ ⎪+++++⎝⎭====--⎛⎫- ⎪⎝⎭.故答案为:2四、解答题15.已知1a b a == ,与b 的夹角为45︒.(1)求()a b a +⋅的值;(2)求2a b -的值【答案】(1)2(2【解析】【分析】(1)先求2,a a b ⋅ ,再根据运算法则展开计算即可;(2)先计算2b,再平方,进而开方即可.【小问1详解】因为22||1,||||cos 451122a a a b a b ==⋅=︒=⨯=所以2()112a b a a a b ++⋅=⋅=+=【小问2详解】因为22||2b b ==,所以2222|2|(2)444242a b a b a b a b -=-=+⋅=+--=所以|2|a b -=16.已知函数()222cos 1f x x x =+-.(1)求函数()f x 的最小正周期;(2)若3π,π4θ⎛⎫∈⎪⎝⎭且()85f θ=-,求cos 2θ的值.【答案】(1)π(2)410-【解析】【分析】(1)利用辅助角公式化简,求出最小正周期;(2)将θ代入可求出πsin 26θ⎛⎫+ ⎪⎝⎭,结合π26+θ的范围,求出πcos 26θ⎛⎫+ ⎪⎝⎭,因为ππ2266θθ=+-,由两角差的余弦公式求出结果.【小问1详解】()2π22cos 12cos 22sin 26f x x x x x x ⎛⎫=+-=+=+ ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==【小问2详解】()π82sin 265f θθ⎛⎫=+=- ⎪⎝⎭,所以π4sin 265θ⎛⎫+=- ⎪⎝⎭,因为3π,π4θ⎛⎫∈⎪⎝⎭,1π25π3663π,θ⎛⎫∈ ⎪⎝⎭+,所以π3cos 265θ⎛⎫+== ⎪⎝⎭,所以ππππππcos 2cos 2cos 2cos sin 2sin 666666θθθθ⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3414525210-⎛⎫=⨯+-⨯=⎪⎝⎭.17.如图,在ABC 中,6AB =,60ABC ∠=︒,D ,E 分别在边AB ,AC 上,且满足2AD DB = ,3CE EA =,F 为BC 中点.(1)若DE AB AC λμ=+,求实数λ,μ的值;(2)若8AF DE ⋅=-,求边BC 的长.【答案】(1)23λ=-,14μ=.(2)8【解析】【分析】(1)根据向量的线性运算以及平面向量的基本定理求得正确答案.(2)利用转化法化简8AF DE ⋅=-,从而求得BC 的长.【小问1详解】∵2AD DB = ,3CE EA= ,∴23AD AB = ,14AE AC = ∴1243DE AE AD AC AB =-=- ,∴23λ=-,14μ=.【小问2详解】12AF BF BA BC BA =-=- ,()1212154343412DE AC AB BC BA BA BC BA =-=-+=+ ,22115115241282412AF DE BC BA BC BA BC BC BA BA ⎛⎫⎛⎫⋅=-⋅+=-⋅- ⎪ ⎪⎝⎭⎝⎭设BC a = ,∵6AB = ,60ABC ∠=︒,221115668824212AF DE a a ⋅=-⨯⨯-⨯=- ,即2560a a --=,解得7a =-(舍)或8a =,∴BC 长为8.18.设(,)P x y 是角θ的终边上任意一点,其中0x ≠,0y ≠,并记r =cot x y θ=,sec r xθ=,csc r y θ=.(Ⅰ)求证222222sin cos tan cot sec +csc θθθθθθ+--+是一个定值,并求出这个定值;(Ⅱ)求函数()sin cos tan cot sec +csc f θθθθθθθ=++++的最小值.【答案】(Ⅰ)定值为3;(Ⅱ)min ()1f θ=-;【解析】【分析】(Ⅰ)由题可知,分别将6个三角函数分别代入,进行简单的化简,即可得到定值3;(Ⅱ)将()f x 中的未知量均用sin ,cos θθ来表示,得到1sin cos ()sin cos sin cos sin cos g θθθθθθθθθ+=+++,运用换元法设sin cos t θθ+=,化简成2()111g t t θ=-++-,再利用对勾函数的性质即可得到最值.【详解】解:(Ⅰ)222222222222222222sin cos tan cot sec +csc =y x y x r r r x y r y xθθθθθθ+--++--++2222222221113x y r y r x r x y+--⇒++=++=;(Ⅱ)由条件,1cot tan x y θθ==,1sec cos x θ=,1csc sin θθ=令()sin cos tan cot sec +csc g θθθθθθθ=++++sin cos 11sin cos +cos sin cos sin θθθθθθθθ=++++1sin cos sin cos sin cos sin cos θθθθθθθθ+=+++,令sin cos t θθ+=,则sin cos =2sin()4t πθθθ=++[2,2]∈-,1t ≠±,且21sin cos 2t θθ-=,从而2222()11t g y t t t θ==++--22(1)1t t t +=+-221111t t t t =+=-++--,令1u t =-,则21y u u =++,[21,21]u ∈---,且0u ≠,2u ≠-.所以,(,122][322,)y ∈-∞-⋃++∞.从而()221f y θ=≥-,即min ()221f θ=-.19.已知函数()2000ππ2sin sin 2sin 266f x x x x C ωωω⎛⎫⎛⎫=+++-+ ⎪ ⎪⎝⎭⎝⎭(R C ∈)有最大值为2,且相邻的两条对称轴的距离为π2(1)求函数()f x 的解析式,并求其对称轴方程;(2)将()f t 向右平移π6个单位,再将横坐标伸长为原来的24π倍,再将纵坐标扩大为原来的25倍,再将其向上平移60个单位,得到()g t ,则可以用函数()sin()H g t A t B ωϕ==++模型来模拟某摩天轮的座舱距离地面高度H 随时间t (单位:分钟)变化的情况.已知该摩天轮有24个座舱,游客在座舱转到离地面最近的位置进仓,若甲、乙已经坐在a ,b 两个座舱里,且a ,b 中间隔了3个座舱,如图所示,在运行一周的过程中,求两人距离地面高度差h 关于时间t 的函数解析式,并求最大值.【答案】(1)()π2sin 26f x x ⎛⎫=- ⎪⎝⎭,ππ32k x =+,Z k ∈(2)ππ()50sin 126f x t ⎛⎫=-⎪⎝⎭,50【解析】【分析】(1)由二倍角公式与两角和与差的正弦公式化简得()0π2sin 216f x x C ω⎛⎫=-++ ⎪⎝⎭,再结合最值及周期即可得解析式;(2)由正弦型函数的平移变换与伸缩变换得变换后的解析式为ππ50sin 60122y t ⎛⎫=-+ ⎪⎝⎭,则ππ50sin 126h H H ⎛⎫=-==- ⎪⎝⎭甲乙,再求最值即可.【小问1详解】()00001cos 2π22sin 2cos 2cos 2126x f x x C x x C ωωωω-=⨯++=-++0π2sin 216x C ω⎛⎫=-++ ⎪⎝⎭,所以2121C C ++=⇒=-,因为相邻两条对称轴的距离为π2,所以半周期为ππ22T T =⇒=,故002ππ12=⇒=ωω,()π2sin 26f x x ⎛⎫=- ⎪⎝⎭令ππππ2π6232k x k x -=+⇒=+,Z k ∈【小问2详解】()f t 向右平移π6得到π2sin 22y t ⎛⎫=- ⎪⎝⎭,将横坐标伸长为原来的24π倍,得到ππ2sin 122y t ⎛⎫=- ⎪⎝⎭,将纵坐标扩大为原来的25倍,得到ππ50sin 122y t ⎛⎫=- ⎪⎝⎭,再将其向上平移60个单位,得到ππ50sin 60122y t ⎛⎫=-+ ⎪⎝⎭游客甲与游客乙中间隔了3个座舱,则相隔了2ππ4243⨯=,令ππ50sin 60122H t ⎛⎫=-+ ⎪⎝⎭甲,则π5π50sin 60126H t ⎛⎫=-+ ⎪⎝⎭乙,则πππ5π50sin sin 122126h H H t t ⎛⎫⎛⎫=-=--- ⎪ ⎪⎝⎭⎝⎭甲乙π1πcos 12212t t =-ππ50sin 126t ⎛⎫=- ⎪⎝⎭,π12ω=,24T =,024t ≤≤,故πππ11π61266t -≤-≤,当πππ1262t -=或3π82t ⇒=或20时,max 50h =。
高一数学下学期第一次月考试卷(含解析)-人教版高一全册数学试题
![高一数学下学期第一次月考试卷(含解析)-人教版高一全册数学试题](https://img.taocdn.com/s3/m/bb0c7f11974bcf84b9d528ea81c758f5f61f291a.png)
2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.04.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]6.已知,且,则tanφ=()A.B.C.﹣D.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.28.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.14.函数y=2cos(ωx)的最小正周期是4π,则ω=.15.已知tanα=2,则tan2α的值为.16.已知sin(﹣x)=,则cos(﹣x)=.三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.22.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷参考答案与试题解析一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+【考点】诱导公式的作用.【分析】由诱导公式逐步化简可得原式等于﹣tan60°+sin90°,为可求值的特殊角,进而可得答案.【解答】解:由诱导公式可得:tan 300°+sin 450°=tan(360°﹣60°)+sin(360°+90°)=﹣tan60°+sin90°=﹣+1=1﹣,故选B2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β【考点】命题的真假判断与应用.【分析】根据角的X围以及终边相同角的关系分别进行判断即可.【解答】解:A.∵0°角满足小于90°,但0°角不是锐角,故A错误,B.当k=2n时,β=k•90°=n•180°,当k=2n+1时,β=k•90°=k•180°+90°,则A⊆B成立,C.﹣950°12′=﹣4×360°+129°48′,∵129°48′是第二象限角,∴﹣950°12′是第二象限角,故C错误,D.α,β终边相同,则α=β+k•360°,k∈Z,故D错误,故选:B3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.0【考点】命题的真假判断与应用.【分析】根据空间点的对称性分别进行判断即可.【解答】解:①点P(a,b,c)关于横轴(x轴),则x不变,其余相反,即对称点是P1(a,﹣b,﹣c);故①错误,②点P(a,b,c)关于yOz坐标平面的对称,则y,z不变,x相反,即对称点P2(﹣a,b,c);故②错误③点P(a,b,c)关于纵轴(y轴)的对称,则y不变,x,z相反,即对称点是P3(﹣a,b,﹣c);故③错误,④点P(a,b,c)关于坐标原点的对称,则x,y,z都为相反数,即对称点为P4(﹣a,﹣b,﹣c).故④正确,故选:C4.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.【考点】任意角的三角函数的定义.【分析】根据三角函数的大小建立方程求出a的值即可得到结论.【解答】解:∵α是第二象限的角,其终边上一点为P(a,),且cosα=a,∴a<0,且cosα=a=,平方得a=﹣,则sinα===,故选:A.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]【考点】复合三角函数的单调性.【分析】利用正弦函数的单调性,确定单调区间,结合x的X围,可得结论.【解答】解:由正弦函数的单调性可得≤﹣2x≤(k∈Z)∴﹣﹣kπ≤x≤﹣﹣kπk=﹣1,则故选C.6.已知,且,则tanφ=()A.B.C.﹣D.【考点】同角三角函数间的基本关系.【分析】先由诱导公式化简cos(φ)=﹣sinφ=确定sinφ的值,再根据φ的X 围确定cosφ的值,最终得到答案.【解答】解:由,得,又,∴∴tanφ=﹣故选C.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.2【考点】空间中的点的坐标.【分析】求出对称点的坐标,然后求解距离.【解答】解:点A(1,2,﹣1),点C与点A关于平面xoy对称,可得C(1,2,1),点B与点A关于x轴对称,B(1,﹣2,1),∴|BC|==4故选:B.8.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值【考点】三角函数的周期性及其求法.【分析】直线y=a与正切曲线y=tanωx两相邻交点间的距离,便是此正切曲线的最小正周期.【解答】解:因为直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离就是正切函数的周期,∵y=tanωx的周期是:,∴直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离是:.故选:B.9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称【考点】正弦函数的对称性.【分析】将x=0代入函数得到f(0)=2sin(﹣)=﹣1,从而可判断A、B;将代入函数f(x)中得到f()=0,即可判断C、D,从而可得到答案.【解答】解:令x=0代入函数得到f(0)=2sin(﹣)=﹣1,故A、B不对;将代入函数f(x)中得到f()=0,故是函数f(x)的对称中心,故C 对,D不对.故选C.10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.【考点】三角函数的化简求值.【分析】由已知的sinθ<tanθ,移项并利用同角三角函数间的基本关系变形后得到tanθ(1﹣cosθ)大于0,由余弦函数的值域得到1﹣cosθ大于0,从而得到tanθ大于0,可得出θ为第一或第三象限,若θ为第一象限角,得到sinθ和cosθ都大于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围;若θ为第三象限角,得到sinθ和cosθ都小于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围,综上,得到满足题意的θ的X围.【解答】解:∵sinθ<tanθ,即tanθ﹣sinθ>0,∴tanθ(1﹣cosθ)>0,由1﹣cosθ>0,得到tanθ>0,当θ属于第一象限时,sinθ>0,cosθ>0,∴|cosθ|<|sinθ|化为cosθ<sinθ,即tanθ>1,则θ∈(,);当θ属于第三象限时,sinθ<0,cosθ<0,∴|cosθ|<|sinθ|化为﹣cosθ<﹣sinθ,即tanθ>1,则θ∈(,),综上,θ的取值X围是.故选C11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα【考点】三角函数的化简求值.【分析】利用同角三角函数基本关系式、三角函数值在各个象限的符号即可得出.【解答】解:∵π<α<,∴==,同理可得=,∴原式=﹣(1﹣sinα)﹣(1﹣cosα)=﹣2+cosα+sinα.故选:A.12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.【考点】圆的标准方程.【分析】设扇形和内切圆的半径分别为R,r.由弧长公式可得2π=R,解得R.再利用3r=R=6即可求得扇形的内切圆的半径.【解答】解:设扇形和内切圆的半径分别为R,r.由2π=R,解得R=6.由题意可得3r=R=6,即r=2.∴扇形的内切圆的半径为2.故选:A.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.【考点】正切函数的定义域.【分析】根据正弦函数的定义域,我们构造关于x的不等式,解不等式,求出自变量x的取值X围,即可得到函数的定义域.【解答】解:要使函数的解析式有意义自变量x须满足:≠kπ+,k∈Z解得:故函数的定义域为故答案为14.函数y=2cos(ωx)的最小正周期是4π,则ω=±.【考点】三角函数的周期性及其求法.【分析】利用周期公式列出关于ω的方程,求出方程的解即可得到ω的值.【解答】解:∵=4π,∴ω=±.故答案为:±15.已知tanα=2,则tan2α的值为﹣.【考点】二倍角的正切.【分析】由条件利用二倍角的正切公式求得tan2α的值.【解答】解:∵tanα=2,∴tan2α===﹣,故答案为:﹣.16.已知sin(﹣x)=,则cos(﹣x)= ﹣.【考点】运用诱导公式化简求值.【分析】原式中的角度变形后,利用诱导公式化简,将已知等式代入计算即可求出值.【解答】解:∵sin(﹣x)=,∴cos(﹣x)=cos[+(﹣x)]=﹣sin(﹣x)=﹣.故答案为:﹣三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.【考点】三角函数的化简求值.【分析】把已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系变形求出2sinαcosα的值,进而判断出sinα﹣cosα的正负,利用完全平方公式及同角三角函数间的基本关系求出sinα﹣cosα的值,联立求出sinα与cosα的值,即可确定出的值.【解答】解:把sinα+cosα=①,两边平方得:(sinα+cosα)2=1+2sinαcosα=,∴2sinαcosα=﹣,∵α∈(0,π),∴sinα>0,cosα<0,即sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,联立①②,解得:sinα=,cosα=﹣,则==﹣.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的定义域和值域.【分析】(1)根据最低点M可求得A;由x轴上相邻的两个交点之间的距离可求得ω;进而把点M代入f(x)即可求得φ,把A,ω,φ代入f(x)即可得到函数的解析式.(2)根据x的X围进而可确定当的X围,根据正弦函数的单调性可求得函数的最大值和最小值.确定函数的值域.【解答】解:(1)由最低点为得A=2.由x轴上相邻的两个交点之间的距离为得=,即T=π,由点在图象上的故∴又,∴(2)∵,∴当=,即时,f(x)取得最大值2;当即时,f(x)取得最小值﹣1,故f(x)的值域为[﹣1,2]19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.【考点】三角函数的化简求值.【分析】利用韦达定理可求得sinθ+cosθ=,sinθ•cosθ=,利用同角三角函数基本关系式即可解得m,将所求的关系式化简为sinθ+cosθ,即可求得答案.【解答】解:∵sinθ和cosθ为方程2x2﹣mx+1=0的两根,∴sinθ+cosθ=,sinθ•cosθ=,∵(sinθ+cosθ)2=sin2θ+2sinθcosθ+cos2θ=1+2sinθcosθ,∴m2=1+2×,解得:m=±2,∴+=+=sinθ+cosθ=.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.【考点】余弦函数的定义域和值域.【分析】由求出的X围,由余弦函数的性质求出cos(2x﹣)的值域,根据解析式对a分类讨论,由原函数的值域分别列出方程组,求出a、b的值.【解答】解:由得,,∴cos(2x﹣),当a>0时,∵函数的值域是[﹣5,1],∴,解得,当a<0时,∵函数的值域是[﹣5,1],∴,解得,综上可得,或.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.【考点】三角函数的周期性及其求法;正弦函数的定义域和值域.【分析】(Ⅰ)由题目所给的解析式和图象可得所求;(Ⅱ)由x∈[﹣,﹣]可得2x+∈[﹣,0],由三角函数的性质可得最值.【解答】解:(Ⅰ)∵f(x)=3sin(2x+),∴f(x)的最小正周期T==π,可知y0为函数的最大值3,x0=;(Ⅱ)∵x∈[﹣,﹣],∴2x+∈[﹣,0],∴当2x+=0,即x=时,f(x)取最大值0,当2x+=,即x=﹣时,f(x)取最小值﹣322.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?【考点】函数y=Asin(ωx+φ)的图象变换;三角函数的周期性及其求法;正弦函数的单调性.【分析】(1)由函数的解析式求得周期,由求得x的X围,即可得到函数的单调增区间(2)由条件可得,再根据函数y=Asin(ωx+∅)的图象变换规律得出结论.【解答】解:(1)由函数,可得周期等于 T==π.由求得,故函数的递增区间是.(2)由条件可得.故将y=sin2x的图象向左平移个单位,再向上平移个单位,即可得到f(x)的图象.。
高一下学期第一次月考数学试题(解析版
![高一下学期第一次月考数学试题(解析版](https://img.taocdn.com/s3/m/102a6572e55c3b3567ec102de2bd960590c6d92f.png)
(1)求角 ;
(2)求 的取值范围.
【18题答案】
【答案】(1)条件选择见解析
(2)
【解析】
【分析】(1)若选①由正弦定理得 即可求出 ;若选②由正弦定理得 即可求出 .
(2)用正弦定理得表示出 得到 利用三角函数求出 的取值范围.
【小问1详解】
若选①则由正弦定理得
【解析】
【分析】由题可得 .作差法可判断A;用基本不等式可判断B;分别化简不等式左边和右边可判断C;假设法可判断D.
【详解】如图
易知 .
A: (当 时取等号) 故A正确;
B: (当 时取等号)故B正确;
C:
又 (当 时取等号) 故C正确;
D:假设 成立
则
即
即
当 且 时上式不成立故D错误.
故选:ABC.
同理由 三点共线则存在实数 使得
所以 解得 所以 所以A正确.
又由 且
可得 解得 则
可得 所以B正确;
又由
当且仅当 时等号成立所以C正确.
又由 可得 所以D不正确.
故选:ABC.
12.设 分别为 中ab两边上的高 的面积记为S.当 时下列不等式正确的是( )
A. 【20题答案】
【答案】(1)
(2)
【解析】
【分析】(1)由最大值和最小值求得 的值由 以及 可得 的值再由最高点可求得 的值即可得 的解析式由正弦函数的对称中心可得 对称中心;
(2)由图象的平移变换求得 的解析式由正弦函数的性质可得 的值域令 的取值为 的值域解不等式即可求解.
【小问1详解】
由题意可得: 可得 所以
A. B.
C. D.
高一数学下第一次月考试题含解析
![高一数学下第一次月考试题含解析](https://img.taocdn.com/s3/m/19af6be59f3143323968011ca300a6c30c22f1a3.png)
郧阳中学2021-2021学年高一数学下学期第一次月考试题〔含解析〕制卷人:打自企;成别使;而都那。
审核人:众闪壹;春壹阑;各厅……日期:2022年二月八日。
第一卷〔选择题一共60分〕一、选择题〔本大题一一共12小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一个是符合题目要求的〕1.以下命题中正确的选项是〔〕A. OA OB ABAB BA+= -= B. AB BC CD AD⋅= D. 0AB++= C. 00【答案】B【解析】分析:根据想的线性运算即可得.详解:A.O A OB BA-=故错误,B正确,C,向量之积为一个数不再是向量故错误,D.向量加向量应还是向量而不是数,故错误,应选B.点睛:考察向量线性运算和定义,属于根底题.==,当a与b一共线且方向一样时,x等于( )a xb x(,1),(4,)± B. 2- C. 2 D. 0A. 2【答案】C【解析】分析:由向量的一共线结论即可得,又因为一共线且方向一样,故两向量之间应存在一个正的倍数关系. 详解:由题可得:因为a与b一共线,所以242x x=⇒=±,又因为方向一样,所以x=2选C.点睛:考察向量的一共线定理和方向一样的关系,属于根底题.△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,假设A ∶B ∶C =1∶2∶3,那么a ∶b ∶c 等于( ) A. 1∶2∶3 B. 2∶3∶4C. 3∶4∶5【答案】D 【解析】分析:由三角形内角和为180°可得A,B,C 的值,然后根据正弦定理可得结论.详解:由题可得:A=30°,B=60°,C=90°,由正弦定理:::sin :sin :sin 2a b c A B C ==,应选D.点睛:考察三角形的内角和,正弦定理的边角互化关系,属于根底题.4cos 5α=-,α是第三象限的角,那么1tan21tan 2αα+=-〔 〕 A. 12- B. 12 C. 2D. -2【答案】A 【解析】试题分析:∵4cos 5α=-,α为第三象限,∴3sin 5α=-, ∵2sin211tancos cos sin (cossin)2222221tansin cossin(cossin)(cossin)222222221cos2αααααααααααααααα++++===---+-2231()1sin 1sin 154cos 2cos sin 225ααααα+-++====---. 考点:同角间的三角函数关系,二倍角公式.5.在△ABC 中,角C 为90°,AB =(k,1).AC =(2,3)那么k 的值是( ) A. 5 B. -5C.32D. -3 2【答案】A 【解析】:∵()AB k,1=.()AC 2,3= 那么 (22)90?02(2)605BC k C AC BC k k -∠=︒∴∴-+∴=,===应选A .6.在△ABC 中, a ,b ,c 分别为A ,B ,C 的对边,假设2sin sin sin B A C =,a b a ca c c+-=+,a =6,那么△ABC 的外接圆的面积( ) A. 12π B. 24πC. 36πD. 48π【答案】A 【解析】 【分析】利用正弦定理化角为边,可得2b ac =,整理a b a ca c c+-=+可得22ac bc a c +=-,即222b bc a c +=-,再利用余弦定理得到角A ,由正弦定理得到ABC 外接圆半径,即可求解. 【详解】由题,由正弦定理可得2b ac =,因为a b a ca c c+-=+,所以22ac bc a c +=-,所以222b bc a c +=-,即222b c a bc +-=-, 所以2221cos 222b c a bc A bc bc +--===-,因为()0,A π∈,所以23A π=,那么sin A =,由正弦定理可得2sin a RA ==,即R =所以212S R π=π=, 应选:A【点睛】此题考察利用正弦定理化角为边,考察正弦定理的应用,考察利用余弦定理求角.(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=那么〔 〕 A. 32παβ-=B. 32παβ+=C. 22παβ-=D. 22παβ+=【答案】C 【解析】试题分析:由得,sin 1sin tan cos cos αβααβ+==,去分母得,sin cos cos cos sin αβααβ=+,所以 sin cos cos sin cos ,sin()cos sin()2παβαβααβαα-=-==-,又因为22ππαβ-<-<,022ππα<-<,所以2παβα-=-,即22παβ-=,选C考点:同角间的三角函数关系,两角和与差的正弦公式.()cos sin f x x x =-在[],a a -是减函数,那么a 的最大值是A.4πB.2π C.34π D. π【答案】A 【解析】【详解】分析:先确定三角函数单调减区间,再根据集合包含关系确定a 的最大值.详解:因为π()cos sin )4f x x x x =-=+,所以由π02ππ2π,(k Z)4k x k +≤+≤+∈得π3π2π2π,(k Z)44k x k -+≤≤+∈因此π3ππ3ππ[,][,],,044444a a a a a a a -⊂-∴-<-≥-≤∴<≤,从而a 的最大值为π4,选A. 点睛:函数sin()(0,0)y A x B A ωϕω=++>>的性质: (1)max min =+y A B y A B =-,.(2)周期2π.T ω=(3)由 ππ()2x k k ωϕ+=+∈Z 求对称轴, (4)由ππ2π2π()22k x k k ωϕ-+≤+≤+∈Z 求增区间; 由π3π2π2π()22k x k k ωϕ+≤+≤+∈Z 求减区间. 9.ABC ∆是边长为4的等边三角形,P 为平面ABC 内一点,那么()PA PB PC ⋅+的最小值是( ) A. 8- B. 4-C. 3-D. 6-【答案】D 【解析】 【分析】建立平面直角坐标系,那么()0,23A ,设(),P x y ,()2PA PB PC PA PO ⋅+=⋅,进而利用向量的坐标法求解即可.【详解】取BC 中点O ,将ABC 放入平面直角坐标系中,如下图,那么(0,23A ,设(),P x y , 连接PO ,那么2PB PC PO +=,所以(),23PA x y =-,(),PO x y =--, 所以()(2222()2223233PA PB PC PA PO x y yx y ⎡⎤⋅+=⋅=-+=+-⎢⎥⎣⎦,易知当0x =,3y =, ()PA PB PC ⋅+获得最小值6-,应选:D【点睛】此题考察向量的数量积,考察坐标法处理向量的最值问题,考察数形结合思想.A 处,发现北偏45向,间隔 A 为()31-海里的B 处有一艘走私船,在A 处北偏西75方向,间隔 A为2海里的C 处有我方一艘辑私艇奉命以103海里/小时的速度追截走私船,B 在C 的正向,此时走私船正以10海里/小时的速度从B 处向北偏30向逃窜,问辑私艇沿( )方向追击,才能最快追上走私船.A. 北偏东30°B. 北偏东45°C. 北偏东60°D. 北偏东75°【答案】C 【解析】 【分析】由题画出图形,在ABC 中利用余弦定理求得BC ,再在BCD 中利用正弦定理求解即可. 【详解】如图,设需要t 小时追上走私船,因为))222222cos 2312231cos1206BC AC AB AC AB CAB =+-⋅⋅∠=+-⨯⨯︒=,所以6=BC 又sin sin CD BD CBD DCB =∠∠,即310sin120sin t tDCB=︒∠, 所以1sin 2DCB ∠=,即30DCB ∠=︒,所以沿北偏60︒向追击, 应选:C【点睛】此题考察正弦定理,余弦定理在实际中的应用,考察利用余弦定理解三角形.11.如图,在△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,AP :PM =( )A. 4:1.B. 3:2C. 4:3D. 3:1【答案】A 【解析】 【分析】设1BM e =,2CN e =,那么213AM e e =--,122BN e e =+,由A ,P ,M 和B ,P ,N 分别一共线可得123AP AM e e λλλ==--,122BP BN e e μμμ==+,那么()()123BA BP AP e e λμλμ=-=+++,且1223BA BC CA e e =+=+,进而求解即可.【详解】设1BM e =,2CN e =,那么213AM AC CM e e =+=--,212BN BC CN e e =+=+, 因为A ,P ,M 和B ,P ,N 分别一共线,所以存在实数λ,μ,使123AP AM e e λλλ==--,122BP BN e e μμμ==+, 所以()()123BA BP AP e e λμλμ=-=+++, 又1223BA BC CA e e =+=+,所以2233λμλμ+=⎧⎨+=⎩,解得4535λμ⎧=⎪⎪⎨⎪=⎪⎩,所以45AP AM =, 即:4:1AP PM =, 应选:A【点睛】此题考察平面向量根本定理的应用,考察一共线向量的应用.a R ∈,函数2()sin 22cos f x a x x =+,假设()14f π=,求方程为()1f x =-[]ππ-,上的解的个数( ) A. 2 B. 3C. 4D. 5【答案】C 【解析】 【分析】由()14f π=可得a =,那么可整理()2sin 216f x x π⎛⎫=++ ⎪⎝⎭,解方程()1f x =可得112,24x k k Z ππ=-+∈或者52,24x k k Z ππ=-+∈,由[],x ππ∈-,对k 赋值求解即可. 【详解】由题,因为()14f π=,所以2sin2cos 1124a a ππ+=+=,所以a =所以2()22cos 2cos 212sin 216f x x x x x x π⎛⎫=+=++=++ ⎪⎝⎭,因为()1f x =即2sin 2116x π⎛⎫++= ⎪⎝⎭所以sin 262x π⎛⎫+=- ⎪⎝⎭,所以322,64x k k Z πππ+=-+∈或者22,64x k k Z πππ+=-+∈, 即112,24x k k Z ππ=-+∈或者52,24x k k Z ππ=-+∈, 因为[],x ππ∈-, 当0k =时,1124x π=-,524π-;当1k =时,1324x π=,1924x π=,所以方程为()1f x =[]ππ-,上的解的个数为4, 应选:C【点睛】此题考察三角函数的化简,考察三角函数值求角.第二卷 〔非选择题 一共90分〕二、填空题:〔本大题一一共4小题,每一小题5分,一共20分〕342,,,552a b a ⎛⎫== ⎪⎝⎭与b 夹角为45o ,那么向量a 在b 方向上的投影为______.【答案】2【解析】 【分析】先求出a 的模,再利用投影的定义求解即可.【详解】由题,235a ⎛⎫= ⎪⎝⎭,所以向量a 在b 方向上的投影为cos 452a ︒=,故答案为:2【点睛】此题考察向量的投影,考察向量的模的应用.ABC ∆中,角,,A B C 的对边分别是a 、b 、c ,假设2,4,3A B a b ===,那么边长c 的值是__________.【答案】3【解析】 【分析】由2A B =可得sin sin22sin cos A B B B ==,利用正弦定理可得2cos a b B =,即可求得2cos 3B =,再利用余弦定理求解即可. 【详解】由题,因为2A B =, 所以sin sin22sin cos A B B B ==,由正弦定理可得2cos a b B =,所以2cos 3B =, 所以2222222cos 4324393c a b ab B =+-=+-⨯⨯⨯=, 所以3c =,故答案为:3【点睛】此题考察利用正弦定理化角为边,考察利用余弦定理求边. 15.121120510sin sin πθπθ⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭,那么2tan 5πθ⎛⎫+= ⎪⎝⎭____.【答案】2 【解析】121120510sin sin ππθθ⎛⎫⎛⎫++⨯-= ⎪ ⎪⎝⎭⎝⎭221111cos cos 2cos cos 0551010sinsin sin sin ππππθθθθ⎛⎫⇒++⨯-= ⎪⎝⎭2222cos cos 2cos cos 05555sinsin sin sin ππππθθθθ⎛⎫⇒++⨯-+= ⎪⎝⎭,等式两边同时除以222coscos tan tan 2tan tan 10555πππθθθ⎛⎫⇒++-= ⎪⎝⎭2tantan 252tan 2251tan tan 5πθπθπθ+⎛⎫⇒=⇒+= ⎪⎝⎭-,故答案为2.△ABC 中,内角,,A B C 所对应的边分别为,,a b c ,且满足:22b a ac -=,2c =,那么a 的取值范围是____________.【答案】()12,【解析】分析:由可得:b 2=2a+a 2,又由余弦定理可得:b 2=a 2+4-4acosB ,整理可得:212cos a B=+,可求B 的范围,进而可求cosB 的范围,进而可求a 的范围.详解::∵b 2-a 2=ac ,c=2,可得:b 2=2a+a 2,又∵由余弦定理可得:b 2=a 2+c 2-2accosB=a 2+4-4acosB , ∴2a+a 2=a 2+4-4acosB ,整理可得:212cos a B=+,∵由余弦定理2bccosA=b 2+c 2-a 2=c 2+ac ,可得:2bcosA=c+a ,∴由正弦定理可得:2sinBcosA=sinC+sinA=sin 〔A+B 〕+sinA=sinAcosB+cosAsinB+sinA ,可得:sinBcosA-sinAcosB=sinA ,可得:sin 〔B-A 〕=sinA ,可得:B-A=A ,或者B-A=π-A 〔舍去〕,可得:B=2A ,C=π-A-B=π-3A ,由△ABC 为锐角三角形,可得:02{022032A B A C A ππππ<<<=<<=-<解得:6432A B ππππ<<⇒<<可得:cosB∈1(0,)2,∴可得:1+2cosB∈〔1,2〕,212cos a B=+∈〔1,2〕,故答案为〔1,2〕.点睛:此题主要考察了余弦定理,余弦函数的图象和性质在解三角形中的应用,考察了转化思想,属于中档题.三、解答题:〔本大题一一共6小题,一共70分.解容许写出文字说明,证明过程或者演算步骤〕(cos ,1cos 2)A x x +,(,cos )B x x λ-,()0,x π∈,向量()1,0a =.〔1〕假设向量BA 与a 一共线,务实数x 的值; 〔2〕假设向量BA a ⊥,务实数λ的取值范围. 【答案】〔1〕23x x ππ==或〔2〕](12λ∈-, 【解析】分析:〔1〕由题先求出BA =()cos 3sin 1cos2cos x x x x λ-++-,,然后根据向量一共线的坐标运算可得表达式:1cos2cos 0x x +-=,化简即可.〔2〕由向量的垂直计算公式可得:cos 3sin 0x x λ-+=,然后别离参数,借助辅助角公式即可求得范围.详解: BA =()cos 3sin 1cos2cos x x x x λ-++-,〔1〕假设向量BA 与a 一共线,那么:1cos2cos 0x x +-=即:22cos cos 0x x -= 1cos 0cos 2x x ∴==或∵()0,x π∈∴23x x ππ==或 〔2〕假设向量BA a ⊥,那么:cos 3sin 0x x λ-+=,3sin cos 2sin 6x x x πλ⎛⎫∴=-=-⎪⎝⎭由于()0,x π∈,所以5666x ,πππ⎛⎫-∈- ⎪⎝⎭,∴ ]1sin (162x ,π⎛⎫-∈- ⎪⎝⎭,故:](12λ∈-,. 点睛:考察向量的平行,垂直坐标运算,对公式的正确记忆和表达式的正确书写是解题关键,然后结合三角函数的性质即可,属于根底题.2()sin 23sin cos sin()sin()44f x x x x x x ππ=+++-.〔Ⅰ〕求()f x 的最小正周期和单调增区间; 〔Ⅱ〕假设00(0)2x x x π=≤≤为()f x 的一个零点,求0cos2x 的值.【答案】〔Ⅰ〕最小正周期为π,单调递增区间是[,]63k k k Z ππππ-+∈,;〔Ⅱ〕0cos2x .【解析】试题分析:〔Ⅰ〕利用三角恒等变换可求得,利用正弦函数的周期性与单调性即可求得的最小正周期和单调增区间;〔Ⅱ〕由001()2sin(2)062f x x π=-+=,得01sin(2)64x π-=-,002x π≤≤,可得02066x ππ-≤-≤,于是可求得015cos(2)64x π-=,利用两角和的余弦即可求得答案.试题解析:〔I 〕2()sin 23sin cos sin()sin()44f x x x x x x ππ=+++- 21sin 3sin 2(sin cos )(sin cos )2x x x x x x =+++-1cos 21113sin 2cos 23sin 2cos 22sin(2)22262x x x x x x π-=+-=-+=-+,所以的最小正周期为π,因为222262k x k πππππ-≤-≤+,∴63k x k k Z ππππ-≤≤+∈,,所以函数的单调递增区间是[,]63k k k Z ππππ-+∈,.〔II 〕001()2sin(2)062f x x π=-+=,∴01sin(2)64x π-=-,因为002x π≤≤,052666x πππ-≤-≤,∴02066x ππ-≤-≤,所以015cos(2)64x π-=, 0015311351cos 2cos(2)6642428x x ππ=-+=+⨯=. 考点:1、三角函数中的恒等变换应用;2、正弦函数的周期性与单调性;3、同角三角函数间的关系的应用及两角和的余弦.()2sin sin 2cos 662x f x x x ππωωω⎛⎫⎛⎫=++-- ⎪ ⎪⎝⎭⎝⎭其中x ∈R ,0>ω,假设()1f m =,()1f n =-,且m n -的最小值为4π. 〔1〕求()f x ;〔2〕在ABC ∆中,内角A 、B 、C 所对的边分别为a 、b 、c ,()1f A =,32a =,0AB BC ⋅>,求b c +的取值范围.【答案】〔1〕()2sin 216f x x π⎛⎫=-- ⎪⎝⎭;〔2〕32⎫⎪⎪⎝⎭. 【解析】 【分析】〔1〕利用三角恒等变换思想化简函数()y f x =的解析式为()2sin 16f x x πω⎛⎫=-- ⎪⎝⎭,利用题中条件求出函数()y f x =的最小正周期,可计算出ω的值,由此可得出函数()y f x =的解析式;〔2〕由0AB BC ⋅>,可知B 为钝角,A 为锐角,结合()1f A =求出角A 的值,然后利用正弦定理结合三角恒等变换思想将b c +变形为以角C 为自变量的三角函数,利用正弦函数的根本性质可求出b c +的取值范围. 【详解】〔1〕()2sin sin 2cos 662x f x x x ππωωω⎛⎫⎛⎫=++-- ⎪ ⎪⎝⎭⎝⎭1cos sin coscos sinsin coscos sin266662xx x x x ππππωωωωω+=++--⨯cos 12sin 16x x x πωωω⎛⎫=--=-- ⎪⎝⎭.()2sin 116f m m πω⎛⎫=--= ⎪⎝⎭,得sin 16m πω⎛⎫-= ⎪⎝⎭,由()2sin 116f n n πω⎛⎫=--=- ⎪⎝⎭,得sin 06n πω⎛⎫-= ⎪⎝⎭, m n -的最小值为4π,那么函数()y f x =的最小正周期为44ππ⨯=,那么22πωπ==,因此,()2sin 216f x x π⎛⎫=-- ⎪⎝⎭; 〔2〕()cos cos 0AB BC AB BC B AB BC B π⋅=⋅⋅-=-⋅>,cos 0B ∴<,所以,B 为钝角,A 为锐角,()2sin 2116f A A π⎛⎫=--= ⎪⎝⎭,可得sin 216A π⎛⎫-= ⎪⎝⎭,02A π<<,52666A πππ∴-<-<,那么262A ππ-=,解得3A π=.由正弦定理得1sin sin sin b c aB C A ====,那么sin b B =,sin c C =, 由题意得022C B πππ⎧<<⎪⎪⎨⎪<<⎪⎩,即02223C C ππππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得06C π<<,()1sin sin sin sin sin sin sin sin 32b c B C C A C C C C C Cπ⎛⎫∴+=+=++=++=+ ⎪⎝⎭3sin 26C C C π⎛⎫=+=+ ⎪⎝⎭, 06C π<<,663C πππ∴<+<,那么1sin 262C π⎛⎫<+< ⎪⎝⎭,322b c ∴<+<.因此,b c +的取值范围是322⎛⎫⎪ ⎪⎝⎭.【点睛】此题是三角函数与解三角形的综合问题,考察根据三角函数的根本性质求解析式以及利用三角函数求解三角形中边长和的取值范围问题,考察化归与转化思想以及运算求解才能,属于中等题. 20.〔1〕假设向量()()(),3,1,4,2,1a k b c ===,23a b -与c 的夹角为钝角,那么k 的取值范围是多少? 〔2〕在等腰直角三角形ABC中,,AB AC D E ==是线段BC 上的点,且13DE BC =,那么AD AE ⋅的取值范围是多少? 【答案】〔1〕99,,322⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭〔2〕84,93⎡⎤⎢⎥⎣⎦【解析】【分析】〔1〕由23a b -与c 的夹角为钝角可得()230a b c -⋅<且23a b -与c 不一共线,进而求解即可; 〔2〕以BC 所在直线为x 轴,以BC 的中垂线为y 轴建立平面直角坐标系,设设(),0D x ,那么E 为2,03x ⎛⎫+⎪⎝⎭,即可坐标表示AD AE ⋅,再根据x 的范围求解即可. 【详解】〔1〕由题,()2323,6a b k -=--,因为23a b -与c 的夹角为钝角,所以()()2322360a b c k -⋅=--<, 即3k <,假设23a b -与c 反向一共线,那么23621k --=,所以92k =-,此时夹角不是钝角,综上,k 的取值范围是99,,322⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭〔2〕以BC 所在直线为x 轴,以BC 的中垂线为y 轴建立平面直角坐标系,如下图,由2AB AC ==所以2BC =,那么()0,1A ,()1,0B -,()1,0C ,设(),0D x ,那么E 为2,03x ⎛⎫+⎪⎝⎭,且113x -≤≤, 所以(),1AD x =-,2,13AE x ⎛⎫=+- ⎪⎝⎭, 所以222181339AD AE x x x ⎛⎫⋅=++=++ ⎪⎝⎭, 所以当13x =-时, AD AE ⋅获得最小值为89;当1x =-或者13时,AD AE ⋅获得最大值为43,故AD AE ⋅的取值范围是84,93⎡⎤⎢⎥⎣⎦【点睛】此题考察数量积的坐标表示的应用,考察坐标法处理数量积的最值问题,考察运算才能. 21.如图,四边形AOCB 中,0OA OC ⋅=,2AC =,1BC =.〔1〕假设23AB =ABC S ∆. 〔2〕假设5AB =OB 长度的取值范围.【答案】〔1〕2312;〔2〕(21⎤⎦. 【解析】 【分析】〔1〕利用余弦定理求出cos ACB ∠,进而求得sin ACB ∠,然后利用三角形的面积公式可求出ABC S ∆的值;〔2〕设ACO θ∠=,可知0,2πθ⎛⎫∈ ⎪⎝⎭,以及2cos OC θ=,然后在OBC ∆中利用余弦定理将2OB 表示为θ的三角函数,并利用三角恒等变换思想化简,利用正弦函数的根本性质可求出OB 的取值范围.【详解】〔1〕在ABC ∆中,23AB =2AC =,1BC =, 由余弦定理得22211cos 212AC BC AB ACB AC BC +-∠==⋅,223sin 1cos ACB ACB ∴∠=-∠=,因此,11sin 2122ABC S AC BC ACB ∆=⋅⋅∠=⨯⨯=;〔2〕2AC =,1BC =,AB =222AC BC AB ∴+=,2ACB π∴∠=.设ACO θ∠=,可知0,2πθ⎛⎫∈ ⎪⎝⎭,且cos 2cos OC AC θθ==, 在OBC ∆中,22222cos 4cos 14cos sin 2OB OC BC OC BC πθθθθ⎛⎫=+-⋅+=++ ⎪⎝⎭2sin 22cos 23234πθθθ⎛⎫=++=++ ⎪⎝⎭,0,2πθ⎛⎫∈ ⎪⎝⎭,52444πππθ∴<+<,那么sin 2124πθ⎛⎫-<+≤ ⎪⎝⎭,213OB ∴<≤+11OB <≤.因此,OB 的取值范围是(1⎤⎦.【点睛】此题考察三角形面积的计算,同时也考察了三边形边长取值范围的计算,解题的关键就是找出一个适宜的角,将所求边长表示以此角为自变量的三角函数,转化为三角函数的值域问题来求解,考察运算求解才能,属于中等题.()222sin 14f x x x π⎛⎫=++- ⎪⎝⎭.〔1〕当5,1212x ππ⎡⎤∈⎢⎥⎣⎦,且()()2sin 46g x mf x x π⎛⎫=++ ⎪⎝⎭的最大值为32,求m 的值;〔2〕方程()32f x =在0,2π⎡⎤⎢⎥⎣⎦上的两解分别为1x 、2x ,求()12cos x x -的值. 【答案】〔1〕12m =;〔2〕()123cos 4x x -=. 【解析】 【分析】〔1〕利用三角恒等变换思想化简函数()y f x =的解析式为()2sin 26f x x π⎛⎫=-⎪⎝⎭,令26s x π=-,可得()22sin 4sin 1g x s m s =-++,再令[]sin 0,1t s =∈,可将问题转化为二次函数2241y t mt =-++在[]0,1t ∈上的最大值为32,利用二次函数的根本性质可求出实数m 的值;〔2〕设12x x <,由题意求得123sin 2sin 2664x x ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,1cos 26x π⎛⎫-= ⎪⎝⎭,2cos 26x π⎛⎫-= ⎪⎝⎭,由两角差的余弦公式可求出()12cos 22x x -的值,求出12x x -的取值范围,进而利用二倍角余弦公式可求出()12cos x x -的值. 【详解】〔1〕()222sin 14f x x x π⎛⎫=++- ⎪⎝⎭1cos 21cos 22212cos 22sin 2226x x x x x ππ⎛⎫-+ ⎪-⎛⎫⎝⎭=+⨯-=-=- ⎪⎝⎭, 当5,1212x ππ⎡⎤∈⎢⎥⎣⎦时,令220,63s x ππ⎡⎤=-∈⎢⎥⎣⎦,那么26x s π=+,那么[]sin 0,1s ∈.()24sin sin 2cos 24sin 2sin 4sin 12g x m s s s m s s m s π⎛⎫∴=++=+=-++ ⎪⎝⎭,令[]sin 0,1t s =∈,令2241y t mt =-++,该二次函数图象开口向上,对称轴为直线t m =.①当0m ≤时,二次函数2241y t mt =-++在区间[]0,1上单调递减,那么max 312y =≠,不符合题意; ②当01m <<时,二次函数2241y t mt =-++在区间[]0,m 上单调递增,在区间[],1m 上单调递减,那么2max 3212y m =+=,解得12m =或者12m =-〔舍〕; ③当m 1≥时,二次函数2241y t mt =-++在区间[]0,1上单调递增, 那么max 3412y m =-=,解得58m =〔舍〕.综上所述,12m =; 〔2〕设12x x <,0,2x π⎡⎤∈⎢⎥⎣⎦,那么52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 由于正弦函数sin y x =在区间,62ππ⎡⎤-⎢⎥⎣⎦上单调递增,在区间5,26ππ⎡⎤⎢⎥⎣⎦上单调递减,由()32sin 262f x x π⎛⎫=-= ⎪⎝⎭,得3sin 264x π⎛⎫-= ⎪⎝⎭,因为方程()32f x =在0,2π⎡⎤⎢⎥⎣⎦上的两解分别为1x 、2x , 那么123sin 2sin 2664x x ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,必有10262x ππ<-<,252266x πππ<-<,所以,1cos 264x π⎛⎫-== ⎪⎝⎭,同理2cos 26x π⎛⎫-= ⎪⎝⎭, ()1212cos 22cos 2266x x x x ππ⎡⎤⎛⎫⎛⎫∴-=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2121231cos 2cos 2sin 2sin 266664448x x x x ππππ⎛⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--+--=⨯-+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 由于102x π≤≤,202x π≤≤且12x x <,1202x x π∴-≤-<,那么()12cos 0x x -≥,由()()21212cos 222cos1x x x x -=--,可得()123cos 4x x -==.【点睛】此题考察利用二次型正弦函数的最值求参数,同时也考察了由正弦型函数的解求三角函数值,考察计算才能,属于中等题.制卷人:打自企; 成别使; 而都那。
高一数学下学期第一次月考试题
![高一数学下学期第一次月考试题](https://img.taocdn.com/s3/m/82c8c929b4daa58da0114af4.png)
禹州市一高一年级下学期周末训练高一数学试题 (2012-05-12)卷首语:‚这学期你们一定又增长了许多新本领吧!快带上‘信心、细心专心’这三位好朋友,开始我们的‘开心考一考’之旅吧!‛第I 卷(选择题 共60分)一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案填涂在答题卡上。
) 1.与49π终边相同的角的表达式中,正确的是( ) A.Z k k ∈︒+,452π B.Z k k ∈+︒⋅,49360πC.Z k k ∈︒-︒⋅,315360D.Z k k ∈+,45ππ 2.对于线性回归方程ˆˆˆy bx a =+,下列说法中不正确...的是( ) A .直线必经过点(,)x yB .x 增加一个单位时,y 平均增加ˆb个单位 C .样本数据中0x =时,可能有ˆy a= D .样本数据中0x =时,一定有ˆy a = 3.下列函数中最小正周期为2π的是( ) A.sin ||y x = B.tan 2y x = C.|sin |y x = D.|tan |y x = 4.若cos 2sin 0θθ+=,则θθθθcos sin 2sin cos 22+-=( )A .15-B .12-C .15D .125.先后抛掷一枚质地均匀的硬币三次,则至少一次正面朝上的概率是( ) A .81 B .83 C .85D .87 6.下列各数中最小的数为( )A.)7(214B. )2(1101010C. )5(412D. )3(102207.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则22cos sin θθ-=( )A . 45-B .35-C .35D .458.函数1cos 1tan sin cos 1sin 1cos 222---+-=xx x xxxy 的值域是( )A. {}3,1,1-B.{}1,1,3--C. {}1,3-D. {}3,19.如果0tan sin <αα且0tan cos >αα,则角2α为( )A .第一象限角B .第二象限角C .第一或第二象限角D .第一或第三象限 10.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于( )A .13B .3C .6D .911.已知(,)2、παβπ∈,且tan tan()2παβ<-,那么必有( )A.αβ<B.2παβ+<C.32παβ+<D.32παβ+> 12.若函数()sin (0)f x x ωω=>在区间[0,]3π上单调递增,在区间[,]32ππ上单调递减,则ω=( )A.3B.2C.32 D.23第II 卷 (非选择题 共90分)二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题号后的横线上.)13.计算sin(120)cos1290-= .14.若以连续掷两次骰子分别得到的点数m ,n 作为点P 的坐标,则点P 落在圆1622=+y x 内的概率为 .15.函数()sin()f x A x ωϕ=+,(,,A ωϕ是常数,且0,0A ω>>)的部分图象如图所示,则(0)f = .16.如果输入X=14并执行下面的程序框图,那么其输出的结果S 的值是 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知α是第三象限角,且3sin()cos()tan()22()tan()sin()f ππααπαααππα-+-=----. (1)化简()f α; (2)若31cos(25πα-=,求()f α的值.18.(本小题满分12分)已知一扇形的圆心角为α,所在圆的半径为R ,若扇形的周长为40cm,当它的圆心角α为多少弧度时,该扇形的面积最大?最大面积为多少?19.(本小题满分12分)如图所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以a 表示.已知甲、乙两个小组的数学成绩的平均分相同.(1)求a 的值; (2)求乙组四名同学数学成绩的方差;(3)分别从甲、乙两组同学中各随机选取一名同学,求这两名同学数学成绩之差的绝对值为3的概率. (注:方差()()()2222121n s x x x x x x n⎡⎤=-+-++-⎢⎥⎣⎦ ,其中x 为1x ,2x ,…,n x 的平均数)甲组 乙组8 9 7a 3 57 9 6 620.(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (1)求1A 被选中的概率; (2)求1B 和1C 不全被选中的概率.21.(本小题满分12分)已知函数()2sin(2) 1.6f x x a π=+++(a 为常数)(1)求()f x 的单调递增区间;(2)若[0,]4x π∈时()f x 的最大值为4,求a 的值;(3)求使()f x 取最大值时x 的集合.22.(本小题满分12分)某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示。
高一数学下学期第一次月考试卷卷一 试题
![高一数学下学期第一次月考试卷卷一 试题](https://img.taocdn.com/s3/m/62960d797ed5360cba1aa8114431b90d6c858911.png)
智才艺州攀枝花市创界学校瑶厦08-09高一下学期第一次月考〔卷一〕〔数学〕一、选择题〔本大题一一共12小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一个是符合题目要求的〕1.将-300o化为弧度为〔〕A.-43π;B.-53π;C.-76π;D.-74π;2.函数)421sin(2π+=xy的周期,振幅,初相分别是〔〕A.4,2,4ππB.4,2,4ππ--C.4,2,2ππD.4,2,4ππ3.假设点)cos2,cos(sinθθθP位于第三象限,那么角θ所在象限是〔〕A.第一象限B.第二象限C.第三象限D.第四象限4.假设1弧度的圆心角,所对的弦长等于2,那么这圆心角所对的弧长等于〔〕A.1sin2B.6πC.11sin2D..12sin25.假设角α的终边落在直线y=2x上,那么sinα的值是〔〕A.B.C.15±D.12±6.函数sin()y A x Bωϕ=++的一局部图象如右图所示,假设0,0,||2Aπωϕ>><,那么〔〕A.4=A B.1ω=C.6πϕ=D.4=B7.在ABC∆中,①sin()sinA B C++;②cos()cosB C A++;③2tan2tanCBA+;④cos()sinB C A++,其中恒为定值的是〔〕A.①②B.③④C.②④D.②③8.点O是平行四边形ABCD对角线的交点,那么下面结论正确的选项是()A.AB CB AC+=B.AB AD AC+=C.AD CD BD+≠D.0AO CO OB OD+++=9.函数)sin(φϖ+=xAy在同一周期内,当3π=x时有最大值2,当x=0时有最小值-2,那么函数的解析式为〔〕A.xy23sin2=B.)23sin(2π+=xyC.)23sin(2π-=xyD.xy3sin21=10.假设α角的终边落在第三或者第四象限,那么2α的终边落在〔〕A .第二或者第四象限B .第一或者第三象限C .第一或者第四象限D .第三或者第四象限11.定义新运算“a ※b 〞为a ※b=,,a a b b a b ≤⎧⎨>⎩,例如1※2=1,3※2=2,那么函数 ()sin f x x =※cos x 的值域是()A.[-B.C .[1,1]-D.[ 1021年8月,在召开的国际数学家大会会标如下列图,它是由4个一样的直角三角形与中间的小正方形拼成的一大正方形,假设直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,251-则的值等于〔〕A .1B.2524-C .257 D.725-二、填空题〔本大题一一共4小题,每一小题4分,一共16分,请把答案写在题中横线上〕13.函数sin 1y a x =+的最大值是3,那么它的最小值______________________14.向量,8b =,那么a b+的最大值是,a b-的最小值是。
高一下学期第一次月考数学试卷 (34)
![高一下学期第一次月考数学试卷 (34)](https://img.taocdn.com/s3/m/1e14551686c24028915f804d2b160b4e767f81ef.png)
高一下册数学第一次月考试题一、选择题:(共12小题,每小题5分,共60分) 1.在四边形ABCD 中,给出下列四个结论,其中一定正确的是 A .AB BC CA += B . BC CD BD += C .AB AD AC += D . AB AD BD -=2.设扇形的弧长为2,面积为2,则扇形中心角的弧度数是( ) A .1B .4C .1或4D .π3.已知sin 3cos x x =,则sin cos x x 的值是( )·A. 16B. 15C. 310D. 294.设向量a ,b 满足||1,||3,()0a a b a a b =-=⋅-=,则|2|a b +=( ) A .2 B .23 C .4D .435.函数的定义域为( ) A .B .C .D .6.已知函数且恒过定点P ,则点P 的坐标为 A .B .C .D .7.在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EM ·EC 的取值范围是( )A.[12,2]B.[0,32]C.[12,32] D.[0,1]8.在△ABC 中,D 是BC 中点,E 是AB 中点,CE 交AD 于点F ,若,则λ+u=( ) A .B .C .D .19.函数的部分图象如图所示,则函数的解析式为( ) A . B . C .D .10.已知函数53()4321f x x x x =+++,则212(log 3)(log 3)f f +=( )A .2B .1C .0D .1- 11.将函数y=sin (x+)cos (x+)的图象沿x 轴向右平移个单位后,得到一个偶函数的图象,则φ的取值不可能是( ) A .B .﹣C .D .12.已知向量,满足||=,||=1,且对任意实数x ,不等式|+x|≥|+|恒成立,设与的夹角为θ,则tan2θ=( )A .﹣B .C .﹣D .二、填空题:(本大题共4小题,每小题5分,共20分) 13.已知向量,的夹角为,且|=1,,|= .14.已知,,且,则向量在向量的方向上的投影为__________.15.已知定义在R +上的函数f (x )=,设a ,b ,c 为三个互不相同的实数,满足,f (a )=f (b )=f (c ),则abc 的取值范围为 16.关于函数f (x )=4sin ⎪⎭⎫ ⎝⎛+3π2x (x ∈R ),有下列命题:①函数 y = f (x )的表达式可改写为y = 4cos(2x -π6 ); ②函数 y = f (x )是以2π为最小正周期的周期函数;③函数 y = f (x )的图象关于点⎪⎭⎫⎝⎛-0 6π,对称; ④函数 y = f (x )的图象关于直线x = - π6 对称. 其中正确的是 .三、解答题:(本题共6小题,共70分,解答过程应写出文字说明,证明过程或演算步骤)17.设全集是实数集R ,集合{}R x x A x ∈≤≤=,6442 ,集合 {}R x a x x B ∈<+=,02,(1) 当 4-=a 时 ,求 B A ; (2) 若B B A C R = )(,求实数a 的取值范围.18.已知函数()x x x x x f 2cos 21cos sin 32sin 2-+=,R x ∈。
高一下学期数学第一次月考试卷附带答案
![高一下学期数学第一次月考试卷附带答案](https://img.taocdn.com/s3/m/8fa2da1cbc64783e0912a21614791711cc797967.png)
高一下学期数学第一次月考试卷附带答案(满分150分 时间:120分钟)一.单选题。
(共8小题,每小题5分,共40分) 1.已知(1+i )z=3-i ,其中i 为虚数单位,则|z |=( ) A.5 B.√5 C.2 D.√22.已知复数z=1+2i1+i (i 为虚数单位),则z 的共轭复数z ̅在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图,正方形O’A’B’C’的边长为1,它是一个水平放置的平面图形的直观图,则原图形的周长是( )A.4B.6C.8D.2+2√2(第3题图) (第4题图)4.如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC=2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为( ) A.2√33B.23C.√24D.135.设b ,c 表示两条直线,α,β表示两个平面,下列命题正确的是( ) A.若b ∥α,c ⊂α,则b ∥c B.若b ⊂α,b ∥c ,则c ⊂α C.若c ∥α,α⊥β,则c ⊥β D.若c ∥α,c ⊥β,则α⊥β6.已知圆锥的顶点为P ,底面圆心为O ,若过直线OP 的平面截圆锥所得的截面是面积为4的等腰直角三角形,则该圆锥的侧面积为( )A.4√2πB.2√2πC.4πD.(4√2+4)π7.已知圆锥的母线长为10,侧面展开图的圆心角为4π5,则该圆锥的体积为( ) A.62√213π B.32√6π C.16√6π D.32√213π8.已知在正方体中,AD 1,A 1D 交于点O ,则( )A.OB⊥平面ACC1A1B.OB⊥平面A1B1CDC.OB∥平面CD1B1D.OB⊥BC1二.多选题.(共4小题,每小题5分,共20分)9.已知复数z=3+4i,下列说法正确的是()A.复数z的实部为3B.复数z的共轭复数为3-4iC.复数z的虚部为4iD.复数z的模为510.如图,点A,B,C,M,N是正方体的顶点或所在棱的中点,则满足MN∥平面ABC的有()A. B. C. D.11.如图,一个圆柱盒一个圆锥的底面直径和它们的高都与一个球的直径2R相等,下列结论正确的是()A.圆锥的侧面积为2πR2B.圆柱与球的表面积比为32C.圆柱的侧面积与球的表面积相等D.圆柱与球的体积比为32(第11题图)(第12题图)12.如图,在正方形ABCD中,E、F分别是BC,CD的中点,G是EF的中点,现在沿AE,AF 以及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,下列说法正确的是()A.AG⊥平面EFHB.AH⊥平面EFHC.HF⊥平面AEHD.HG⊥平面AEF二.填空题。
2022-2023学年河北省石家庄市高一下学期第一次月考数学试题1【含答案】
![2022-2023学年河北省石家庄市高一下学期第一次月考数学试题1【含答案】](https://img.taocdn.com/s3/m/8da57735a7c30c22590102020740be1e650eccbe.png)
2022-2023学年河北省石家庄市高一下学期第一次月考数学试题一、单选题1.( )PA BC BA +-=A .B .C .D .PB CP AC PC【答案】D【分析】根据平面向量的线性运算法则,即可求解.【详解】根据向量的线性运算法则,可得.PA BC BA PA AC PC +-=+=故选:D.2.已知向量,不共线,向量,,且,则的值为( )1e 2e 12m e e λ=+ 12n e e λ=+ m n ∥λA .1B .C .1或D .21-1-【答案】C【分析】根据向量平行的定理可知,,即可列式求解.m n μ=【详解】因为,所以,//m n m n μ= ,所以,得,或,()121212e e e e e e λμλμλμ+=+=+1λμλμ=⎧⎨=⎩1λμ==1λμ==-故选:C3.在中,角A 、B 、C 的对边分别为a 、b 、c ,若,,则( )ABC a =12b =60B =︒A =A .B .或C .D .或30︒30︒150︒60︒60︒120︒【答案】A【分析】运用正弦定理求出,从而得到或,结合三角形大边对大角的性质即可得sin A 30A =︒150︒到.30A =︒【详解】因为,,,a =12b =60B =︒所以由正弦定理可得,sin 1sin 2a BA b===因为在中,,所以或.ABC 0180A <<︒︒30A =︒150︒又因为,所以,所以.b a >B A >30A =︒故选:A4.复数在复平面内对应的点关于虚轴对称,若,i 为虚数单位,则( )12,z z 132i z =-2z =A .B .C .D .32i +32i--32i-+23i+【答案】B 【分析】根据在复平面内对应的点写出对应的点的坐标,求出答案.1z 2z 【详解】对应的点的坐标为,132i z =-()3,2-因为在复平面内对应的点关于虚轴对称,12,z z 所以对应的点的坐标为,2z ()3,2--故.23i2z =--故选:B.5.在中,已知向量与满足且为ABC AB AC 0||||AB AC BC AB AC ⎛⎫+⋅= ⎪⎝⎭ ||||BA BC BABC ⋅=ABC ( )A .三边均不相等的三角形B .直角三角形C .等腰直角三角形D .等边三角形【答案】C【分析】根据表示方向上的单位向量,由条件得出的角平分线与BC 垂直,再根据向a aaBAC ∠量的数量积公式得.cos ABC ∠=【详解】因为,故的角平分线与BC 垂直,||||AB AC BC AB AC ⎛⎫+⋅= ⎪⎝⎭BAC ∠即为以A 为顶点的等腰三角形,ABC 又B 为三角形内角,底角,cos ||||BA BC ABC BA BC ⋅=∠=45ABC ∠= 故为等腰直角三角形.ABC 故选:C6.在中,角A ,B ,C 所对的边分别为a ,b ,c ,且,则下列结论ABC sin :sin :sin 3:4:5A B C =错误的是( )A .B .为直角三角形::3:4:5a b c =ABCC .若,则外接圆半径为5D .若P 为内一点,满足,4b =ABC ABC 20PA PB PC ++=则与的面积相等APB △BPC △【答案】C【分析】AB 选项,由正弦定理得到,并判断出三角形为直角三角形;C 选项,由正::3:4:5a b c =弦定理求解外接圆半径;D 选项,经过分析得到点在三角形的中线上,得到答案.P AC 【详解】A 选项,由正弦定理得,A 正确;sin :sin :sin ::3:4:5A B C a b c ==B 选项,由A 知,故,故为直角三角形,B 正确;::3:4:5a b c =222+=a b c ABC C 选项,由B 知,,因为,由正弦定理得,4sin 5B =4b =4254sin 5b R B ===故外接圆半径为,C 错误;ABC 52R =D 选项,取的中点,则,AC E 2PA PC PE +=因为,所以,20PA PB PC ++= PE PB =-即点在三角形的中线上,故与的面积相等,D 正确.P AC APB △BPC △故选:C 7.若向量,,则向量在向量上的投影向量为( )()1,2a =()2,6b =-a bA .B .C .D .14b - 14b 12b - 12b 【答案】A【分析】利用投影向量公式进行计算.【详解】向量在向量上的投影向量为.a b()()()()2221,22,61426a b b b b b⋅⋅-==-+-故选:A8.已知锐角中,角A ,B ,C 的对边分别为a ,b ,c .若,ABC ()2cos coscos A B C B+=,则( )a =6bc =b c +=A .9B .8C .5D .4【答案】C【分析】利用诱导公式、两角和的余弦公式化简已知条件,求得,利用余弦定理求得.A b c +【详解】∵,,()2cos cos cos A B C B+=πA B C ++=∴,,()2cos cos 2cos πA B A B B+--=()2cos cos 2cos A B A B B-+=∴.2sin sin A B B =∵为锐角三角形,∴,∴,∴.ABC sin 0B ≠sin A π0,2A ⎛⎫∈ ⎪⎝⎭π3A =由余弦定理可得,∴,∴,222π2cos3ab c bc =+-2276b c =+-2213b c +=则.5b c +====故选:C二、多选题9.已知复数,则下列命题正确的是()()1i 2iz -=A .B .复数的虚部为i1i z =+z C .D .复数z 的共轭复数在复平面上对应的点为||z =()1,1--【答案】CD【分析】AB 选项,根据复数的除法法则计算出,判断出AB 错误;C 选项,根据模长公1i z =-+式求出答案;D 选项,根据共轭复数的概念求解.【详解】A 选项,,故A 错误;()()()()2i 1i 2i i 1i 1i 1i 1i 1i z ⋅+===⋅+=-+--+B 选项,复数的虚部为,B 错误;z 1C ,C 正确;=D 选项,,故数z 的共轭复数在复平面上对应的点为,D 正确.1i z =--()1,1--故选:CD10.下列说法错误的是( )A .若与是共线向量,则点A ,B ,C ,D 必在同一条直线上ABCD B .若,则一定有使得a b ∥R λ∈a bλ=C .若,且,则和在上的投影向量相等a b a c ⋅=⋅ 0a ≠b c a D .若,则与的夹角为||||2||0a b a b a +=-=≠ a b + a b - 60︒【答案】ABD【分析】根据向量共线,数量积的几何意义,以及向量夹角和模的公式,即可判断选项.【详解】A. 若与是共线向量,则与方向相同或相反,点A ,B ,C ,D 不一定在同一AB CD AB CD 条直线上,故A 错误;B. 若,,时,不存在使得,故B 错误;a b ∥0b = 0a ≠ R λ∈a b λ=C.根据投影向量的定义和公式,可知C 正确;D.由,两边平方后得,且,两边平方后得,||||a b a b +=- 0a b ⋅= ||2||0a b a -=≠ ,,223b a =()()2222221cos ,244a b a b a b a a b a b a b a b a a+⋅---+-====-+-所以与的夹角为,故D 错误.a b + a b - 120故选:ABD11.如下图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,则以下说法正确的有( )A .恒有成立()22222AC BD AB AD +=+B .若,,则平行四边形ABCD 的面积为3AB=AO =4=AD C .恒有成立22||||AB AD AO BO ⋅=- D .若,,则3DO =10AC =16AB BC ⋅=-【答案】ABC【分析】利用向量的数量积公式可判定A 、C 、D 选项,结合三角形面积公式可判定B 项.【详解】设,以其为基底,,,AB a AD b == ,AC a b DB a b =+=-则,()()()22222222222AC BD a b A a b bB A a D ++=+=+-+= 故A 正确;由,22223716cos ,24242a b a b a b AO a b a b ⎛⎫++⋅==+=⇒⋅=⇒= ⎪⎝⎭所以,,60BAD ∠=2sin ABCD ABD S S AB AD BAD ==⋅⋅∠=故B 正确;,()()222222,422AC BD ab AB AD AO B a O a b b+⎛⎫⎛⎫=⋅∴-=⋅=- +-⎪ ⎪⎝⎭⎝⎭故C 正确;由C 项可得,2222162AC AO DO AB AD DO AB BC ⎛⎫-=⋅=-==⋅ ⎪⎝⎭ 故D 错误.故选:ABC12.已知中,角A 、B 、C 的对边分别为a 、b 、c ,且,则下ABC (sin sin )sin sin a A B c C b B -=-列说法正确的是( )A .π6C =B .若c 的最小值为2ABC C .若,则的周长的最大值为62c =ABCD .若,有且仅有一个3b =c =ABC 【答案】BC【分析】由正、余弦定理及已知得,再根据选项综合应用正、余弦定理和三角形面积公式求π3C =解.【详解】∵,()sin sin sin sin a A B c C b B-=-∴由正弦定理可得,即,22()a a b c b -=-222a b c ab +-=对于A 选项,由余弦定理可得,2221cos 22a b c C ab +-==∵,∴,故A 错误;0πC <<π3C =对于B 选项,由题可知∴,1sin 2ab C ==4ab =由余弦定理可得,222222cos 24c a b ab C a b ab ab ab ab =+-=+-≥-==∴,当且仅当时等号成立,故c 的最小值为2,故B 正确;2c ≥2a b ==对于C 选项,,()2222222cos 34c a b ab C a b ab a b ab =+-=+-=+-=因为,所以,所以,当时等号成立,()24a b ab +≤()244a b +≤4a b +≤a b =因为,所以,则的周长的最大值为6,故C 正确;2c =26a b c <++≤ABC 对于D 选项,由余弦定理可得,即,,2222cos c a b ab C =+-2893a a =+-2310a a -+=解得,则满足条件的有2个,故D错误.a =ABC 故选:BC .三、填空题13.已知点,,则与向量同方向的单位向量为_______.()1,1M -()3,2N -MN 【答案】43,55⎛⎫- ⎪⎝⎭【分析】计算出,求出即为答案.()4,3MN =-MN MN【详解】,()()()3,21,14,3MN =---=-5=则与向量同方向的单位向量为.MN 43,55MN MN⎛⎫=- ⎪⎝⎭故答案为:.43,55⎛⎫- ⎪⎝⎭14.如图,在矩形ABCD 中,,E 为AB的中点,F 是BC 边上靠近点B 的三等分点,36BC AB ==AF 与DE 于点G ,则的余弦值为_______.EGF ∠【答案】【分析】建立平面直角坐标系,写出点的坐标,为的夹角,利用向量夹角的余弦公EGF ∠,AF DE式求出答案.【详解】以为坐标原点,,所在直线分别为轴,建立平面直角坐标系,A AB AD ,x y则,()()()()()0,0,2,0,1,0,2,2,0,6A B E F D ,,,()2,2AF =()1,6DE =-()()2,21,621210AF DE ⋅=⋅-=-=-为的夹角,EGF ∠,AF DE,==cosAF DE EGF AF DE ⋅∠===⋅ 故答案为:15.如图,照片中的建筑是某校的学生新宿舍楼,学生李明想要测量宿舍楼的高度.为此他进行MN 了如下测量:首先选定观测点A 和B ,测得A,B 两点之间的距离为33米,然后在观测点A处测得仰角,进而测得,.根据李明同学测得的数据,该宿舍楼30MAN ∠=︒105MAB ∠=︒45MBA ∠=︒的高度为___________米.【答案】【分析】先在中利用正弦定理求出,再在中求解即可.ABM AM =Rt AMN 【详解】在中,因为,,ABM 105MAB ∠=︒45MBA ∠=︒所以,又,所以,30AMB ∠=︒33AB =sin sin AB AMAMB MBA ∠∠=即,解得;sin30sin4533AM=AM =在中,因为,,Rt AMN 30MAN ∠=︒AM =所以,tan30MN AM =⋅=即该宿舍楼的高度为米.故答案为:.16.点P 是正方形外接圆圆O 上的动点,正方形的边长为2,则的取值ABCD 2OP OB OP OC ⋅+⋅范围是________.【答案】[-【分析】根据题意求出圆的半径,建立如图平面直角坐标系,设,xOy )P θθ,利用平面向量线性运算和数量积的坐标表示可得,[]0,2πθ∈2OP OB OP OC ⋅+⋅=)ϕθ-结合三角函数的有界性即可求解.【详解】由题意知,圆O =建立如图平面直角坐标系,,xOy (1,1),(1,1)C B -得,(1,1),(1,1)OC OB ==-设,,则,)P θθ[]0,2πθ∈)OP θθ=所以2)OP OB OP OC θθθθ⋅+⋅=,其中,)θθϕθ==-tan 3ϕ=又,所以,02πϕθ≤-≤1sin()1ϕθ-≤-≤则,2OP OB OP OC ⋅+⋅=)[ϕθ-∈-即的取值范围为.2OP OB OP OC ⋅+⋅ [-故答案为:.[-四、解答题17.当实数m 取什么值时,复平面内表示复数的点分别满足下列条()()225632iz m m m m =-++-+件:(1)是纯虚数;(2)位于直线上;2y x =【答案】(1)3m =(2)或2m =5m =【分析】(1)根据复数的特征,列方程组求解;(2)根据点在直线列方程求解;2y x =【详解】(1)由已知得,解得,22560320m m m m ⎧-+=⎨-+≠⎩3m =即时,复平面内表示复数是纯虚数;3m =z (2)由已知得,()2232256m m m m -+=-+解得或,2m =5m =即或时,复平面内表示复数的点位于直线上;2m =5m =z 2y x =18.已知,为单位向量,且,的夹角为120°,向量,.1e 2e 1e 2e 122a e e =+ 21b e e =- (1)求;a b ⋅ (2)求与的夹角.a b【答案】(1)32-(2)23π【分析】(1)利用平面向量的数量积的运算律求解;(2)先求得,再利用夹角公式求解.a b ,cos a b a b θ⋅=⋅ 【详解】(1)解:∵,为单位向量,且,的夹角为120°,1e 2e 1e 2e ∴.12111cos1202e e ⋅=⨯⨯︒=- ∴.()()1221122113222112122a b e e e e e e e e ⋅=+⋅-=⋅-+-⋅=--++=- (2)设与的夹角为.a b θ∵a ====b ====∴.31cos 22a b a b θ⋅==-=-⋅ 又∵,[]0,θπ∈∴,23πθ=∴与的夹角为.a b 23π19.已知a,b ,c 分别为三个内角A ,B ,C 的对边,.ABC cos sin 0a C C b c --=(1)求角A ;(2)若为锐角三角形,求的取值范围.ABC cos cos B C +【答案】(1)π3(2)⎤⎥⎦【分析】(1)由正弦定理及,利用辅助角公式sin sin cos cos sin B A C A C =+cos 1A A -=得到,结合求出答案;π1sin 62A ⎛⎫-= ⎪⎝⎭()0,πA ∈(2)利用及化简得到,根据三角形为锐角三角()cos cos B A C =-+π3A =πcos cos sin 6B C C ⎛⎫+=+ ⎪⎝⎭形得到,从而得到的取值范围.π2π,63C ⎛⎫∈ ⎪⎝⎭cos cos B C +【详解】(1)由正弦定理得,sin cos sin sin sin 0A C A C B C --=因为,()sin sin sin cos cos sin B A C A C A C =+=+,sin cos sin sin 0A C A C C --=因为,所以,()0,πC ∈sin 0C ≠,即,,cos 1A A -=π2sin 16A ⎛⎫-= ⎪⎝⎭π1sin 62A ⎛⎫-= ⎪⎝⎭因为,所以,()0,πA ∈ππ5π,666A ⎛⎫-∈- ⎪⎝⎭故,解得;ππ66A -=π3A =(2),()1cos cos sin sin cos cos cos2B A C A C A C C C =-+=-=-故,1πcos cos cos sin 26B C C C C ⎛⎫+=+=+ ⎪⎝⎭因为为锐角三角形,所以,且,ABC π0,2C ⎛⎫∈ ⎪⎝⎭π0,2B ⎛⎫∈ ⎪⎝⎭因为,即,解得,π2ππ33B C C =--=-2ππ0,32C ⎛⎫-∈ ⎪⎝⎭π2π,63C ⎛⎫∈ ⎪⎝⎭所以,,,ππ,62C ⎛⎫∈ ⎪⎝⎭ππ2π,633C ⎛⎫+∈ ⎪⎝⎭πsin 6C ⎤⎛⎫+∈⎥ ⎪⎝⎭⎦故.πcos cos sin 6B C C ⎤⎛⎫+=+∈⎥ ⎪⎝⎭⎦20.如图,在平行四边形中,,,.ABCD 60BAD ∠=︒12BE BC = 2CF FD = (1)若,求的值;EF xAB y AD =+ 32x y +(2)若,,求边的长.6AB = 18AC EF ⋅=- AD【答案】(1)321x y +=-(2)4【分析】(1)根据平面向量线性运算法则及平面向量基本定理求出,,即可得解;x y (2)设长为,根据数量积的运算律得到方程,解得即可.AD x 【详解】(1)在平行四边形中,,,ABCD 12BE BC = 2CF FD = 所以,1121()3232EF AF AE AD AB AB AD AB AD =-=+-+=-+ 又,,,.EF xAB y AD =+ 23x ∴=-12y =321x y ∴+=-(2)设长为,AD x ()2132AC EF AB AD AB AD ⎛⎫⋅=+⋅-+ ⎪⎝⎭ 22211326AB AD AB AD =-+-⋅ 222c 1os 2136BAD AB AD AB AD =⋅∠-+- ,211241822x x =--=-,或(舍去),即.2120x x ∴--=4x ∴=3-4=AD 21.课本第46页上在用向量方法推导正弦定理采取如下操作:如图1,在锐角中,过点AABC 作与垂直的单位向量,因为,所以由分配律,得AC j AC C AB B += ()j AC CB j AB ⋅+=⋅ ,即,也即j AC j CB j AB ⋅+⋅=⋅ πππ||||cos ||||cos ||cos 222j AC j CB C j AB A ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭ .请用上述向量方法探究,如图2直线l 与的边AB ,AC 分别相交于点sin sin a C c A =ABC D ,E .设,,,.则θ与的边和角之间的等量关系下列哪个AB c =BC a ==CA b ADE θ∠=ABC正确,并说明理由.①;②.cos()cos()cos a B b A c θθθ++-=cos()cos()cos a B b A c θθθ-++=【答案】①错误,②正确【分析】设则,然后可得再根据向量的数量积的运算性质||DE m DE = ||1m = m AC m CB m AB ⋅+⋅=⋅ 化简即可.【详解】设则,||DE m DE = ||1m = 因为, 所以,AC CB AB →→→+=m AC m CB m AB ⋅+⋅=⋅ 即,||||cos(π())||||cos(π())||||cos(π)m AC A m CB B m AB θθθ-++--=- 所以,cos()cos()cos b A a B c θθθ-+--=-即,()()cos cos cos a B b A c θθθ-++=所以①错误,②正确.【点睛】方法点睛:求两个向量的数量积有三种方法:(1)利用定义:(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.22.如图,已知中,角A ,B ,C 的对边分别为a ,b ,c ,ABC.222sin sin sin sin sin A C B A B C +-=⋅(1)求B ;(2)若,,点D 在边AC 上,且在和上的投影向量的模相等,2223a c c b ++=152BA BC ⋅=- BD BC BA 求线段BD 的长.【答案】(1)2π3B =(2)158【分析】(1)综合运用正、余弦定理即可求解;(2)由(1)及已知可求得,,又由在和上的投影向量的模相等,知BD 为5c =7b =BD BC BA 的平分线,由角平分线定理得,再在和中应用正弦定理求解即可.ABC ∠358AD =ABC ABD △【详解】(1)∵,222sin sin sin sin sin A B C A C B +-=∴由正弦定理可,222sin a c b B =+-由余弦定理可得,222cos 2a c b B ac +-=∴即2cos s ac B inB =tan B =∵,∴.()0,πB ∈2π3B =(2)由(1)知,2π3ABC ∠=∴又,2222cos ac ABC ac a c b ∠=-=+-2223a c c b ++=∴,解得.∵,2222(3)ac a c a c c -=+-++3a =152BA BC ⋅=- ∴,可得,15cos 22ac ac ABC ∠=-=-5c =由可得,解得.2223a c c b ++=292515b ++=212559b ++=7b =∵在和上的投影向量的模相等,BD BC BA ∴BD 为的平分线,ABC ∠由角平分线的性质知,即,解得,AD c b AD a =-573AD AD =-358AD =在中,由正弦定理可得,∴,ABCsin sin a b A ABC==∠sin A 在中,,ABD △π3ABD ∠=由正弦定理可得.sin sin BD AD A ABD =∠158BD =。
四川省南充重点中学2022-2023学年高一下学期第一次月考数学试题及参考答案
![四川省南充重点中学2022-2023学年高一下学期第一次月考数学试题及参考答案](https://img.taocdn.com/s3/m/1edcbfc5541810a6f524ccbff121dd36a22dc453.png)
南充高中2022—2023学年高一下学期第一次月考数学试题(考试时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合U={0,1,2,3,4,5},A={0,2,4},B={3,4},则(C U A)∩B=( )A.{3}B.{5}C.{3,4,5}D.{1,3,4,5}2.sin210°的值为( )3.若sinαtanα<0,且则角α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.已知函数f(x)=x+log₂x,下列含有函数f(x)零点的区间是( )D.( 1,2)5.函数在[-π,π]上的图象大致为( )6.《九章算术》是一部中国古代的数学专著.全书分为九章,共收有246个问题,内容丰富,而且大多与生活实际密切联系.第一章《方田》收录了38个问题,主要讲各种形状的田亩的面积计算方法,其中将圆环或不足一匝的圆环形田地称为“环田”.书中提到这样一块“环田”:中周九十二步,外周一百二十二步,径五步,如图所示,则其所在扇形的圆心角大小为( )(单位:弧度)(注:匝,意为周,环绕一周叫一匝.)A.3B.4C.5D.67.函数的定义域为( )8.设函数,若关于x 的方程且a≠1)在区间[0,5]内恰有5个不同的根,则实数a的取值范围是()二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知三角形ABC是边长为2的等边三角形.如图,将三角形ABC的顶点A与原点重合. AB 在x轴上,然后将三角形沿着x轴顺时针滚动,每当顶点A再次回落到x轴上时,将相邻两个A 之间的距离称为“一个周期”,给出以下四个结论,其中说法正确的是( )A.一个周期是6B.完成一个周期,顶点A的轨迹是一个半圆C.完成一个周期,顶点A 的轨迹长度是D.完成一个周期,顶点A的轨迹与x 轴围成的面积是10.下列命题中真命题的为( )A.命题“∀x∈R,sinx≤1”的否定是“∃x ₀∉R,sinx₀>1 ”B.若α是第一象限角,则是第一或第三象限角C.直线是函数的图象的一条对称轴D.y=tanx的图象对称中心为(kπ,0)(k∈Z)11.下列说法正确的是( )是“sinα=sin ”的充分不必要条件B.若x∈(0,π),则的最小值为4C.函数使得f(x₁)=g(x₂)成立,则m的最大值为3D.函数y=|1+2cosx|是偶函数,且最小正周期为π12.定义设函数f(x)=min{sinx,cosx},给出f(x)以下四个论断,其中正确的是( )A.是最小正周期为2π的奇函数B.图象关于直线对称,最大值为C.是最小值为-1的偶函数D.在区间上是增函数三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.已知0<x<π且则 sinx- cosx=14.函数的定义域为15.已知f(x)是定义域在R上的奇函数,且f( 1+x)=f(-x),若则16.关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数②f(x)的最大值为2 ③f(x)在[-π,π]有4个零点④f(x)在区间单调递增⑤f(x)是周期为π的函数其中所有正确结论的编号是四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)已知计算下列各式的值.(1) tanα(2) sin²α-2sinαcosα+118.(本小题满分12分)(1)计算:(2)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点的值19.(本小题满分12分)设函数(1)求函数f(x)的单调递增区间;(2)求函数f(x)在区间上的值域.20.(本小题满分12分)已知函数f(x)=2cos²x+2a+2a的最大值为.(1)求a的值;(2)当x∈R时,求函数f(x)的最小值以及取得最小值时x的集合.21.(本小题满分12分)已知函数f(x)为偶函数,函数g(x)为奇函数,且满足(Ⅰ)求函数f(x),g(x)的解析式;(Ⅱ)若函数且方程恰有三个不同的解,求实数a的取值范围.22.(本小题满分12分)已知函数f(x)=-x|x-2a|+1(x∈R).(1)当a=1时,求函数y=f(x)的零点;(2)当求函数y=f(x)在x∈[1,2]上的最大值;(3)对于给定的正数a,有一个最大的正数T(a),使x∈[0,T(a)]时,都有|f(x)|≤1,试求出这个正数T(a)的表达式.参考答案一、单选题 1-8 ABCCDDCA 二、不定选项题9.ACD 10.BC 11.AC 12.BD 三、单选题 13.14.)15.-1 16.①②④四、解答题 17.(1)解:已知sin cos 3sin cos αααα+=-,化简,得4cos 2sin αα=,所以sin tan 2cos ααα==. (2)22222222sin 2sin cos tan 2tan 222sin 2sin cos 1111sin cos tan 121ααααααααααα---⨯-+=+=+=++++1=.18.(1)(2)19. (1)()24f x x π⎛⎫=- ⎪⎝⎭,当()222242k x k k Z πππππ-≤-≤+∈,即()388k x k k Z ππππ-≤≤+∈,, 因此,函数f (x )的单调递增取间为()384k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,.(2)令π24t x =-,π3π84x ≤≤可得5π04t ≤≤,当5π4t =,即3π4x =时,min 1y ⎛==- ⎝⎭,当π2t =,即3π8x =时,max 1y ==函数()f x 的值域为⎡-⎣20. (1)()2cos22sin 212sin 2sin 2f x x a x a x a x a =++=-++22sin 2sin 21x a x a =-+++,令[]sin 1,1t x =∈-,则2()2221f t t at a =-+++,对称轴02at =, 当012at =≤-即2a ≤-时, 2()2221f t t at a =-+++在[]1,1t ∈-单调递减,所以max ()(1)22211f t f a a =-=--++=-不满足题意; 当112a-<<即22a -<<时,2()2221f t t at a =-+++在1,2a ⎡⎫-⎪⎢⎣⎭单调递增,,12a ⎛⎤ ⎥⎝⎦单调递减,所以22max1()()21222a a f t f a a ==-+++=-,即2430a a ++=解得1a =-或3a =-(舍); 当012at =≥即2a ≥时, 2()2221f t t at a =-+++在[]1,1t ∈-单调递增,所以max 1()(1)22212f t f a a ==-+++=-,解得18a =不满足题意,综上1a =-.(2)由(1)可得2()221f t t t =---在11,2⎡⎫--⎪⎢⎣⎭单调递增,1,12⎛⎤- ⎥⎝⎦单调递减,所以当1t =时函数有最小值为(1)2215f =---=-,此时sin 1t x ==,则x 的取值构成的集合为π|2π,Z 2x x k k ⎧⎫=+∈⎨⎬⎩⎭ 21.(1)因为()f x 为偶函数,()g x 为奇函数,由已知可得()()12xf xg x +---=,即()()12xf xg x ++=,所以,()()()()1122xx f x g x f x g x -+⎧-=⎪⎨+=⎪⎩, 所以()(),2222x x x xf xg x --=+=-;(2)()()()12,01121221,0x xx x h x f x g x x ⎧-≤⎡⎤=+-=-=⎨⎣⎦->⎩,作出函数()h x 的图象如下图所示:由解得,h(x)=a+1/4,h(x)=a-1/4,由图可知,22. (1)当1a =时,()2221,22121,2x x x f x x x x x x ⎧-++≥=--+=⎨-+<⎩,令2210-++=x x,解得:1x =+1舍); 令2210x x -+=,解得:1x =; ∴函数()y f x =的零点为11;(2)由题意得:()2221,221,2x ax x af x x ax x a ⎧-++≥=⎨-+<⎩,其中()()021f f a ==,30,2a ⎛⎫∈ ⎪⎝⎭,∴最大值在()()()1,2,2f f f a 中取. 当021a <≤,即102a <≤时,()f x 在[]1,2上单调递减,()()max 12f x f a ∴==;当122a a <<<,即112a <<时,()f x 在[]1,2a 上单调递增,[]2,2a 上单调递减, ()()max 21f x f a ∴==;当122a a ≤<<,即12a ≤<时,()f x 在[]1,a 上单调递减,[],2a 上单调递增,()()(){}max max 1,2f x f f ∴=;()()()()122254230f f a a a -=---=-<,()()max 254f x f a ∴==-;综上所述:()max12,0211,12354,12a a f x a a a ⎧<≤⎪⎪⎪=<<⎨⎪⎪-≤<⎪⎩;(3)()0,x ∈+∞时,0x -<,20x a -≥,()max 1f x ∴=, ∴问题转化为在给定区间内()1f x ≥-恒成立.()21f a a =-+,分两种情况讨论:当211a -+≤-时,()T a 是方程2211x ax-+=-的较小根,即a ≥()T a a =当211a -+>-时,()T a 是方程2211x ax-++=-的较大根, 即0a <()T a a =;综上所述:()a a T a a a ⎧≥⎪=⎨<⎪⎩。
高一下学期第一次月考数学试卷 (19)
![高一下学期第一次月考数学试卷 (19)](https://img.taocdn.com/s3/m/4f7e57d1c9d376eeaeaad1f34693daef5ef71326.png)
高一数学下学期第一次月考试题一、选择题:(本答题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列有4个命题:其中正确的命题有( )(1)第二象限角大于第一象限角;(2)不相等的角终边可以相同;(3)若α是第二象限角,则α2一定是第四象限角;(4)终边在x 轴正半轴上的角是零角. A.(1)(2) B.(3)(4) C.(2) D.(1)(2)(3)(4))(,0tan ,0cos .2是则且如果θθθ><A.第一象限的角 B .第二象限的角 C.第三象限的角 D.第四象限的角 3.已知角θ的终边经过点)2,1(-,则=θsin ( )A.21-B. -2C.55D.552-4.若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线x y 3-=上,则角α的取值集合是( ) A. ⎭⎬⎫⎩⎨⎧∈-=Z k k ,32ππαα ⎭⎬⎫⎩⎨⎧∈+=Z k k B ,322.ππαα⎭⎬⎫⎩⎨⎧∈-=Z k k C ,32.ππαα D .⎭⎬⎫⎩⎨⎧∈-=Z k k ,3ππαα()01020sin .5-等于( )A.21 B.21- C. 23 D. 23-6..已知,2παπ⎛⎫∈⎪⎝⎭,tan 2α=-,则cos α=( )A .35-B .25- C..-7.函数sin y x = 的一个单调增区间是( )A. ,44ππ⎛⎫-⎪⎝⎭ B . 3,44ππ⎛⎫ ⎪⎝⎭ C. 3,2ππ⎛⎫ ⎪⎝⎭ D.3,22ππ⎛⎫⎪⎝⎭8.在ABC ∆中,若()()C B A C B A +-=-+sin sin ,则ABC ∆必是( ) A.等腰三角形 B .等腰或直角三角形 C.直角三角形 D.等腰直角三角 9.函数x x y sin sin -=的值域是 ( )A.[]2,2-B. []2,0C.[]1,1-D.[]0,2-10.将函数sin 24y x π⎛⎫=- ⎪⎝⎭的图象向左平移6π个单位后,得到函数()f x 的图象,则=⎪⎭⎫⎝⎛12πf ( )11.)42sin(log 21π+=x y 的单调递减区间是( )A.⎥⎦⎤⎢⎣⎡-πππk k ,4 ()Z k ∈ B.⎪⎭⎫ ⎝⎛+-8,8ππππk k ()Z k ∈ C.⎥⎦⎤⎢⎣⎡+-8,83ππππk k ()Z k ∈ D.⎪⎭⎫ ⎝⎛+-83,8ππππk k ()Z k ∈ 12.若函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭在区间(π,2π)内没有最值,则ω的取值范围是 ( )A.1120,,1243⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦ B.1120,,633⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦ C.12,43⎡⎤⎢⎥⎣⎦ D.12,33⎡⎤⎢⎥⎣⎦二、填空题(每小题5分,共20分)13.扇形的周长为cm 8,圆心角为2弧度,则该扇形的面积为_______.错误!未找到引用源。
2022-2023学年云南省玉溪市一中高一年级下册学期第一次月考数学试题
![2022-2023学年云南省玉溪市一中高一年级下册学期第一次月考数学试题](https://img.taocdn.com/s3/m/e2a17e92b1717fd5360cba1aa8114431b90d8ec2.png)
玉溪一中2022—2023学年下学期高一年级第一次月考数学总分:150分 考试时间:120分钟一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则{30}A xx =-≤≤∣{1}B x x =≥-∣A B ⋃= A . B . C .D .[1,0]-[3,)-+∞(,0]-∞[1,)-+∞2.命题“,”的否定是[]1,2x ∃∈-21x < A .,B .,[]1,2x ∃∈-21x ≥[]1,2x ∃∉-21x < C .,D .,[]1,2x ∀∈-21x <[]1,2x ∀∈-21x ≥3.已知△是等边三角形,边长为1,则ABC AB BC ⋅=A .B .C .D 12-124.在平行四边形中,,,设,则ABCD 12CF CD =2CE EB =EF x AB y AD =+ x y += A .1 B . C . D .1656765.下列函数既是奇函数,又在上单调递增的是(0,)+∞ A .B .C .D .2y x =ln y x =tan y x =3y x =6.酒驾是严重危害交通安全的违法行为.根据国家有关规定:驾驶人血液中的酒精含量大于(或等于)毫克/毫升,小于毫克/毫升的情况下驾驶机动车属于饮酒驾车;含0.20.8量大于(或等于)毫克/毫升的情况下驾驶机动车属于醉酒驾车.假设某驾驶员一天0.8晚上点钟喝了一定量的酒后,其血液中酒精含量上升到了毫克/毫升.如果在停止喝酒61后,他血液中酒精含量以每小时的速度减少,那么他次日上午最早几点(结果取整10%数)开车才不构成酒驾?(参考数据:,)lg 20.301≈lg 30.477≈ A .8点B .9点C .10点D .11点7.已知为偶函数,当时,,则当时,()f x 0x >()223f x x x =--0x <()f x = A .B .C .D .223x x --+223x x +-223x x -++223x x --8.已知,,,则5log 2a =sin 55b =︒0.60.5c = A . B .C .D .c b a >>a c b >>b c a >>b a c>>二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对得5分,部分选对得2分,有错选得0分.9.下列结论正确的有 A .三棱柱有6个顶点B .棱台的侧面是等腰梯形C .五棱锥有6个面D .正棱锥的侧面是全等的等腰三角形10.要得到函数的图象,只需要将的图象())3f x x π=+()2g x x = A .向左平移个单位长度B .向左平移个单位长度6π3πC .向右平移个单位长度D .向右平移个单位长度6π56π11.某单位为了激励员工努力工作,决定提高员工待遇,给员工分两次涨工资,现拟定了三种涨工资方案.方案甲:第一次涨幅,第二次涨幅;%a %b 方案乙:第一次涨幅,第二次涨幅;%2a b +%2ab+.其中,小明帮员工李华比较上述三种方案得到如下结论,其中正确的有0a b >> A .方案甲和方案乙工资涨得一样多B .采用方案乙工资涨得比方案丙多 C .采用方案乙工资涨得比方案甲多D .采用方案丙工资涨得比方案甲多12.已知函数,令,则()23log ,0211,22x x x f x x -⎧<≤⎪=⎨⎛⎫->⎪ ⎪⎝⎭⎩()()g x f x k =- A .若有1个零点,则或()g x 0k <1k > B .若有2个零点,则或()g x 1k =0k = C .的值域是()f x ()1,-+∞ D .若存在实数()满足,则的取值范围为,,a b c a b c <<()()()f a f b f c==abc ()2,3三、填空题:本大题共4小题,每小题5分,共20分.13.已知圆锥的侧面展开图是一个半径为2,弧长为的扇形,则该圆锥的体积为 2π.14. .()27π3227log 42⋅=(单位:米)关于时间(单位:t16.如图,在△中,,,ABC 12AD AB=13AE AC =与交于点,,,,则CD BE P 2AB =4AC =2AP BC ⋅=的值为.AB AC ⋅四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)(1)已知,求的值;tan 2α=sin cos cos sin αααα-+(2)已知,且,求的值.3sin(+)65πα=536ππα<<cos α18.(本小题满分12分)已知向量,.()3,2a =(),1b x =-(1)当,求的值;()2a b b-⊥ x (2)当,,求向量与的夹角.()8,1c =--()a b c+∥ abα19.(本小题满分12分)在△中,内角的对边分别为,且ABC ,,A B C ,,a b c.cos sin B b C =+ (1)求C ;(2)若,△的值.c =a b >ABC sin 2B 20.(本小题满分12分)设函数.()22(sin cos )1f x x x x =+--(1)求的最小正周期和最小值;()f x (2)若,求的单调递增区间.()31()42g x f x π=-()g x 21.(本小题满分12分)已知,其中,为实数.()224f x x ax b=+-a b (1)若不等式的解集是,求的值;()0f x ≤[]2,6-b a (2)若函数在区间上单调递减,求实数的取值范围.()22x xf y =(],1-∞b22.(本小题满分12分)为响应国家“乡村振兴”号召,农民老王拟将自家一块直角三角形地按如图规划成3个功能区:区域为荔枝林和放养走地鸡,区域规划BNC △CMA △为“民宿”供游客住宿及餐饮,区域规划为小型鱼塘养鱼供休闲垂钓.为安全起MNC △见,在鱼塘周围筑起护栏.已知,MNC △40m AC =,,.BC =AC BC ⊥30MCN ∠=︒(1)若,求护栏的长度(的周长);20m AM =MNC △(2)若鱼塘的面积是“民宿”的面积MNC △CMA △的长;AM (3)鱼塘的面积是否有最小值?若有,请求出其最小值;若没有,请说明理MNC △由.玉溪一中2022—2023学年下学期高一年级第一次月考数学参考答案一、单项选择题1.【答案】B 【详解】因为集合,,所以,{30}A xx =-≤≤∣{1}B x x =≥-∣[)3,A B =-+∞ 故选:B.2.【答案】DCAB3.【答案】A 【详解】.故答案为:.21cos 11cos 332AB BC AB BC πππ⎛⎫⋅=⋅⋅-=⨯⨯=- ⎪⎝⎭ 12-4.【答案】B 【详解】(1)因为,所以,1122CF CD AB ==- 2CE EB = 2233EC BC AD == 所以,所以,故.21213232EF EC CF BC CD AD AB =+=+=- 12,23x y =-=16x y +=5.【答案】D 【解析】对于A ,是偶函数,故A 错误;对于B ,是非奇非2y x =ln y x =偶函数,故B 错误;对于C ,设,其定义域为,tan y x =ππ,2x x k k ⎧⎫≠+∈⎨⎬⎩⎭Z 故C 错误.对于D ,是奇函数,在单调递π0,π(),2x x k k ⎧⎫≠+∈⎨⎭∞⊄⎩+⎬Z 3y x =(0,)+∞增,故D 正确;故选:D 6.【答案】C 【详解】假设经过小时后,驾驶员开车才不构成酒驾,则()*x x N ∈,即,,则()1110%0.2x⨯-<0.90.2x <lg 0.9lg 0.2x ∴<,,次日上午最早点,1lglg 0.2lg 51lg 2515.29lg 0.92lg 3112lg 3lg 10x -->===≈--min 16x ∴=∴10该驾驶员开车才不构成酒驾.故选:C.7.【答案】B 【详解】当时,,则,又因0x <0x ->()()()222323f x x x xx -=----=+-为是偶函数,所以.故选:B()f x ()()223x x f x f x +=--=8.【答案】C 【详解】,即,5510log2log 2a <=<=10,2a ⎛⎫∈ ⎪⎝⎭,即,sin 45sin 551b =︒<=︒<b ⎫∈⎪⎪⎭即,故.故选:C.110.620.611110.52222c ⎛⎫⎛⎫⎛⎫=<==<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12c ⎛∈ ⎝b c a >>二、多项选择题9.【答案】ACD 【详解】三棱柱有6个顶点,棱台的侧面是梯形,不一定是等腰梯形,五棱锥有6个面,正棱锥的侧面是全等的等腰三角形.故选:ACD.10.【答案】AD 【详解】,所以要得到的图象,只()g()66f x x x ππ=+=+()f x 需要将的图象向左平移个单位长度,又因为的最小正周期为,()gx 6π()2g x x=π所以要得到的图象,只需要将的图象向右平移个单位长度,所以选AD()f x ()g x56π11.【答案】BC 【详解】不妨设原工资为1,方案甲:两次涨幅后的价格为:;方案乙:两次涨幅后的价格为:(1%)(1%)1%%0.01%a b a b ab ++=+++;方案丙:两次涨幅后的价格为:2(1%)(1%)1%%0.01()%222a b a b a b a b +++++=+++;因为,由均值不等式(110.01%ab +=++0a b >>,当且仅当时等号成立,故,因为,所以a b +≥a b =2(2a b ab+≥a b ≠,2(2a b ab +>a b +>所以方案采用方案乙工资涨得比方案甲多,采用方案甲工资涨得比方案丙多,故选:.BC 12.【答案】BCD 【详解】由函数的图象,根据函数图2log y x =象的翻折变换,由函数的图象,根据函数图象的平移变12xy ⎛⎫= ⎪⎝⎭换,向右平移3个单位,向下平移1个单位,可得函数的图()f x 象,如下图:函数的图象可由函数经过平移变换得到,显然当或()g x ()f x 10k -<<时,函数的图象与轴存在唯一交点,故A 错误;由函数的图象,本身1k >()g x x ()f x 存在两个交点,向下平移一个单位,符合题意,故B 正确;由图象,易知C 正确;,1ab =由图象可知,解得,即,故D 正确;故选:BCD.()0,1d ∈()2,3c ∈()2,3abc c =∈三、填空题13.14.【答案】27【详解】()27π3227log 42⋅()()2314π323π4log 2+=+-+16.【答案】2【详解】令,,而BP BE λ=CP CD μ=,1()(1)33AP AB BE AB BA AC AB ACλλλλ=+=++=-+,1()(1)22AP AC CD AC CA AB AC ABμμμμ=+=++=-+ ∴,得,∴,又1213μλλμ⎧-=⎪⎪⎨⎪-=⎪⎩3545λμ⎧=⎪⎪⎨⎪=⎪⎩2155AP AB AC=+ ,∴()(21)55()2A AP BC AP AC AB AC AB B AC +⋅⋅=⋅-=-=,,,∴.故答案为:2221155225AP A BC AC AB AB C +⋅=⋅-= 2AB =4AC =2AB AC ⋅= 四、解答题17.【答案】(1)(213431cos cos[(+)]cos (+)cos sin (+)sin 666666552ππππππαααα=-=+=-+==1x =5x π4α=19.【答案】(1)(23π20.【答案】(1)最小正周期为(2),π2252,233k k ππππ⎡⎤--⎢⎥⎣⎦Z k ∈21.【答案】(1) (2)8ba =-1b ≤-【详解】(1)解:因为不等式的解集是,所以,关于的方程()0f x ≤[]2,6-x 的两根分别为、,所以,,解得,,因此,2240x ax b +-=2-6262264ab -+=-⎧⎨-⨯=-⎩2a =-3b =22.【答案】(1);(2);(3)的面积有最小值,其最60+40(2m CMN △小值是(212002m【详解】解:(1)∵,,,∴40m AC=BC =AC BC⊥tan AC B BC ==,∴,∴,∴,在中,30B =︒60A =︒280AB AC ==ACM △由余弦定理可得2222cos CM AC AM AC AM A=+-⋅⋅,则116004002402012002=+-⨯⨯⨯=CM =,∴,∵,∴222AC AM CM =+CM AB ⊥30MCN ∠=︒,∴,∴护栏的长度(tan 3020MN CM =︒=240CN MN ==的周长)为....4分MNC 204060++=+(2)设(),因为鱼塘的面积是“民宿”的面积的ACM θ∠=060θ︒<<︒MNC △CMA △,即,11sin 30sin 22CN CM CA CM θ⋅︒=⋅CN θ=,由三角形外角定理可得,在中,60BCN θ︒∠=-90CNA B BCN θ︒∠=∠+∠=-CAN △由,得,()40sin 60sin 90cos CN CA θθ==︒︒-CN =θ=1sin 22θ=由,得,所以,即.中,02120θ︒<<︒230θ=︒15θ=︒15ACM ∠=︒CAM △,由可得105AMC ∠= sin105sin15AC AM =︒︒40sin1540sin1540sin15sin105sin(9015)cos15AM ︒︒︒===︒︒+︒︒ (8)分240sin15cos1520sin3040(2m 1cos30cos 152︒︒︒===+︒︒(3)鱼塘的面积有最小值,理由如下:设,由(2)知MNC △()060ACM θθ∠=︒<<︒,中,由外角定理可得CN =90BCM θ︒∠=-BCM △,又在中,由,得120CMA B BCM θ︒∠=∠+∠=-ACM △()sin60sin 120CM CAθ=︒︒-CM =A()1300sin 302sin 120cos CMN S CM CN θθ=⋅⋅︒==︒-△,所以当且仅当,==26090θ+︒=︒即时,的面积取最小值为........12分15θ=︒CMN △(212002m。
广东省2023-2024学年高一下学期第一次月考试题 数学含答案
![广东省2023-2024学年高一下学期第一次月考试题 数学含答案](https://img.taocdn.com/s3/m/db2ffe9f48649b6648d7c1c708a1284ac85005a8.png)
2023-2024学年第二学期高一教学质量检测数学试卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知()2,1a =- ,()1,1b =- ,则()()23a b a b +⋅-等于()A.10B.-10C.3D.-32.函数()2cos 2f x x x =是()A.周期为2π的奇函数 B.周期为2π的偶函数C.周期为4π的奇函数 D.周期为4π的偶函数3.将向量()1,1OA = 绕坐标原点O 逆时针旋转60°得到OB ,则OA AB ⋅=()A.-2B.2C.-1D.14.一个质点受到平面上的三个力1F ,2F ,3F (单位:牛顿)的作用而处于平衡状态,已知1F ,2F成60°角且12F = ,24F = ,则3F =()A.6B.2C. D.5.在ABC △中,若sin cos a B A =,且sin 2sin cos C A B =,那么ABC △一定是()A.等腰直角三角形B.直角三角形C.锐角三角形D.等边三角形6.请运用所学三角恒等变换公式,化简计算tan102sin102︒+︒,并从以下选项中选择该式子正确的值()A.12C.2D.17.在ABC △中,D 是AB 的中点,E 是CD 的中点,若AE CA CB λμ=+,则λμ+=()A.34-B.12-C.34D.18.已知菱形ABCD 的边长为1,60ABC ∠=︒,点E 是AB 边上的动点,则DE DC ⋅的最大值为().A.1B.32C.12D.32二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求的.全部选对的得6分,部分选对的得部分,有选错的得0分.9.下列关于平面向量的命题正确的是()A.若a b ∥ ,b c ∥ ,则a c∥ B.两个非零向量a ,b 垂直的充要条件是:0a b ⋅=C.若向量AB CD =,则A ,B ,C ,D ,四点必在一条直线上D.向量()0a a ≠ 与向量b 共线的充要条件是:存在唯一一个实数λ,使b aλ= 10.如图,函数()()2tan 04f x x πωω⎛⎫=+> ⎪⎝⎭的图象与x 轴相交于A ,B 两点,与y 轴相交于点C ,且满足ABC △的面积为2π,则下列结论不正确的是()A.4ω=B.函数()f x 的图象对称中心为,082k ππ⎛⎫-+ ⎪⎝⎭,k ∈Z C.()f x 的单调增区间是5,8282k k ππππ⎛⎫++⎪⎝⎭,k ∈Z D.将函数()f x 的图象向右平移4π个单位长度后可以得到函数2tan y x ω=的图象11.如图,弹簧挂着的小球做上下运动,它在s t 时相对于平衡位置的高度h (单位:cm )由关系式()sin h A t ωϕ=+,[)0,t ∈+∞确定,其中0A >,0ω>,(]0,ϕπ∈.小球从最高点出发,经过2s 后,第一次回到最高点,则()A.4πϕ=B.ωπ=C. 3.75s t =与10s t =时的相对于平衡位置的高度h 之比为22D. 3.75s t =与10s t =时的相对于平衡位置的高度h 之比为12三、填空题:本题共3小题,每小题5分,共15分.12.如图,在正六边形ABCDEF 中,2AF ED EF AB -++=__________.13.已知(2a = ,若向量b 满足()a b a +⊥ ,则b 在a方向上的投影向量的坐标为__________.14.已知ABC △的内角A ,B ,C 的对边为a ,b ,c ,ABC △3,且2cos 2b A c a =-,4a c +=,则ABC △的周长为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知α,β为锐角,1tan 2α=,()5cos 13αβ+=.(1)求cos 2$α的值;(2)求()tan αβ-的值.16.(15分)已知4a = ,2b = ,且a 与b的夹角为120°,求:(1)2a b -;(2)a 与a b +的夹角;(3)若向量2a b λ- 与3a b λ-平行,求实数λ的值.17.(15分)如图,四边形ABCD 中,1AB =,3BC =,2CD DA ==,60DCB ∠=︒.(1)求对角线BD 的长:(2)设DAB θ∠=,求cos θ的值,并求四边形ABCD 的面积.18.(17分)如图,某公园摩天轮的半径为40m ,圆心距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在最低点处.(1)已知在时刻t (单位:min )时点P 距离地面的高度()()sin f t A t h ωϕ=++(其中0A >,0ω>,ϕπ<,求函数()f t 解析式及2023min 时点P 距离地面的高度;(2)当点P距离地面(50m +及以上时,可以看到公园的全貌,求转一圈中有多少时间可以看到公园的全貌?19.(17分)设向量()12,a a a = ,()12,b b b = ,定义一种向量()()()12121122,,,a b a a b b a b a b ⊗=⨯=.已知向量12,2m ⎛⎫= ⎪⎝⎭ ,,03n π⎛⎫= ⎪⎝⎭,点()00,P x y 为函数sin y x =图象上的点,点(),Q x y 为()y f x =的图象上的动点,且满足OQ m OP n =⊗+(其中O 为坐标原点).(1)求()y f x =的表达式并求它的周期;(2)把函数()y f x =图象上各点的横坐标缩小为原来的14倍(纵坐标不变),得到函数()y g x =的图象.设函数()()()h x g x t t =-∈R ,试讨论函数()h x 在区间0,2π⎡⎤⎢⎥⎣⎦内的零点个数.2023-2024学年第二学期高一教学质量检测数学答案1.B 【详解】由向量()2,1a =- ,()1,1b =- ,可得()24,3a b +=- ,()31,2a b -=-,所以()()()()23413210a b a b +⋅-=⨯-+-⨯=-.2.A 【详解】由题意得()2cos 2sin 42f x x x x ==,所以()()()4sin 422f x x x f x -=-=-=-,故()f x 为奇函数,周期242T ππ==.3.C 【详解】因为OA == OB = ,()21212OA AB OA OB OA OA OB OA ⋅=⋅-=⋅-=-=- .4.D 【详解】∵物体处于平衡状态,∴1230F F F ++=,即()312F F F =-+ ,∴312F F F =+===5.D 【详解】因为sin cos a B A =,则sin sin cos A B B A =,因为(),0,A B π∈,则sin 0B >,所以tan A =,则3A π=,又因为sin 2sin cos C A B =,A B C π++=,则()sin 2sin cos A B A B +=,则sin cos cos sin 2sin cos A B A B A B +=,即sin cos cos sin 0A B A B -=,即()sin 0A B -=,又因为(),0,A B π∈,则A B ππ-<-<,所以3A B π==,即3A B C π===.即ABC △一定是等边三角形,故D 正确.6.A 【详解】2sin102cos10tan102sin102sin1022cos102cos10︒︒+︒⨯︒︒+︒=+︒=︒︒()2sin 30102sin 202cos102cos10︒+︒-︒︒+︒==︒︒()2sin 30cos10cos30sin102cos10︒+︒︒-︒︒=︒cos10cos1012cos102cos102︒+︒︒︒===︒︒7.B 【详解】ABC △中,D 是AB 的中点,E 是CD 的中点,则()1111113122222244AE AC AD AC AB AC AC CB CA CB ⎛⎫⎛⎫=+=+=++=-+ ⎪ ⎪⎝⎭⎝⎭,所以34λ=-,14μ=,所以12λμ+=-.8.D 【详解】设AE x =,[]0,1x ∈,()DE DC DA AE DC DA DC AE DC⋅=+⋅=⋅+⋅113cos cos0,222DA DC ADC AE DC x ⎡⎤=⋅∠+︒=+∈⎢⎥⎣⎦ ,∴DE DC ⋅ 的最大值为32.故选:D.9.BD 【详解】对于A ,当0b =时,不一定成立,A 错误;对于B ,两个非零向量a ,b ,当向量a ,b 垂直可得0a b ⋅= ,反之0a b ⋅= 也一定有向量a ,b垂直,∴B 正确;对于C ,若向量AB CD = ,AB 与CD方向和大小都相同,但A ,B ,C ,D 四点不一定在一条直线上,∴C 错误;对于D ,由向量共线定理可得向量()0a a ≠ 与向量b 共线的充要条件是:存在唯一一个实数λ,使b a λ=,∴D 正确.10.ABD 【详解】A :当0x =时,()02tan 24OC f π===,又2ABC S π=△,所以112222ABCS AB OC AB π==⨯=△,得2AB π=,即函数()f x 的最小正周期为2π,由T πω=得2ω=,故A 不正确;B :由选项A 可知()2tan 24f x x π⎛⎫=+⎪⎝⎭,令242k x ππ+=,k Z ∈,解得48k x ππ=-,k Z ∈,即函数()f x 的对称中心为,048k ππ⎛⎫-⎪⎝⎭,k Z ∈,故B 错误;C :由32242k x k πππππ+<+<+,k Z ∈,得58282k k x ππππ+<<+,k Z ∈,故C 正确;D :将函数()f x 图象向右平移8π个长度单位,得函数2tan 2y x =的图象,故D 不正确.11.BC 【详解】对于AB ,由题可知小球运动的周期2s T =,又0ω>,所以22πω=,解得ωπ=,当0s t =时,sin A A ϕ=,又(]0,ϕπ∈,所以2πϕ=,故A 错误,B 正确;对于CD ,则sin cos 2h A t A t πππ⎛⎫=+= ⎪⎝⎭,所以 3.75s t =与10s t =时的相对于平衡位置的高度之比为()()15cos coscos 3.75244cos 10cos10cos 02A A πππππ⎛⎫- ⎪⨯⎝⎭===⨯,故C 正确D 错误.故选:BC.12.0【详解】由题意,根据正六边形的性质()222AF ED EF AB AF ED EF AB AF DF AB-++=--+=++ 22220AF CA AB CF AB BA AB =++=+=+= .故答案为:0.13.(1,-【详解】由题意知()a b a +⊥ ,故()0a b a +⋅= ,所以20a a b +⋅=,而(a =,则a ==23a b a ⋅=-=- ,则b 在a方向上的投影向量为(1,a a aab ⋅⋅==- ,即b在a方向上的投影向量的坐标为(1,-,故答案为:(1,-.14.6【详解】∵2cos 2b A c a =-,∴222222b c a b c a bc+-⋅=-,∴22222b c a c ac +-=-,∴222a cb ac+-=∴2221cos 22a cb B ac +-==∵0B π<<,∴3B π=,∵1sin 24ABC S ac B ac ===△∴4ac =,∵4a c +=,∴2a c ==,又3B π=,∴ABC △是边长为2的等边三角形,∴ABC △的周长为6.15.【详解】(1)22222211cos sin 1tan 34cos 21cos sin 1tan 514ααααααα---====+++;(2)由1tan 2α=,得22tan 14tan 211tan 314ααα===--,因为α,β为锐角,所以,0,2παβ⎛⎫∈ ⎪⎝⎭,则()0,αβπ+∈,又因()5cos 13αβ+=,所以0,2παβ⎛⎫+∈ ⎪⎝⎭,所以()12sin 13αβ+==,所以()()()sin 12tan cos 5αβαβαβ++==+,则()()()()412tan 2tan 1635tan tan 24121tan 2tan 63135ααβαβααβααβ--+-=-+==-⎡⎤⎣⎦+++⨯.16.【详解】(1)2a b -====(2)因为()2222168412a ba ab b +=+⋅+=-+=,所以a b += ,又()216412a a b a a b ⋅+=+⋅=-=,所以()3cos ,2a a b a a b a a b⋅++===+ ,又[],0,a a b π+∈ 所以a 与a b + 的夹角为6π;(3)因为向量2a b λ- 与3a b λ-平行,所以存在实数k 使()233a b k a b ka kb λλλ-=-=- ,所以23kkλλ=⎧⎨-=-⎩,解得λ=17.【详解】(1)解:连接BD ,在BCD △中,3BC =,2CD =,60DCB ∠=︒得:22212cos 9423272BD CD BC CD BC DCB =+-⨯⨯∠=+-⨯⨯⨯=∴BD =(2)在ABD △中,由DAB θ∠=,1AB =,2DA =,7BD =2221471cos 22122AB DA BD AB DA θ+-+-===-⨯⨯⨯,∴120θ=,四边形ABCD 的面积:11sin sin 22BCD ABC S S S BC CD BCD AB AD θ=+=⨯⨯⨯∠+⨯⨯⨯△△∴13133212232222S =⨯⨯⨯+⨯⨯⨯=.18.【详解】(1)依题意,40A =,50h =,3T =,则23πω=,所以()240sin 503f t t πϕ⎛⎫=++⎪⎝⎭,由()010f =可得,40sin 5010ϕ+=,sin 1ϕ=-,因为ϕπ<,所以2πϕ=-.故在时刻t 时点P 距离地面的离度()()240sin 50032f t t t ππ⎛⎫=-+≥⎪⎝⎭.因此()2202340sin 2023507032f ππ⎛⎫=⨯-+=⎪⎝⎭,故2023min 时点P 距离地面的高度为70m.(2)由(1)知()2240sin 505040cos 323f t t t πππ⎛⎫⎛⎫=-+=-⎪ ⎪⎝⎭⎝⎭,其中0t ≥.依题意,令()503f t ≥+240cos 33t π⎛⎫-≥ ⎪⎝⎭23cos 32t π⎛⎫≤- ⎪⎝⎭,解得52722636k t k πππππ+≤≤+,k ∈Z .则573344k t k +≤≤+,k ∈Z .由75330.544k k ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,可知转一圈中有0.5min 时间可以看到公园全貌.19.【详解】(1)因为12,2m ⎛⎫= ⎪⎝⎭,()00,OP x y =,因为点()00,P x y 为sin y x =的图象上的动点,所以00sin y x =,0000112,2,sin 22m OP x y x x ⎛⎫⎛⎫⊗== ⎪ ⎪⎝⎭⎝⎭;因为OQ m OP n =⊗+ ,所以()000011,2,sin ,02,sin 2332x y x x x x ππ⎛⎫⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以00231sin 2x x y x π⎧=+⎪⎪⎨⎪=⎪⎩,即0032sin 2x x x y π⎧-⎪⎪=⎨⎪=⎪⎩,所以()11sin 226y f x x π⎛⎫==- ⎪⎝⎭,它的周期为4T π=;(2)由(1)知()1sin 226g x x π⎛⎫=- ⎪⎝⎭,52,666x πππ⎡⎤-∈-⎢⎣⎦,当262x ππ-=时,3x π=所以()1sin 226g x x π⎛⎫=- ⎪⎝⎭在0,3π⎡⎤⎢⎥⎣⎦上单调递增,在,32ππ⎡⎤⎢⎥⎣⎦上单调递减,其函数图象如下图所示:由图可知,当12t=或1144t-≤<时,函数()h x在区间0,2π⎡⎤⎢⎣⎦内只有一个零点,当1142t≤<时,函数()h x在区间0,2π⎡⎤⎢⎥⎣⎦内有两个零点,当14t<-或12t>时,函数()h x在区间0,2π⎡⎤⎢⎥⎣⎦内没有零点.。
高一3月第一次月考数学试题(解析版)
![高一3月第一次月考数学试题(解析版)](https://img.taocdn.com/s3/m/599f61d318e8b8f67c1cfad6195f312b3169eb03.png)
【答案】(1) 或 (2) 的最大值为 此时
【解析】
【分析】(1)利用向量共线得到三角方程转化为三角函数求值问题易解;
(2)把数量积转化为三角函数利用角的范围结合单调性即可得到最大值.
【详解】解:(1)∵
∴
∴
∴cosx=0或
即cosx=0 或tanx
对于D选项:
所以点 满足方程 如下图所示:点
设 的方程为: 所以 与 夹角即为射线 与 的夹角
当 分别 相切时得到夹角的最小值和最大值即夹角的范围.
则 可得 设 与 夹角为
则 解得
所以 的取值范围为 故D不正确.
故选:AC.
第Ⅱ卷非选择题
三填空题(本题共5小题共20分)
13.在 中若 则 ______________
【答案】(1) ;(2) .
【解析】
【分析】(1)先表示出 和 用分离参数法把m分离出来利用函数求最值求出m的范围;
(2)先把 表示出来利用换元法转化为 在 上有解利用分离参数法求出t的范围.
【详解】解:
.
设
.
即实数 的取值范围是
设
.
取
设 易知 在 上单增
∴实数 的取值范围 .
【点睛】(1)分离参数法是求参数范围的常用方法之一;
小问2详解】
解:由(1)得 又
所以 所以
因为 所以 所以 .
因为 所以
所以
.
21. 的角ABC的对边分别为abc已知 .
(1)求角A;
(2)从三个条件:① ;② ;③ 的面积为 中任选一个作为已知条件求 周长的取值范围.
【答案】(1) ;(2)答案不唯一具体见解析.
2022-2023学年河北省石家庄市高一下学期第一次月考数学试题2【含答案】
![2022-2023学年河北省石家庄市高一下学期第一次月考数学试题2【含答案】](https://img.taocdn.com/s3/m/9cf04f5349d7c1c708a1284ac850ad02de80079b.png)
2022-2023学年河北省石家庄市高一下学期第一次月考数学试题一、单选题1.已知向量,,且,则实数( )(4,1)m =- (5,2)n =- ()()//m n xm n +- x =A .B .C .D .11-7575-【答案】B【分析】分别求和的坐标,再根据向量平行,列式求解.m n +xm n - 【详解】,,()1,1m n +=-()45,2xm n x x -=+--因为,所以,()()//m n xm n +-()()()12450x x -⨯---+=解得:.=1x -故选:B【点睛】本题考查向量平行的坐标表示,重点考查计算能力,属于基础题型.2.已知点,则与向量同方向的单位向量是113(2,),(,)222A B -AB A .B .C .D .3455-(,)4355-(,)3455-(,)43,55-()【答案】C【详解】试题分析:与向量同方向的单位向量是.3(,2)2AB =- 2334(,2)5255AB AB⎛⎫==-=- ⎪⎝⎭ ,【解析】单位向量的求法.3.在△中,为边上的中线,为的中点,则ABC AD BC E AD EB =A .B .3144AB AC-1344AB AC-C .D .3144+AB AC1344+AB AC【答案】A【分析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后1122BE BA BD=+应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到BC BA AC =+,下一步应用相反向量,求得,从而求得结果.3144BE BA AC=+3144EB AB AC =- 【详解】根据向量的运算法则,可得,()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC=++=+所以,故选A.3144EB AB AC=- 【点睛】该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.4.对任意向量,下列关系式中不恒成立的是,a bA .a b a b⋅≤ B .||a b a b -≤- C .22()||a b a b +=+ D .22()()a b a b a b +-=- 【答案】B 【详解】因为,所以选项A 正确;当与方向相反时,cos ,a b a b a b a b⋅=〈〉≤ a b 不成立,所以选项B 错误;向量的平方等于向量的模的平方,所以选项C 正确;a b a b-≤- ,所以选项D 正确.故选B .()()22a b a b a b+-=- 【考点定位】1、向量的模;2、向量的数量积.5.已知中角、、对边分别为、、,若,,则的最大值为( )ABC A B C a b c 4a =π3A =b c +A .B .C .D .以上都不对468【答案】C【分析】利用余弦定理结合基本不等式可求得的最大值.b c +【详解】由余弦定理可得()222222162cos 3a b c bc A b c bc b c bc==+-=+-=+-,()()()222344b c b c b c ++≥+-=所以,,即,()264b c +≤8b c +≤当且仅当时,等号成立,故的最大值为.4b c ==b c +8故选:C.6.已知三个向量,,共面,且均为单位向量,,则的取值范围是a b c0a b ⋅= ||a b c +-A .B .C .D .1⎤⎦⎡⎣1,1⎤⎦【答案】A【详解】因为,所以,所以=0a b ⋅= 222||22a b a a b b +=+⋅+= ||a b += 2||a b c +- =,则当与同向时最大,22222()a b c a b a b c +++⋅-+⋅ 32()a b c -+⋅ c ()a b +()a b c +⋅最小,此时=2||a b c +- ()cos 0a b c a b c +⋅=+︒= 2||3a b c +-=- min ||a b c +-;当与反向时最小,最大,此时 1-c ()a b + ()a b c +⋅ 2||a b c +- ()a b c +⋅=,所以的取值范cos a b c π+= 2||3a b c +-=+ max ||1a b c +-= ||a b c +-围为,故选A .1]-7.如图所示,等边的边长为2,位边上的一点,且,也是等边三角ABC D AC AD AC λ=ADE 形,若,则的值是( )449BE BD ⋅=λA .B 23C .D .3413【答案】A【解析】根据向量表示以及向量数量积定义化简条件,解得结果.【详解】()()BE BD BA AE BA AE ED ⋅=+⋅++22BA BA AE BA ED AE BA AE AE ED =+⋅+⋅+⋅++⋅ 2222222cos 2222cos44cos333πππλλλλλ=+⋅-⋅+⋅++224λ=+则因为,所以.2244424,99λλ+=⇒=0λ>23λ=故选:A.【点睛】本题考查向量表示以及向量数量积,考查基本分析求解能力,属中档题.8.在中,角、、所对的边分别为、、,,,是内切圆的ABC A B C a b c 5a b ==8c =I ABC 圆心,若,则的值为( )AI xAB y AC =+x y +A .B .C .D .203103321318【答案】D【分析】计算出的内切圆半径,以直线为轴,的垂直平分线为轴建立平面直角坐ABC AB x AB y 标系,利用平面向量的坐标运算可求得、的值,即可得解.x y 【详解】,,所以,内切圆的圆心在边高线上(也是边上的中线)5a b == 8c =ABC I ABOC AB ,,,4OA OB ∴==3OC ==以直线为轴,的垂直平分线为轴建立平面直角坐标系,AB xAB y 则、、,()4,0A -()4,0B ()0,3C 设的内切圆的半径为,根据等面积法可得:,ABC r ()1122a OC a b c r⋅=++解得,即点,则,,,3848553r ⨯==++40,3I ⎛⎫ ⎪⎝⎭()8,0AB = ()4,3AC = 44,3AI ⎛⎫= ⎪⎝⎭ 因为,则,解得,则.AI xAB y AC =+ 844433x y y +=⎧⎪⎨=⎪⎩51849x y ⎧=⎪⎪⎨⎪=⎪⎩1318x y +=故选:D.二、多选题9.已知向量是同一平面内的两个向量,则下列结论正确的是( ),a b αA .若存在实数,使得,则与共线λb a λ=a b B .若与共线,则存在实数,使得a b λb aλ= C .若与不共线,则对平面内的任一向量,均存在实数,使得a b αc,λμc a b λμ=+ D .若对平面内的任一向量,均存在实数,使得,则与不共线αc,λμc a b λμ=+ a b 【答案】ACD【解析】根据平面向量共线、平面向量的基本定理判断出正确选项.【详解】根据平面向量共线的知识可知A 选项正确.对于B 选项,若与共线,可能,当为非零向量时,不存在实数,使得,所以Ba b 0a = b λb a λ=选项错误.根据平面向量的基本定理可知C 、D 选项正确.故选:ACD【点睛】本小题主要考查平面向量共线、平面向量的基本定理,属于基础题.10.已知两个单位向量,的夹角为θ,则下列结论正确的是( )1e 2eA .不存在θ,使B .12e e ⋅=121222e e e e -=-C .当时,D .在方向上的投影数量为120θ=°121213(2)(2)2e e e e -⋅-=1e 2e sin θ【答案】ABC 【分析】根据条件知,再利用数量积的定义及运算逐一对各个选项分析判断即可得出结121==e e 果.【详解】因为两个单位向量,的夹角为,所以,1e 2eθ121== e e 选项A ,因为,又,所以,故选项A 正确;1212cos cos e e e e θθ⋅== []0,πθ∈121e e ⋅≤ 选项B ,因为,222121122122445454cos e e e e e e e e θ-=-⋅+=-⋅=-,所以,即222121122122445454cos e e e e e e e e θ-=-⋅+=-⋅=- 22121222e e e e -=- ,故选项B 正确;121222e e e e -=-选项C ,因为,221212112212(2)(2)2524545cos e e e e e e e e e e θ-⋅-=-⋅+=-⋅=-又,所以,故选项C 正确;120θ=°1212113(2)(2)45(22e e e e -⋅-=-⨯-=选项D ,因为在方向上的投影数量为,故选项D 错误.1e 2e1212cos cos e e e e θθ⋅== 故选:ABC.11.已知为坐标原点,点,O ()1cos ,sin P αα,,,则( )()2cos ,sin P ββ-()()()3cos ,sin P αβαβ++()1,0A A .B .12OP OP = 12AP AP = C .D .312OA OP OP OP ⋅=⋅123OA OP OP OP ⋅=⋅ 【答案】AC【分析】A 、B 写出,、,的坐标,利用坐标公式求模,即可判断正误;C 、D 根1OP2OP 1AP2AP 据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :,,所以,1(cos ,sin )OP αα=2(cos ,sin )OP ββ=- 1||1OP == ,故,正确;2||1OP ==12||||OP OP = B :,,所以1(cos 1,sin )AP αα=-2(cos 1,sin)AP ββ=--,同理1||2|sin |2AP α===== ,故不一定相等,错误;2||2|sin |2AP β== 12||,||APAP C :由题意得:,31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,正确;12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+ D :由题意得:,11cos 0sin cos OA OP ααα⋅=⨯+⨯=23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+,故一般来说故错误;()()()cos βαβcos α2β=++=+123OA OP OP OP ⋅≠⋅ 故选:AC12.定义一种向量运算“”:,(,是任意的两个向量)对于同一⊗,,,,a b a b a b a b a b ⎧⋅⎪⊗=⎨-⎪⎩当不共线时当共线时a b平面内的向量,,,,给出下列结论,其中正确的选项是( )a b c eA .B .;a b b a⊗=⊗ ()()()a b a b λλλ⊗=⊗∈RC .;D .若是单位向量,则()a b c a c b c +⊗=⊗+⊗ e ||1a e a ⊗≤+ 【答案】AD【分析】AD 可根据定义及向量运算法则计算得到;BC 可举出反例.【详解】A 选项,因为,,故,A 正确;a b b a ⋅=⋅ a b b a -=- a b b a ⊗=⊗ B 选项,当不共线时,,,,a b()a b a b λλ⊗=⋅ ()a b a b λλ⊗=⋅ 当共线时,,,,a b()a b a b λλ⊗=- ()a b a b λλ⊗=- 不妨设,,则,,故B 错误;2λ=()()1,0,2,0a b ==2a b λ-=00a b λ-==C 选项,不妨设,满足共线,与均不共线,()()()0,1,2,0,2,1a b c ===,a b c + ,a c ,b c 当共线时,,,a b c +()0a b c a b c +⊗=+-= 与均不共线时,,,a c ,b c 145a c b c a c b c ⊗+⊗=⋅+⋅=+=此时两者不相等,故C 错误;D 选项,是单位向量,当不共线时,,e ,a e cos ||||1a e a e a a a θ⊗=⋅=≤<+ 当共线时,,,a e||1a e a e a e a ⊗=-≤+≤+ 故若是单位向量,则,D 正确.e ||1a e a ⊗≤+ 故选:AD三、填空题13.是边长为的正方形,、分别是、的中点,则_____.ABCD 1E F BC CD AE AF ⋅=【答案】1【分析】建立平面直角坐标系,得出点坐标,向量的坐标,再由向量的数量积的坐标运算可得答案.【详解】建立平面直角坐标系,如图所示;则、、、,()0,0A ()10B ,()1,1C ()0,1D 因为、分别是、的中点,则、,E F BC CD 11,2E ⎛⎫ ⎪⎝⎭1,12⎛⎫ ⎪⎝⎭F 所以,,故.11,2AE ⎛⎫= ⎪⎝⎭ 1,12AF ⎛⎫= ⎪⎝⎭ 1111122AE AF ⋅=⨯+⨯= 故答案为:.1【点睛】本题考查平面向量的坐标表示,向量的数量积的坐标运算,属于基础题.14.已知中角A 、B 、C 对边分别为a 、b 、c ,若,则中最大角的余弦ABC::3:2a b c =ABC 值为_______.【答案】【分析】根据大边对大角,结合余弦定理求解即可.【详解】因为,::3:2ab c =3,2,(0)a k b k c k ===>在三角形中,大边对大角,所以最大角为,A 根据余弦定理,222cos 2b c a A bc +-====故答案为:15.如图,在中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点.若ABC O ,则的值是_____.6AB AC AO EC ⋅=⋅AB AC【分析】由题意将原问题转化为基底的数量积,然后利用几何性质可得比值.【详解】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD.()()()3632AO EC AD AC AE AB AC AC AE=-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭,22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭得2213,22AB AC =AB AC =【点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.16.已知, 的取值范围为_________.2a ba b ==⋅= a -b c ⋅ 【答案】22⎡-+⎣【分析】设,根据,得到,设,根据()2,0a =2a b a b ==⋅=(b =(),c x y =a -,再由,利用直线与圆的位置关系求解.()2223x y -+=t b c x =⋅= 【详解】设,,a b α=因为,2a b a b ==⋅= 所以 ,1cos 2α=因为,[]0,απ∈所以,3πα=设,则,设,()2,0a =(b =(),c x y =因为a -所以,表示以(2,0()2223x y -+=则,表示一条直线在y 轴上的截距,t b c x =⋅=+ 当直线与圆相切时,圆心到直线的距离等于半径,即22td r -===解得或2=+t 2t =-所以的取值范围为,b c ⋅ 22⎡-+⎣故答案为:22⎡-+⎣四、解答题17.已知、,、、是正实数,证明:(并说明式子左边与右1x 2x 1y 2y 1212x x y y +≤边相等时的条件)【答案】证明见解析【分析】利用向量数量积的定义和坐标运算可得答案.【详解】设,,()11,a x y =()22,b x y =∵,a b a b ⋅≤∴,当且仅当时取等号.1212x x y y +≤1221x y x y =18.如图,在△OBC 中,点A 是BC 的中点,点D 是OB 上靠近点B 的一个三等分点,DC 和OA交于点E .设.,OA a OB b ==(1)用向量表示,,a b,OC DC (2)若=λ,求实数λ的值.OEOA 【答案】(1)52,23OC a b DC a b=-=- (2)4=5λ【分析】(1)根据平面向量的线性运算求解;(2)根据三点共线结合平面向量基本定理运算求解.【详解】(1)∵点A 是BC 的中点,则,即,1122OA OC OB =+ 1122a OC b =+ 整理得,2OC a b =- 可得,22522333DC OC OD OC OB a b b a b =-=-=--=- 故.52,23OC a b DC a b =-=- (2)由题意可得:,OE OA a λλ== ∵三点共线,则,且,,,C D E OE mOC nOD =+ 1m n +=则,()222233OE mOC nOD m a b n b ma n m b a λ⎛⎫⎛⎫=+=-+=+-= ⎪ ⎪⎝⎭⎝⎭ 可得,解得,22031m n m m n λ=⎧⎪⎪-=⎨⎪+=⎪⎩253545m n λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩故.4=5λ19.已知向量,,向量.()cos ,sin a θθ→=[]0,θπ∈)1b →=-(1)若,求的值;a b →→⊥θ(2)若恒成立,求实数m 的取值范围.2a b m →→-<【答案】(1);(2).3π4m >【解析】(1)根据向量垂直的坐标表示得,再结合得;tan θ=[]0,θπ∈3πθ=(2)先根据坐标运算得,再根据模的坐标表示得()22cos 2sin 1a b θθ→→-=+,故的最大值为16,,进而得的最大值为4,故.288si 2n 3a b πθ→→⎛⎫=+- ⎪⎝⎭-22a b →→-2a b →→-4m >【详解】解:(1).∵,a b ⊥ ,即:,sin 0θθ-=tan θ=又,∴[]0,θπ∈3πθ=(2)∵,()22cos 2sin 1a b θθ→→-=+∴(()22212cos 2sin 188sin 22a b θθθθ→→⎛⎫=++=+ ⎪ -⎪⎝⎭,88sin 3πθ⎛⎫=+- ⎪⎝⎭又∵,[]0,θπ∈∴,2,333πππθ⎡⎤-∈-⎢⎥⎣⎦∴,sin 3πθ⎡⎤⎛⎫-∈⎢⎥ ⎪⎝⎭⎣⎦∴的最大值为16,22a b→→-∴的最大值为4,又恒成立,2a b →→-2a b m →→-<∴.4m >【点睛】本题考查向量垂直的坐标表示,向量模的计算,三角函数求最值,考查运算能力,是中档题.20.如图,O 是内一点,,,向量的模分别为ABC 150AOB ∠=︒120AOC ∠=︒,,OA OB OC24.(1)求;||OA OB OC ++ (2)若,求实数m ,n 的值.OC mOA nOB =+ 【答案】(1)3(2)4m n ==-【分析】(1)应用向量数量积定义,及其运算律求;||OA OB OC ++ (2)由已知,应用向量数量积的运算律、,2OA OC mOA nOA OB ⋅=+⋅ 2OB OC mOB OA nOB ⋅=⋅+ 列方程组求参数.【详解】(1)由已知,,,||||cos 3OA OB OA OB AOB ∠⋅==- ||||cos 4OA OC OA OC AOC ∠⋅==- 又,故, 36090BOC AOB AOC ∠=︒-∠-∠=︒0OB OC ⋅= ∴,2222||2()9OA OB OC OA OB OC OA OB OA OC OB OC ++=+++⋅+⋅+⋅=∴.||3OA OB OC ++= (2)由得:,,OC mOA nOB =+2OA OC mOA nOA OB ⋅=+⋅ 2OB OC mOB OA nOB ⋅=⋅+ ∴ ,可得.434330m n m n -=-⎧⎨-+=⎩4m n ==-21.在中,角A 、B 、C 对边分别为a 、b 、c ,向量与平ABC(sin )m A B = (cos ,sin )n A B = 行.(1)求角A ;(2)若,点D 满足,,求a .3b =2CD DB =||AD = 【答案】(1)3A π=(2)a =【分析】(1)根据平行的数量积公式,结合三角函数的性质求解即可;(2)过点D 作交AB 于点E ,根据三角形中平行线的性质可得与,再在∥DE A C 4ED =6AB =中由余弦定理求解即可.ABC 【详解】(1)∵m n∥∴sin sin sin A B A B =∵,()0,π,sin 0B B ∈∴≠∴sin A A=∴tan A =∵,0πA <<∴π3A =(2)过点D 作交AB 于点E ,∥DE A C又,,所以,. 2CD DB =π3BAC ∠=113AE AC ==2π3DEA ∠=由余弦定理可知,,得2222π2cos 3AD AE ED AE ED =+-⋅2200ED ED +-=解得(负值舍),则.4ED =6AB =又,,所以在中,由余弦定理3AC =π3BAC ∠=ABC,得222π2cos36918273BC AB AC AB AC =+-⋅=+-=a BC ==22.已知中,a ,b ,c 是角A ,B ,C 所对的边,,且.ABC sin sin 2A C B +=1a =(1)求B ;(2)若,在的边AB ,AC 上分别取D ,E 两点,使沿线段DE 折叠到平面BCE AC BC =ABC ADE 后,顶点A 正好落在边BC (设为点P )上,求此情况下AD 的最小值.【答案】(1)π3B =(2)3【分析】(1)根据条件,利用诱导公式和正弦的二倍角公式即可得到结果;(2)设,利用余弦定理,用表示出,再利用基本不等式即可求出结果.AD m =BP AD 【详解】(1)因为,得到,所以,又因为πA B C ++=πA C B +=-πsin sin cos 222A C B B +-==,得到,sin sin 2A C B +=cos sin 2B B =所以, 因为,所以,,cos 2sin cos 222B B B =(0,π)B ∈π0,22B ⎛⎫∈ ⎪⎝⎭cos 02B ≠所以,得到,即.1sin 22B =π26B =π3B =(2)因为,,所以为等边三角形,即,AC BC =3B π=ABC 1AC BC AB ===如图,设,则,,AD m =1BD m =-PD m =所以在中,由余弦定理得,BPD △222222(1)1cos 22(1)2BP BD PD BP m m B BP BD BP m +-+--===⋅⋅-整理得,设,,222(1)(1)BP m m BP m +--=⋅-BP x =01x ≤≤所以,221(2)3(2)3323222x x x x m x x x x -+---+===-+----由于,故01x ≤≤122x ≤-≤所以,当且仅当时,等号成立,所以32332m x x =-+-≥--322x x -==-2x =AD 的最小值为3。
人教版高一下学期数学第一次月考试题及答案解析
![人教版高一下学期数学第一次月考试题及答案解析](https://img.taocdn.com/s3/m/ffba580e5fbfc77da369b11b.png)
九江一中-下学期第一次月考数学试卷考试时间:120分钟 总分:150分 出卷人:高一数学备课组一、选择题(5×12=60分)1.已知集合{}0,1,2A =,={0,1}B ,则A B =( )A .{}0,1,2B .{}1,2C .{}0,1D .{}02.下列说法正确的是( )A .小于︒90的角是锐角B .钝角是第二象限的角C .第二象限的角大于第一象限的角D .若角α与角β的终边相同,那么βα=3.若直线210ax y ++=与直线20x y +-=互相垂直,则a 为( )A .1-B .1C .-2 D4.从件产品中选取50件,若采用下面的方法选取:先用简单随机抽样从件产品中剔除3件,剩下的件再按系统抽样的方法抽取,则每件产品被选中的概率( )A .不都相等B .都不相等 C5.已知α是第二象限角,那么 ( )A.第一象限角B.第二象限角C.第二或第四象限角D.第一或第三象限角6.一名小学生的年龄和身高(单位:cm )的数据如下表:由散点图可知,身高与年龄之间的线性回归方程为8.8y x a =+,则a 的值为( )A .65B .74C .56D .477.向顶角为0120的等腰三角形ABC (其中BC AC =)内任意投一点M ,则AM 小于AC 的概率为( )A A .60.50.7(0.7)(log 6)(6)f f f <<B .60.50.7(0.7)(6)(log 6)f f f <<C .60.50.7(log 6)(0.7)(6)f f f <<D .0.560.7(log 6)(6)(0.7)f f f <<9 )y xA .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCEDC .三棱锥EFD A -'的体积有最大值11.已知函数是定义在上的增函数,函数的图象关于点)0,1(对称. 若对任意的,不等式恒成立,则当3x >时,的取值范围是( )12.已知函若方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则 ) A .(1,)-+∞ B .(]1,1- C .(,1)-∞ D .[)1,1-二、填空题(5×4=20分)13.数据 平均数为6,方差为2,则数据的平均数为 ,方差为 ;14.某校共有教师200人,男学生800人,女学生600人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从男学生中抽取的人数为10015. 执行如图的程序框图,如果输入的N 的值是6,那么输出的p 的值是 .16.若圆0104422=---+y x y x 上至少有三个不同点到直线0:=+by ax l 的距离为则直线l 的斜率的取值区间为 .三、解答题17.(10分)对某校高二年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)若已知M=40,求出表中m 、n 、p 中及图中a 的值; ()x f y =R ()1-=x f y R y x ∈,()()0821622<-++-y y f x x f 22y x +128,,,x x x 12826,26,,26x x x ---(2)若该校高二学生有240人,试估计该校高二学生参加社区服务的次数在区间)15,10[内的人数;18.(12分)已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小;(2)求该扇形的面积取得最大时,圆心角的大小.19.(12分)设关于x 的方程2220x ax b ++=.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.20. (12分)下图是一几何体的直观图、主视图、俯视图、左视图.(1)若F 为PD 的中点,求证:AF⊥面PCD ;(2)证明:BD∥面PEC ;(3)求该几何体的体积.21.(12分)已知A ,B 为圆O :224x y +=与y 轴的交点(A 在B 上),过点(0,4)P 的直线l 交圆O 于,M N 两点(点M 在上、点N 在下).(1)若弦MN 的长等于23,求直线l 的方程;(2)若,M N 都不与A ,B 重合,直线AN 与BM 的交点为C.证明:点C 在直线y=1.22. (12分)已知定义在区间(0+)∞,上的函数()4()5f x t x x=+-,其中常数0t >.(1)若函数()f x 分别在区间(0,2),(2,)+∞上单调,试求t 的取值范围;(2)当1t =时,是否存在实数,a b ,使得函数()f x 在区间[,]a b 上单调、且()f x 的取值范围为[,]ma mb ,若存在,求出m的取值范围;若不存在,请说明理由.高一第一次月考试卷一、选择题CBCCD ABCDD CB二、填空题 13. 6 , 8 ; 14.200; 15.105; 16. ]32,32[+-三、解答题17.对某校高二年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)若已知M=40,求出表中m 、n 、p 中及图中a 的值;(2)若该校高二学生有240人,试估计该校高二学生参加社区服务的次数在区间)15,10[内的人数;解:(1)因为频数之和为40,所以424240,10m m +++==.100.2540m p M ===,0.6n =因为a 是对应分组)20,15[的频率与组距的商,所以0.60.125a ==.因为该校高二学生有240人,分组)15,10[内的频率是25.0, 所以估计该校高二学生参加社区服务的次数在此区间内的人数为60人.18.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小;(2)求该扇形的面积取得最大时,圆心角的大小.(1)解:设扇形半径为R ,扇形弧长为l ,周长为C ,解得⎩⎨⎧==16R l 或⎩⎨⎧==32R l ,圆心角19.设关于x 的方程2220x ax b ++=.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率. 解:设事件A 为“方程有实根”.当a >0,b >0时,方程有实根的充要条件为a≥b(1)由题意知本题是一个古典概型,试验发生包含的基本事件共12个:(0,0)(0,1)(0,2)(1,0)(1,1)(1,2)(2,0)(2,1)(2,2)(3,0)(3,1)(3,2) 其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,∴事件A 发生的概率为P==(2)由题意知本题是一个几何概型,试验的全部结束所构成的区域为{(a ,b )|0≤a≤3,0≤b≤2}满足条件的构成事件A 的区域为{(a ,b )|0≤a≤3,0≤b≤2,a≥b}∴所求的概率是20.下图是一几何体的直观图、主视图、俯视图、左视图.(1)若F 为PD 的中点,求证:AF⊥面PCD ;(2)证明:BD∥面PEC ;(3)求该几何体的体积.解:(1)由几何体的三视图可知,底面ABCD 是边长为4的正方形, 而且PA ABCD ⊥面,PA ∥EB ,4,2PA AD EB ===. 取PD 的中点F ,如图所示. ∵PA AD =,∴AF PD ⊥, 又∵,,CD DA CD PA PADA A ⊥⊥=,∴CD ⊥面ADP , ∴CD AF ⊥.又CD DP D =,∴AF ⊥面PCD .(2)如图,取PC 的中点M ,AC 与BD 的交点为N ,连结MN 、ME ,如图所示.∴12MN PA =,MN ∥PA ,∴MN EB =,MN ∥EB , ∴四边形BEMN 为平行四边形,∴EM ∥BN ,又EM 面PEC ,∴BN ∥面PEC ,∴面.(3)380442213144431=⋅⋅⋅⋅+⋅⋅⋅=+=--BCE P ABCD P V V V . 21.已知A ,B 为圆O :224x y +=与y 轴的交点(A 在B 上),过点(0,4)P 的直线l 交圆O 于,M N 两点.(1)若弦MN 的长等于23,求直线l 的方程;(2)若,M N 都不与A ,B 重合,直线AN 与BM 的交点为C.证明:点C 在直线y=1.解:(Ⅰ)①当k 不存在时,4==AB MN 不符合题意②当k 存在时,设直线l :4y kx =+||23MN =∴圆心O 到直线l 的距离2231d =-=2|4|11k ∴=+,解得15k =±综上所述,满足题意的直线l 方程为(Ⅱ)设直线MN 的方程为:4y kx =+,1122(,y )(,y )N x x 、M联立2244y kx x y =+⎧⎨+=⎩得:22(1)8120k x kx +++= 直线AN :,直线BM :消去x 得:要证:C 落在定直线1y =上,只需证:即证:121122636kx x x kx x x --=+即证:121246()0kx x x x ++=显然成立. 所以直线AN 与BM 的交点在一条定直线上.22.已知定义在区间(0+)∞,上的函数()4()5f x t x x=+-,其中常数0t >.(1)若函数()f x 分别在区间(0,2),(2,)+∞上单调,试求t 的取值范围;(2)当1t =时,是否存在实数,a b ,使得函数()f x 在区间[,]a b 单调,且()f x 的取值范围为[,]ma mb ,若存在,求出m 的取值范围;若不存在,请说明理由.试题解析:(1x ∵0t > ∴函数()h x 分别在区间(0,2),(2,)+∞上单调 且()4h x t ≥ 要使函数()f x 分别在区间(0,2),(2,)+∞上单调则只需54504t t -≥⇒≥ (2)当1t =时, 如图,可知01m <<,()f x 在(0,1)、(1,2)、(2,4)、(4,)+∞均为单调函数(Ⅰ)当[](],0,1a b ⊆时,()f x 在[],a b 上单调递减则()()f a mb f b ma =⎧⎨=⎩两式相除整理得()(5)0a b a b -+-= ∵(],0,1a b ∈ ∴上式不成立 即,a b 无解,m 无取值 10分(Ⅱ)当[](],1,2a b ⊆时,()f x 在[],a b 上单调递增 则()()f a ma f b mb=⎧⎨=⎩ 在(]1,2a ∈有两个不等实根作()t ϕ在分 (Ⅲ)当[](],2,4a b ⊆时,()f x 在[],a b 上单调递减 则()()f a mb f b ma =⎧⎨=⎩两式相除整理得()(5)0a b a b -+-=∴5a b += ∴5b a a =->则m 关于a的函数是单调的,而∴此种情况无解(Ⅳ)当[][),4,a b⊆+∞时,同(Ⅰ)可以解得m无取值综上,m的取值范围为第11页共11页。
天津市重点高一下学期第一次月考数学试题(解析版)
![天津市重点高一下学期第一次月考数学试题(解析版)](https://img.taocdn.com/s3/m/2a095e30f68a6529647d27284b73f242326c317c.png)
一、单选题1.若角的终边上一点的坐标为,则( ) α(11)-,cos α=A .B .CD .1-1【答案】C【分析】根据任意角三角函数的定义即可求解.【详解】∵角的终边上一点的坐标为,它与原点的距离 α(11)-,r ==∴ cos x r α===故选:C.2.下列说法正确的是( ) A .第二象限角比第一象限角大 B .角与角是终边相同角60︒600︒C .三角形的内角是第一象限角或第二象限角D .将表的分针拨慢分钟,则分针转过的角的弧度数为 10π3【答案】D【分析】举反例说明A 错误;由终边相同角的概念说明B 错误;由三角形的内角的范围说明C 错误;求出分针转过的角的弧度数说明D 正确.【详解】对于,是第二象限角,是第一象限角,,故A 错误; A 120︒420︒120420︒<︒对于B ,,与终边不同,故B 错误;600360240︒=︒+︒60︒对于C ,三角形的内角是第一象限角或第二象限角或轴正半轴上的角,故C 错误; y 对于D ,分针转一周为分钟,转过的角度为,将分针拨慢是逆时针旋转, 602π钟表拨慢分钟,则分针所转过的弧度数为,故D 正确.∴101π2π63⨯=故选:D .3.下列叙述中正确的个数是:( )①若,则;②若,则或;③若,则④若a b = 32a b >a b = a b = a b =- ma mb = a b = ,则⑤若,则,a b b c ∥∥a c ∥a b = a bA A .0B .1C .2D .3【答案】B【分析】由向量不能比较大小判断①;举例判断②;由时判断③;由时判断④;由相0m =0b =等向量和平行向量的关系判断⑤.【详解】解:因为向量不能比较大小,所以①错误, 如单位向量模都为1,方向任意,所以②错误,当时,,但是与不一定相等,所以③错误, 0m =0ma mb ==r r ra b 当时,和可能不平行,所以④错误, 0b = a c两个向量相等则它们一定平行,所以⑤正确, 故选:B4.若,则( ) sin cos θθ-=44sin cos +=θθA .B .C .D .34567889【答案】C【分析】根据同角三角函数的基本关系和二倍角的正弦公式可得,结合 1sin 22θ=计算即可.44sin cos +=θθ211sin 22θ=-【详解】 sin cos θθ-=得,即,221sin 2sin cos cos 2θθθθ-+=11sin 22θ-=所以, 1sin 22θ=所以 4422222sin cos (sin cos )2sin cos θθθθθθ+=+-.2211171sin 21()2228θ=-=-⨯=故选:C5.已知,则( ) 1sin()3πα+=3cos 2πα⎛⎫-=⎪⎝⎭A .B .C .D 13-13【答案】B【分析】已知等式左边利用诱导公式化简求出的值,原式利用诱导公式化简后将的值代sin a sin a 入计算即可求出值.【详解】()1sin sin ,3παα+=-= 31cos()sin .23παα∴-=-=故选:B【点睛】诱导公式可以将任意角的三角函数转化为锐角三角函数,因此常用于化简求值,一般步骤:任意负角的三角函数→任意正角的三角函数→的三角函数→锐角的三角函数.[0,2)π6.已知,的值为0,2πθ⎛⎫∈ ⎪⎝⎭sin 4πθ⎛⎫-= ⎪⎝⎭sin 23πθ⎛⎫+ ⎪⎝⎭A B C D 【答案】D【详解】sin 4πθ⎛⎫-= ⎪⎝⎭3sin )sin 2,cos sin 5θθθθθ⇒-=⇒=>πππ4(0,(0,),2(0,22425θθθθ∈∴∈∈=所以,选D. sin 23πθ⎛⎫+ ⎪⎝⎭314525=⨯+=7.在中,,则是 ABC ∆AB BC AB BC ==+ ABC ∆A .直角三角形 B .等边三角形 C .钝角三角形 D .等腰直角三角形【答案】B【解析】根据向量的线性运算化简判定即可.【详解】,则,故是等边三角形.AB BC AC +=||||||AB BC AC == ABC ∆故选:B【点睛】本题主要考查了利用向量判定三角形形状的方法,属于基础题型.8.定义为中较大的数,已知函数,给出下列命题: {}max ,a b ,a b (){}max sin ,cos f x x x =①为非奇非偶函数; ()f x ②的值域为;()f x []1,1-③是以为最小正周期的周期函数; ()f x π④当时,. ()π2π2ππZ 2k x k k -+<<+∈()0f x >其中正确的为( ) A .②④ B .①③C .③④D .①④【答案】D【分析】作出函数的图象,利用图象确定出奇偶性,值域,周期,单调区间,即可求解. ()f x 【详解】解:作出函数的图象,如下:()f x令,则,,解得,,sin cos x x =π04x ⎛⎫-= ⎪⎝⎭ππ4x k -=Z k ∈ππ4x k =+Z k ∈当,时 5π2π4x k =+Z k ∈()f x =由图可知,是非奇非偶函数,值域为,故①正确,②错误; ()f x ⎡⎤⎢⎥⎣⎦因为是以为最小正周期的周期函数,故③错误; ()f x 2π由图可知,时,,故④正确. ()π2π2ππZ 2k x k k -+<<+∈()0f x >故选:D.9.的值为( ) sin 45cos15cos 225sin15⋅+⋅A .B .C .D 1212-【答案】A【分析】利用差的正弦公式化简计算.【详解】sin 45cos15cos 225sin15sin 45cos15cos 45sin15︒︒︒︒=︒︒︒︒⋅+⋅⋅-⋅. ()1sin 4515sin 302=︒-︒=︒=故选:A.10.已知函数是奇函数,且的最小正周期为,将()()()sin 0,0,f x A x A ωϕωϕπ=+>><()f x π的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),所得图象对应的函数为()y f x =2()g x.若( ) 4g π⎛⎫= ⎪⎝⎭38f π⎛⎫=⎪⎝⎭A .B . 2-C D .2【答案】C【分析】先根据原函数的奇偶性及周期性确定的值,然后得到的解析式,再根据,ωϕ()g x,最后求解的值. 4g π⎛⎫⎪⎝⎭A 38f π⎛⎫ ⎪⎝⎭【详解】因为函数是奇函数,且其最小正周期为,()()()sin 0,0,f x A x A ωϕωϕπ=+>><π所以,则,得.0,2ϕω==()sin 2f x A x =()sin g x A x =又,故,sin 44g A ππ⎛⎫== ⎪⎝⎭2A =()2sin 2f x x =所以,332sin84f ππ⎛⎫== ⎪⎝⎭故选:C.【点睛】本题考查型函数的图象及性质,难度一般.解答时先要()()()sin +0,0f x A x b A ωϕω=+>>根据题目条件确定出、及的值,然后解答所给问题. A ωϕ11.函数(其中,)的图象如下图所示,为了得到的图象,()sin()f x x ωϕ=+0ω>02πϕ<≤sin y x =则需将的图象( )()y f x =A .横坐标缩短到原来的,再向右平移个单位 124πB .横坐标缩短到原来的,再向左平移个单位128πC .横坐标伸长到原来的2倍,再向右平移个单位 4πD .横坐标伸长到原来的2倍,再向左平移个单位8π【答案】C【解析】先根据图象的特点可求出,然后再根据周期变换与相位变换即可得出()sin 24f x x π⎛⎫=+ ⎪⎝⎭答案.【详解】由图可知,,所以,故, 1732882T πππ=-=T π=22T πω==故函数,()()sin 2f x x ϕ=+又函数图象经过点,故有,即, 3,08π⎛⎫ ⎪⎝⎭3sin 208πϕ⎛⎫⨯+= ⎪⎝⎭328k πϕπ⨯+=所以(), 34πφk π=-Z k ∈又,所以,02πϕ<≤4πϕ=所以,()sin 24f x x π⎛⎫=+ ⎪⎝⎭故将函数图象的横坐标伸长到原来的2倍得到的图象,然后再向()sin 24f x x π⎛⎫=+ ⎪⎝⎭4y sin x π⎛⎫=+ ⎪⎝⎭右平移个单位即可得到的图象.4πsin y x =故选:C .【点睛】本题考查由三角函数图象确定解析式,考查三角函数图象的平移伸缩变换,考查逻辑思维能力和运算求解能力,考查数形结合思想,属于常考题.12.已知函数,给出以下四个命题:①的最小正周期为;②()sin (sin cos )f x x x x =⋅+()f x π()f x 在上的值域为;③的图像关于点中心对称;④的图像关于直线0,4⎡⎤⎢⎣⎦π[]0,1()f x 51,82π⎛⎫⎪⎝⎭()f x 对称.其中正确命题的个数是( )118x π=A . B .C .D .1234【答案】D【解析】化简,根据函数的周期,值域,对称性逐项验证,即可求得结()sin (sin cos )f x x x x =⋅+论.【详解】2()sin (sin cos )sin cos sin 1111sin 2cos 2,22242f x x x x x x xx x x π=⋅+=⋅+=-+=-+周期为,①正确;()f x π110,,2[,[,4444422x x x πππππ⎡⎤∈-∈--∈-⎢⎥⎣⎦的值域为,②正确;()f x []0,1,③正确; 511(822f ππ=+=为的最大值,11511()8222f ππ=+=()f x ④正确. 故选:D【点睛】本题考查三角函数的化简,以及三角函数的性质,属于中档题.二、填空题13.若,则_______. 2sin 3α=sin()πα-=【答案】23【解析】直接利用诱导公式得到答案. 【详解】 2sin()sin 3παα-==故答案为:23【点睛】本题考查了诱导公式,属于简单题.14.向量_________AB MB BO BC OM +=+++【答案】##ACCA - 【分析】利用向量加法的三角形法则及向量加法的运算律即可求解.【详解】()()AB MB BO BC OM AB BO MB BC OM +++=+++++ .()AO MC OM AO OM MC AM MC AC +=+=+=++=故答案为:.AC15.函数________.y =【答案】 72,2,66k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 【分析】根据使函数有意义必须满足,再由正弦函数的性质得到的范围. 12sin 0x -≥x 【详解】由题意得:12sin 0x -≥ 1sin 2x ∴≤ 722,66k x k k ππππ∴-≤≤+∈Z 即 72,2,66x k k k ππππ⎡⎤∈-+∈⎢⎥⎣⎦Z 故答案为 72,2,66k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 【点睛】本题考查关于三角函数的定义域问题,属于基础题.16.若方程在上有解,则实数m 的取值范围是________.sin 41x m =+[]0,2x π∈【答案】1,02⎡⎤-⎢⎥⎣⎦【解析】先求出的范围,将代入,解不等式即可得m 的取值范围. sin x sin 41x m =+【详解】解:, [][]0,2,sin 1,1x y x π∈∴=∈- ,[]1sin 114,x m ∈-+∴=,1,02m ⎡⎤∈-⎢⎥⎣⎦故答案为:1,02⎡⎤-⎢⎥⎣⎦【点睛】本题考查方程有解问题,可转化为函数的值域问题,是基础题. 17.下列五个命题:①终边在轴上的角的集合是; y π,2k k αα⎧⎫=∈⎨⎬⎩⎭Z ∣②在同一坐标系中,函数的图象和函数的图象有三个公共点; sin y x =y x =③把函数的图象向右平移个单位长度得到的图象;π3sin 23y x ⎛⎫=+ ⎪⎝⎭π63sin2y x =④函数在上是单调递减的;πsin 2y x ⎛⎫=- ⎪⎝⎭[]0,π⑤函数的图象关于点成中心对称图形.πtan 23y x ⎛⎫=+ ⎪⎝⎭π,06⎛⎫- ⎪⎝⎭其中真命题的序号是__________. 【答案】③⑤【分析】①终边在y 轴上的角的集合为;②根据的大小关系判断;③ππ,2k k αα⎧⎫=+∈⎨⎬⎩⎭Z sin ,x x 根据三角函数的图象的平移变换规律判断;④根据正弦函数的单调性判断;⑤根据正切函数的对称性判断.【详解】①终边在y 轴上的角的集合为,故①错误;ππ,2k k αα⎧⎫=+∈⎨⎬⎩⎭Z ②在同一直角坐标系中,函数的图象和函数的图象有一个公共点,为原点,当sin y x =y x =0x =时,;当时,;sin x x =1x ≥sin x x <当时,如图,在单位圆中,轴,,弧的长度为,则;所以01x <<PM Ox ⊥=sin PM x PA x sin x x <当时,.0x >sin x x <同理当时,,所以函数的图象和函数的图象有一个公共点,0x <sin x x >sin y x =y x =故②错误;③的图象向右平移得到的图象,故③正确;π3sin 23y x ⎛⎫=+ ⎪⎝⎭π6ππ3sin 23sin263y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦④,在上是增函数,故④错误;πsin cos 2y x x ⎛⎫=-=- ⎪⎝⎭()0,π⑤当时,代入函数中可得,,则可知是对称中心,π6x =-ππtan 2tan0063y ⎡⎤⎛⎫=⨯-+== ⎪⎢⎥⎝⎭⎣⎦π,06⎛⎫- ⎪⎝⎭故⑤正确. 故答案为:③⑤.18.函数的部分图象如图所示.若方程()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭有实数解,则的取值范围为__________.()π2cos 43f x x a ⎛⎫++= ⎪⎝⎭a【答案】94,4⎡⎤-⎢⎥⎣⎦【分析】根据图象求出函数的解析式为,求出()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,令()2ππππ2sin 22cos 42sin 2212sin 26366g x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=++-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,根据二次函数的性质,即可求出结果.[]πsin 2,1,16t x t ⎛⎫=+∈- ⎪⎝⎭【详解】解:由图可知,, 2A =2πππ2362T =-=所以,即,πT =2ππω=⇒2ω=当时,,可得,π6x =()2f x =πππ2sin 222π632k ϕϕ⎛⎫⨯+=⇒+=+ ⎪⎝⎭即,因为,所以,π2π,6k k ϕ=+∈Z π2ϕ<π6ϕ=所以函数的解析式为,()f x ()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭设,()()π2cos 43g x f x x ⎛⎫=++ ⎪⎝⎭则,()ππ2sin 22cos 463g x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭2ππ2sin 2212sin 266x x ⎡⎤⎛⎫⎛⎫=++-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令,[]πsin 2,1,16t x t ⎛⎫=+∈- ⎪⎝⎭记,()2219422444h t t t t ⎛⎫=-++=--+ ⎪⎝⎭因为,所以,[]1,1t ∈-()94,4h t ⎡⎤∈-⎢⎥⎣⎦即,故,()94,4g x ⎡⎤∈-⎢⎥⎣⎦94,4a ⎡⎤∈-⎢⎥⎣⎦故的取值范围为.a 94,4⎡⎤-⎢⎥⎣⎦故答案为:.94,4⎡⎤-⎢⎥⎣⎦19.如图,四边形是平行四边形,点P 在上,判断下列各式是否正确(正确的在括号内ABCD CD 打“√",错误的打“×”)(1).() DA DP PA +=(2).() DA AB BP DP ++=(3).()AB BC CP PA ++=【答案】 × √ ×【解析】(1)由图形得;(2)、(3)利用向量加法几何意义;DA DP PA -=【详解】对(1),因为,故(1)错误;DA DP PA -=对(2),利用向量加法三角形首尾相接知,(2)正确;DA AB BP DP ++=对(3),,故(3)错误.AB BC CP AP ++= 故答案为:(1) ×;(2) √;(3) ×【点睛】本题考查平面向量加法的几何意义,考查数形结合思想,求解时注意三角形法则的运用.三、解答题20.已知函数. 2()cos cos f x x x x =-(1)求的最小正周期;()f x (2)当时,讨论的单调性并求其值域.ππ[,]62x ∈-()f x 【答案】(1)π(2)时,单调递增,时,单调递减,值域为ππ,63x ⎡⎤∈-⎢⎥⎣⎦()f x ππ,32x ⎡⎤∈⎢⎣⎦()f x 31,22⎡⎤-⎢⎥⎣⎦【分析】(1)对化简后得到,利用求最小正周期;(2)整体法()f x ()π1sin 262f x x ⎛⎫=-- ⎪⎝⎭2πT ω=求解函数单调性及其值域.【详解】(1) 1cos 2ππ1π1()2sin 2cos cos 2sin sin 2266262x f x x x x x +⎛⎫=-=--=-- ⎪⎝⎭所以的最小正周期为. ()f x 2ππ2=(2)当时,.ππ,62x ⎡⎤∈-⎢⎥⎣⎦52,πππ626x ⎡⎤-∈-⎢⎥⎣⎦故当,即时,单调递增,πππ2262x --……ππ63x -……()f x 当,即时,单调递减. ππ5π2266x -……ππ32x ……()f x 当时,,52,πππ626x ⎡⎤-∈-⎢⎥⎣⎦π1sin 216x ⎛⎫-- ⎪⎝⎭……所以,即的值域为31()22f x -……()f x 31,22⎡⎤-⎢⎥⎣⎦21.设,是两个不共线的向量,已知,,. 1e 2e 1228AB e e =- 123CB e e =+ 122CD e e =-(1)求证:,,三点共线;A B D (2)若,且,求实数的值.123BF e ke =-u r u u u r u r //B B F Dk 【答案】(1)证明见解析 (2) 12【分析】(1)由题意证明向量与共线,再根据二者有公共点,证明三点共线;AB BDB (2)根据与共线,设由(1)的结论及题意代入整理,结合,是两BF BD() R BF BD λλ∈= 1e 2e 个不共线的向量,构造方程解实数的值.k【详解】(1)由已知得, 121212))(2(34BD CD CB e e e e e e =-+=-=--因为,所以,1228AB e e =- 2AB BD = 又与有公共点,所以,,三点共线;AB BDB A B D (2)由(1)知,若,且,124BD e e =- 123BF e ke =-u r u u u r u r //B B F D可设,() R BF BD λλ∈=所以,即,121234e ke e e λλ-=-12(3)(4)e k e λλ-=- 又,是两个不共线的向量,1e 2e所以解.3040k λλ-=⎧⎨-=⎩12k =22.已知函数,且的最小正周期为. 2()cos 2cos (0)f x x x x ωωωω=+>()f x π(1)求ω的值及函数f (x )的单调递减区间; (2)将函数f (x )的图象向右平移个单位长度后得到函数g (x )的图象,求当时,函数6π0,2x π⎡⎤∈⎢⎥⎣⎦g (x )的最大值.【答案】(1)ω=1,单调递减区间为;(2)3. 2[,],63k k k ππ+π+π∈Z 【分析】(1)利用三角函数恒等变换的应用化简函数解析式可得,利用周()2sin(2)16f x x πω=++期公式即可解得的值,利用正弦函数的图象和性质,令,即可解得ω3222262k x k πππππ+++……的单调减区间.()f x (2)根据函数的图象变换可求,由的范围,可求sin()y A x ωϕ=+()2sin(2)16g x x π=-+x ,由正弦函数的图象和性质即可得解. 52666x πππ--……【详解】解:(1),()21cos 22sin(2)16f x x x x πωωω++=++,, 22T πππω=⇒=1ω∴=从而:,令, ()2sin(2)16f x x π=++3222262k x k πππππ+++……得, 263k x k ππππ++……的单调减区间为.()f x ∴2[,],63k k k ππ+π+π∈Z(2),()2sin[2()]12sin(21666g x x x πππ=-++=-+,, [0,2x π∈∴52666x πππ--……当,即时,. ∴226x ππ-=3x π=()2113max g x =⨯+=【点睛】本题主要考查了函数的图象变换,三角函数恒等变换的应用,正弦函数的sin()y A x ωϕ=+图象和性质,考查了转化思想和数形结合思想的应用,属于中档题.23.已知数的相邻两对称轴间的距离为. 2()2sin 1(0)6212x f x x πωπωω⎛⎫⎛⎫=+++-> ⎪⎪⎝⎭⎝⎭2π(1)求的解析式; ()f x (2)将函数的图象向右平移个单位长度,再把各点的横坐标缩小为原来的(纵坐标不变),()f x 6π12得到函数的图象,当时,求函数的值域;()y g x =,126x ππ⎡⎤∈-⎢⎥⎣⎦()g x (3)对于第(2)问中的函数,记方程在上的根从小到大依次为()g x 4()3g x =4,63x ππ⎡⎤∈⎢⎥⎣⎦12,,nx x x ,若,试求与的值. m =1231222n n x x x x x -+++++ n m 【答案】(1) ()2sin 2f x x =(2) [-(3) 205,3n m π==【分析】(1)先整理化简得,利用周期求得,即可得到; ()2sin f x x ω=2ω=()2sin 2f x x =(2)利用图像变换得到,用换元法求出函数的值域;()sin()243g x x π=-()g x (3)由方程,得到,借助于正弦函数的图象,求出与的值.4()3g x =2sin(4)33x π-=sin y x =n m【详解】(1)由题意,函数21())2sin ()1626f x x x ππωω⎡⎤=+++-⎢⎥⎣⎦cos()2sin()2sin 6666x x x x ππππωωωω=+-+=+-=因为函数图象的相邻两对称轴间的距离为,所以,可得.()f x 2πT π=2ω=故()2sin 2f x x =(2)将函数的图象向右平移个单位长度,可得的图象.()f x 6π2sin(2)3y x π=-再把横坐标缩小为原来的,得到函数的图象.12()2sin(4)3y g x x π==-当时,,,126x ππ⎡⎤∈-⎢⎥⎣⎦24,333x πππ⎡⎤-∈-⎢⎣⎦当时,函数取得最小值,最小值为,432x ππ-=-()g x 2-当时,函数433x ππ-=()g x故函数的值域. ()g x ⎡-⎣(3)由方程,即,即,4()3g x =42sin(4)33x π-=2sin(4)33x π-=因为,可得,4,63x ππ⎡⎤∈⎢⎥⎣⎦4,533x πππ⎡⎤-∈⎢⎥⎣⎦设,其中,即,结合正弦函数的图象, 43x πθ=-,53πθπ⎡⎤∈⎢⎥⎣⎦2sin 3θ=sin y x =可得方程在区间有5个解,即, 2sin 3θ=,53ππ⎡⎤⎢⎥⎣⎦5n =其中, 122334453,5,7,9θθπθθπθθπθθπ+=+=+=+=即 12233445443,445,447,44933333333x x x x x x x x ππππππππππππ-+-=-+-=-+-=-+-=解得 1223344511172329,,,12121212x x x x x x x x ππππ+=+=+=+=所以. m =()()()()1212345233445223220x x x x x x x x x x x x x π=++++++++++++= 综上, 2053n m π==,【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于或sin y x =cos y x =的性质解题;(2)求y =A sin(ωx +φ)+B 的值域通常用换元法;。
高一数学第一次月考试题含解析
![高一数学第一次月考试题含解析](https://img.taocdn.com/s3/m/8fc231c32dc58bd63186bceb19e8b8f67c1cefe0.png)
卜人入州八九几市潮王学校一中二零二零—二零二壹下学期第一次月考高一数学一、选择题:本大题一一共12个小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的.1.在△ABC中,,那么等于〔〕A. B. C. D.【答案】C【解析】设A=k,B=2k,C=3k,由,得6k=180°,k=30°,∴A=30°,B=60°,C=90°,∴a∶b∶c=sin A∶sin B∶sin C=1∶∶2.应选C.2.是不同的直线,是不重合的平面,假设,,那么A. B. C. D.【答案】A【解析】【分析】根据两平面公一共点必在两平面交线上进展选择.【详解】因为,,所以M为公一共点,而为交线,因此,选A.【点睛】此题考察公理以及符号语言,考察根本分析判断才能,属根底题.中,角的对边分别是,假设,,那么A.30°B.60°C.120°D.150°【答案】A【解析】试题分析:先利用正弦定理化简得,再由可得,然后利用余弦定理表示出,把表示出的关系式分别代入即可求出的值,根据A的范围,利用特殊角的三角函数值即可求出A的值.由及正弦定理可得,应选A.考点:正弦、余弦定理4.如图,是程度放置的的直观图,那么的面积为A.6B.C. D.12【答案】D【解析】△OAB是直角三角形,OA=6,OB=4,∠AOB=90°,∴S△OAB=×6×4=12.应选D中,角的对边分别是,,那么的形状为A.直角三角形B.等腰三角形或者直角三角形C.等腰直角三角形D.正三角形【答案】A【解析】【分析】先根据二倍角公式化简,再根据正弦定理化角,最后根据角的关系判断选择.【详解】因为,所以,,因此,选A.【点睛】此题考察二倍角公式以及正弦定理,考察根本分析转化才能,属根底题.的半圆卷成一个圆锥,那么它的体积为A. B. C. D.【答案】B【解析】【分析】根据圆锥侧面展开图求高,再根据体积公式得结果.【详解】设圆锥底面半径为,那么因为圆锥母线长为,所以圆锥高为,因此体积为,选B.【点睛】此题考察圆锥侧面展开图以及圆锥体积,考察根本分析求解才能,属根底题.是互不一样的空间直线,〔〕A.假设,那么B.假设,那么C.假设,那么D.假设,那么【答案】D【解析】试题分析:选项A中,除平行n外,还有异面的位置关系,那么A不正确.选项B中,与β的位置关系有相交、平行、在β内三种,那么B不正确.选项C中,与m的位置关系还有相交和异面,故C不正确.选项D中,由∥β,设经过的平面与β相交,交线为c,那么∥c,又⊥α,故c⊥α,又c⊂β,所以⊥β,正确.应选D.考点:空间中直线与平面之间的位置关系.点评:此题考察空间直线位置关系问题及断定,及面面垂直、平行的断定与性质,要综合断定定理与性质定理解决问题.中,角所对的边分别为,,,,那么的面积为〔〕A. B. C. D.【答案】A【解析】试题分析:由可得,即,由,据余弦定理,可得.由,那么.故此题答案选A.考点:1.正弦定理;2.余弦定理;3.三角形面积公式..9.如图,正四棱锥的所有棱长都等于,过不相邻的两条棱作截面,那么截面的面积为A. B.C. D.【答案】C【解析】【分析】由题意首先求得截面三角形的边长,然后求解其面积即可.【详解】根据正棱锥的性质,底面ABCD是正方形,∴AC=a.在等腰三角形SAC中,SA=SC=a,又AC=a,∴∠ASC=90°,即S△SAC=a2.此题选择C选项.【点睛】此题主要考察空间几何体的构造特征及其应用,三角形面积公式等知识,意在考察学生的转化才能和计算求解才能.10.如图,在中,,为角的平分线,且,那么等于A. B.C. D.0【答案】C【解析】【分析】根据正弦定理得等量关系,即可求解.【详解】,由正弦定理得因为为角的平分线,所以选C.【点睛】此题考察正弦定理以及二倍角正弦公式,考察根本分析求解才能,属根底题.11.如图,正方体的棱线长为1,线段上有两个动点E、F,且,那么以下结论中错误的选项是A.B.C.三棱锥的体积为定值D.【答案】D【解析】可证,故A正确;由∥平面ABCD,可知,B也正确;连结BD交AC于O,那么AO为三棱锥的高,,三棱锥的体积为为定值,C正确;D错误。
高一数学第一次月考试题含解析试题
![高一数学第一次月考试题含解析试题](https://img.taocdn.com/s3/m/ed1c10d588eb172ded630b1c59eef8c75fbf9518.png)
外国语2021级高一〔下〕3月阶段性测试制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日数学试题一、选择题:本大题一一共10小题,每一小题5分,一共50分.1.数列2,6,12,20,的第8项是〔〕A. 56B. 72C. 90D. 110 【答案】B【解析】【分析】根据数列前四项发现规律:相邻两项的差成等差数列,从而可得结果.【详解】,,,,,,,应选B.【点睛】此题通过观察数列的前四项,归纳出一般规律来考察归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些一样的性质. 二、从的一样性质中推出一个明确表述的一般性命题(猜测〕.2.,那么的等比中项为〔〕A. 2B.C.D. 16【答案】C【解析】【分析】直接利用等比中项的定义求解即可.【详解】因为的等比中项是,所以的等比中项为,应选C.【点睛】此题主要考察等比中项的定义与求法,意在考察对根底知识的掌握情况,属于简单题.中,,那么〔〕A. B. C. D.【答案】A【解析】【分析】根据三角形内角和定理求角,再由正弦定理可得结果.【详解】在中,,那么,由正弦定理,得,解得,应选A.【点睛】此题主要考察正弦定理及其应用,属于根底题. 正弦定理是解三角形的有力工具,其常见用法有以下几种:〔1〕知道两边和一边的对角,求另一边的对角〔一定要注意讨论钝角与锐角〕;〔2〕知道两角与一个角的对边,求另一个角的对边;〔3〕证明化简过程中边角互化;〔4〕求三角形外接圆半径.的前项和,且,那么〔〕A. 16B. 8C. 4D. 2【答案】B【解析】【分析】利用等差数列的性质和等差数列前项和公式,即可得结果.【详解】因为,,,应选B.【点睛】此题主要考察等差数列的性质以及前项和公式的应用,属于中档题. 解答有关等差数列问题时,要注意应用等差数列的性质〔〕与前项和的关系.满足,那么〔〕A. B. C. D.【答案】C【解析】【分析】由递推公式依次求出,找出数列的项之间规律即周期性,利用周期性求出. 【详解】由和得,,,,可得数列是周期为4的周期数列,,应选C.【点睛】此题主要考察利用递推公式求数列中的项,属于中档题.利用递推关系求数列中的项常见思路为:〔1〕项的序号较小时,逐步递推求出即可;〔2〕项的序数较大时,考虑证明数列是等差、等比数列,或者者是周期数列.6.的内角所对的边分别为,假设,,那么〔〕A. B. C. D.【答案】D【解析】【分析】由,利用诱导公式以及两角和的正弦公式可得,再利用余弦定理解方程求解即可.【详解】由,得,即,得,因为,所以,化为,得,应选D.【点睛】此题主要考察两角和的正弦公式以及余弦定理解三角形,属于中档题. 对余弦定理一定要熟记两种形式:〔1〕;〔2〕,同时还要纯熟掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.7.如图,从气球上测得正前方的河流的两岸的俯角分别为,此时气球的高是,那么河流的宽度〔〕A. B.C. D.【答案】C【解析】由题意画出图形,由两角差的正切求出的正切值,然后通过求解两个直角三角形得到和的长度,作差后可得结果.【详解】如图,,,在中,又,,在中,,,,河流的宽度等于,应选C.【点睛】此题主要考察两角差的正切公式、直角三角形的性质以及特殊角的三角函数,意在考察综合应用所学知识解决实际问题的才能,属于中档题. 与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考察书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进展解答.的前项和为,且,那么 ( 〕A. B. C. D.【解析】【分析】由等比数列的性质可得仍成等比数列,进而可用表示和,代入化简可得结果.【详解】由等比数列的性质可得,仍成等比数列,,,成等比数列,,解得,,应选D.【点睛】此题主要考察等比数列的性质与应用,意在考察对根底知识的掌握与灵敏应用,属于中档题.的前项和为,假设公差,,那么A. B. C. D.【答案】D【解析】【分析】由公差可得,由可得,可得,,由等差数列的性质可得,,从而可得结论.【详解】公差,,,,,,,,,,,应选D.【点睛】此题考察了等差数列的通项公式与性质以及单调性、不等式的性质,属于中档题.解答等差数列问题要注意应用等差数列的性质〔〕.10.的内角所对的边分别为,以下四个命题中正确的命题是〔〕A. 假设,那么一定是等边三角形B. 假设,那么一定是等腰三角形C. 假设,那么一定是等腰三角形D. 假设,那么一定是锐角三角形【答案】AC【解析】【分析】利用正弦定理可得,可判断;由正弦定理可得,可判断;由正弦定理与诱导公式可得,可判断;由余弦定理可得角为锐角,角不一定是锐角,可判断.【详解】由,利用正弦定理可得,即,是等边三角形,正确;由正弦定理可得,或者,是等腰或者直角三角形,不正确;由正弦定理可得,即,那么等腰三角形,正确;由正弦定理可得,角为锐角,角不一定是锐角,不正确,应选AC.【点睛】此题主要考察正弦定理与余弦定理的应用,以及三角形形状的判断,属于中档题. 判断三角形状的常见方法是:〔1〕通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进展判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进展判断;〔3〕根据余弦定理确定一个内角为钝角进而知其为钝角三角形.二、填空题:本大题一一共6小题,每一小题5分,一共30分.中,,那么________.【答案】【解析】【分析】根据列出关于首项、公差的方程组,解方程组可得与的值,从而根据等差数列的通项公式可得结果.【详解】,,,故答案为.【点睛】此题主要考察等差数列的通项公式,属于中档题. 等差数列根本量的运算是等差数列的一类基此题型,数列中的五个根本量一般可以“知二求三〞,通过列方程组所求问题可以迎刃而解.12.的内角所对的边分别为,假设,那么_______.【答案】【解析】【分析】直接利用正弦定理求解即可.【详解】,,是锐角,由正弦定理可得,,故答案为.【点睛】此题主要考察正弦定理解三角形以及特殊角的三角函数,属于根底题. 正弦定理是解三角形的有力工具,其常见用法有以下几种:〔1〕知道两边和一边的对角,求另一边的对角〔一定要注意讨论钝角与锐角〕;〔2〕知道两角与一个角的对边,求另一个角的对边;〔3〕证明化简过程中边角互化;〔4〕求三角形外接圆半径.中,假设,三角形的面积,那么三角形外接圆的半径为________. 【答案】2【解析】【分析】由三角形面积公式求得,由等腰三角形的性质可得的值,再由正弦定理求得三角形外接圆的半径的值.【详解】中,,三角形的面积,,故,再由正弦定理可得,三角形外接圆的半径,故答案为2.【点睛】此题主要考察正弦定理以及三角形面积公式的的应用,属于根底题. 正弦定理是解三角形的有力工具,假如三角形一条边与其对角,可求三角形外接圆半径.中,是关于的方程两个实根,那么________.【答案】8【解析】【分析】由,根据是关于的方程的两个实根,利用韦达定理可得结果.【详解】因为等比数列中,,是关于的方程的两个实根,那么,,那么,那么有,因为,所以,,故答案为8.【点睛】此题主要考察等比数列的性质,涉及一元二次方程中根与系数的关系,属于根底题. 等比数列最主要的性质是下标性质:解答等比数列问题要注意应用等比数列的性质:假设那么.的前项和为满足,那么数列的通项公式________.【答案】【解析】【分析】由可得,是以2为公差,以2为首项的等差数列,求得,利用可得结果.【详解】,故,,故是以2为公差,以2为首项的等差数列,,,,综上所述可得,故答案为.【点睛】此题主要考察数列的通项公式与前项和公式之间的关系,属于中档题. 数列前项和,求数列通项公式,常用公式,将所给条件化为关于前项和的递推关系或者是关于第项的递推关系,假设满足等比数列或者等差数列定义,用等比数列或者等差数列通项公式求出数列的通项公式,否那么适当变形构造等比或者等数列求通项公式. 在利用与通项的关系求的过程中,一定要注意的情况.的三边和面积满足条件,且角既不是的最大角也不是的最小角,那么实数的取值范围是________ .【答案】【解析】【分析】根据余弦定理和面积公式可得,得,结合的范围确定结果.【详解】,,又,,,锐角三角形不是最大角、也不是最小角,那么,,,故荅案为.【点睛】此题主要考察余弦定理和三角形面积公式的应用,属于根底题. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.假如式子中含有角的余弦或者边的二次式,要考虑用余弦定理;假如遇到的式子中含有角的正弦或者边的一次式时,那么考虑用正弦定理;以上特征都不明显时,那么要考虑两个定理都有可能用到.三、解答题:本大题一一共6小题,一共70分.中,.〔1〕求数列的通项公式;〔2〕设,求数列的前项和.【答案】〔1〕;〔2〕.【解析】【分析】〔1〕根据等差数列中,求出、公差的值,从而可得数列的通项公式;(2) 由〔1〕可得,每相邻两项结合求和,从而可得结果.【详解】〔1〕,,(2).【点睛】此题主要考察等差数列的通项公式,属于中档题. 等差数列根本量的运算是等差数列的一类基此题型,数列中的五个根本量一般可以“知二求三〞,通过列方程组所求问题可以迎刃而解.18.如图,在梯形中,,.〔1〕求;〔2〕求的长度.【答案】〔1〕;〔2〕.【解析】【分析】(1)由正弦定理求出的正弦值,再利用可得结果;〔2〕求得,利用正弦定理可得结果.【详解】(1)在中,由正弦定理,得,∴,∵,∴,.(2)由〔1〕可知,,在中,由正弦定理,得.【点睛】此题主要考察正弦定理的应用,属于中档题. 正弦定理是解三角形的有力工具,其常见用法有以下几种:〔1〕知道两边和一边的对角,求另一边的对角〔一定要注意讨论钝角与锐角〕;〔2〕知道两角与一个角的对边,求另一个角的对边;〔3〕证明化简过程中边角互化;〔4〕求三角形外接圆半径.19.是等差数列,是等比数列,且〔1〕求,的通项公式;〔2〕设,求数列的前项和.【答案】〔1〕,;〔2〕.【解析】【分析】〔1〕由,根据等比数列的性质求得、的值,即可得的通项公式,再根据列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;〔2〕结合〔1〕可得,根据错位相减法,利用等比数列求和公式可得结果.【详解】〔1〕等比数列的公比,所以,.设等差数列的公差为.因为,,所以,即.所以.〔2〕由〔1〕知,,.因此.从而数列的前项和,,,两式作差可得,,解得.【点睛】此题主要考察等比数列和等差数列的通项、等比数列的求和公式以及错位相减法求数列的前项和,属于中档题.一般地,假如数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法〞求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“〞与“〞的表达式时应特别注意将两式“错项对齐〞以便下一步准确写出“〞的表达式.中,角,,所对的边分别为,,,假设.〔1〕求的大小;〔2〕求的最大值.【答案】〔1〕;〔2〕1【解析】试题分析:〔1〕利用余弦定理,将即可求出,继而得;〔2〕利用三角形内角和定理将所求表达式表示为关于的三角函数式,结合三角函数的性质求解最大值.试题解析:〔1〕由题意,余弦定理:,∵,所以.〔2〕因为,,那么.那么:∵,∴,当时,获得最大值为1,即的最大值1.21.某企业2021年的纯利润为500万元,因设备老化等原因,企业的消费才能逐年下降,假设不能进展技术改造,预测从2021年起每年比上一年纯利润减少20万元,2021年初该企业一次性投入资金600万元进展技术改造,预测在未扣除技术改造资金的情况下,第年〔以2021年为第一年〕的利润为万元〔为正整数〕.〔1〕设从今年起的前年,假设该企业不进展技术改造的累计..纯利润为万元,进展技术改造后的累计纯利润为万元〔须扣除技术改造资金〕,求,的表达式;〔2〕依上述预测,从2021年起该企业至少经过多少年,进展技术改造后的累计利润超过不进展技术改造的累计纯利润?【答案】〔1〕;〔2〕4.【解析】【分析】〔1〕利用等差数列的求和公式可得,由等比数列的求和公式可得的表达式;〔2〕令,构造函数,根据函数的单调性,利用特殊值验证,从而可得结果.【详解】..〔2〕令,设在单调递增,,,所以当时 ,即经过4年,进展技术改造后的累计利润超过不进展技术改造的累计纯利润 .【点睛】此题主要考察等比数列与等差数列的求和公式以及函数单调性的应用,考察的阅读才能与建模才能,属于中档题. 与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考察书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进展解答.的满足,且,记.(1)求证:为等差数列,并求的通项公式;(2)设,求的值;(3)是否存在正实数,使得对任意都成立?假设存在,务实数的取值范围;假设不存在,请说明理由.【答案】〔1〕证明见解析,;〔2〕;〔3〕.【解析】【分析】(1)化简,从而可得的通项公式;〔2〕结合〔1〕可得 ,利用裂项相消法可得结果;〔3〕利用“累乘法〞化简左边式子为,从而可得对任意恒成立,构造函数,利用单调性求得,从而可得结果. 【详解】(1) ,所以是以为首项,2为公差的等差数列,.〔2〕 ,,.(3) 左边,由题意可知,对任意恒成立,令,那么由对钩函数的性质可知在上单调递增,故,综上可以,即正实数的取值范围为.【点睛】此题主要考察等差数列的定义与通项公式,以及裂项相消法求和、不等式恒成立问题,属于难题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,打破这一难点的方法是根据式子的构造特点,常见的裂项技巧:(1);〔2〕;〔3〕;〔4〕制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日;此外,需注意裂项之后相消的过程中容易出现丢项或者多项的问题,导致计算结果错误.制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
—————————— 教育资源共享 步入知识海洋 ————————
天津市四合庄中学2017-2018学年高一数学下学期第一次月考试题
(答案不全)
一、选择题:本大题共8小题,每小题4分,共32分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设点0(A ,)1,B 3(,)2则=AB ( )
.A )1,3( .B )3,1( .C )4,1(- .D )4,7(
2.已知向量),1(m =,)2,(m =,若//,则实数m 等于 ( )
.A
2- .B 2 .C 2- .D 0
3.已知向量a ,b 的夹角为︒601=2=,则=⋅b a ( )
.A 2
1 .B 23 .C 1 .D
2 4.根据多年气象统计资料,某地7月11日下雨的概率为45.0,阴天的概率为20.0,则该日晴
天的概率为( ) .A 25.0 .B 35.0 .C 45.0 .D 55.0
5.在ABC ∆中,︒=60A ,2=AC ,7=AB ,则BC 等于( )
.A 1 .B 2 .C 3 .D 39
6.在ABC ∆中,已知C B A sin cos 2sin =,则ABC ∆的形状是( )
.A 直角三角形 .B 等腰三角形 .C 等腰直角三角形 .D 不确定
7.某同学参加一项游戏,满分20分。
参加十次的得分情况茎叶图
表示(如图),设其平均数为a ,中位数为b ,众数为c ,则有( )
.A c b a >> .B a c b >> .C b a c >> .D a b c >>
8. 在ABC ∆中,0120=∠BAC ,2=AB ,1=AC ,D 是边BC
上一点,BD DC 2=,则=⋅( )
.A 2 .B 38 .C 3
8- .D 2- 二、填空题:本大题共6小题,每小题4分,共24分.
9.设一组数据11,14,m ,17,13的平均数是14,则这组数据方差的值等于_____.
10.在ABC ∆中,3=a ,3=b ,︒=120A ,则=B _____.
11.在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,若222c bc b a ++=,则=A ______ .
12.已知向量),1(m =,)2,3(-=,且⊥+)(,则,夹角
的余弦值为_____ .
13.一商场在某日促销活动中,对9时至14时的销售额进行统计,其
频率分布直方图如图所示,已知9时至10时的销售额为5.2万元,则
11时至12时的销售为______ .
14.如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河
岸边选定一点C ,测出AC 的距离为m 50,︒=∠45ACB ,︒
=∠105CAB 后,则A ,B 两点的距离为______m .
三、解答题:本大题共4题,每小题11分,共44分.解答应写出文字说明,证明过程或演算步骤.
15.在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c .已知A c B a sin 3sin =,3=b ,3
2cos =A . (I )求a 的值; (II )求)32sin(π
-A 的值.
16.在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,若21sin sin cos cos =
-C B C B . (I )求A ;(II )若32=a ,4=+c b ,求ABC ∆的面积.
17.某货轮在A 处看灯塔B 在货轮北偏东︒75,距离为612千米;在A 处看灯塔C 在货轮的北偏西︒30,距离为38千米.货轮由A 处向正北航行到D 处时,
再看灯塔B 在北偏东︒120,求:
(I )A 处与D 处之间的距离;
(II )灯塔C 与D 处之间的距离.
18.某地有高中9所,初中18所,小学36所,现采取分层抽样的方
法从这些学校中抽取7所学校对学生进行视力调查.
(I )求应从高中、初中、小学中分别抽取的学校数目.
(II )若从抽取的7所学校中随机抽取2所学校做进一步数据分析,
(1)列出所有可能的抽取结果;
(2)设A 为事件“抽取的2所学校均为小学”求事件A 发生的概率.
2017-2018学年第二学期第一次月考(答案)1A 2C 3C 4B 5D 6B 7D 8C。