6.5一次函数图象的应用(第一课时)教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章一次函数
5.一次函数图象的应用(一)
成都七中陈中华
一、学生起点分析
学生已学习了一次函数及其图象,认识了一次函数的性质.在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础.但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力.
二、教学任务分析
《一次函数图象的应用》是义务教育课程标准北师大版实验教科书数学八年级(上)第六章《一次函数》的第五节.本节内容安排了2个课时完成,本节为第一课时.主要是利用一次函数图象解决有关现实问题,与原传统教材相比,新教材更注重借助材料让学生在具体操作中获取一次函数图象的有关信息,从而回答和解决现实生活中的具体问题,也就是说,新教材注重在图象信息的识别与分析中,提高学生的识图能力,进一步培养学生的数形结合能力和数学应用能力,发展形象思维.
三、教学目标分析
知识与技能目标:
1.能通过函数图象获取信息,解决简单的实际问题;
2.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系。
过程与方法目标:
1.通过对函数图象的观察与分析,培养学生数形结合的意识,发展形象思维;
2.通过具体问题的解决,培养学生的数学应用能力;
3.引导学生从事观察、操作、交流、归纳等探索活动,使学生初步形成多样的学习方式.
情感与态度目标:
1.在具体的案例中,培养学生良好的环保意识和对生活的热爱等.
●教学重点
一次函数图象的应用.
●教学难点
正确地根据图象获取信息,并解决现实生活中的有关问题.
四、课前准备
有条件的学校可以准备多媒体课件,没有条件的可以准备投影片或者小黑板.
2
五、 教学过程
本节课分为八个教学环节
第一环节 复习引入
内容:在前几节课里,我们通过从生活中的实际问题情景出发,分别学习了一次函数,一次函数的图象,一次函数图象的性质,从中对一次函数在现实生活中的广泛应用有了一定的了解.怎样应用一次函数的图象和性质来解决现实生活中的实际问题,是我们这节课的主要内容.首先,想一想一次函数具有什么性质?
在一次函数y kx b =+中 当0k >时,y 随x 的增大而增大,
当0b >时,直线交y 轴于正半轴,必过一、二、三象限; 当0b <时,直线交y 轴于负半轴,必过一、三、四象限.
当0<k 时,y 随x 的增大而减小,
当0b >时,直线交y 轴于正半轴,必过一、二、四象限;
当0b <时,直线交y 轴于负半轴,必过二、三、四象限.
意图:在前面的学习中我们已得到一次函数的图象是一条直线,并且讨论了k 、b 的正负对图象的影响.通过对上节课学习内容的回顾,为进一步研究一次函数图象和性质的应用做好铺垫.
效果:学生通过知识回顾,再次明确一次函数图象和性质,为学习本节课在知识上作好准备.
说明:如果学生一次函数的图象和性质掌握较好,也可以直接从下一环节(第二环节)开始,进入本课题的学习.
第二环节 初步探究
内容:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间t (天)与蓄水量V (万米3)的关系如下图所示,回答下列问题:
(1)干旱持续10天后,蓄水量为多少?连续干旱23天后呢?
(2)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后将发出严重干旱警报?
(3)按照这个规律,预计持续干旱多少天水库将干涸?
(根据图象回答问题,有困难的可以互相交流.) 答案:(1)求干旱持续10天时的蓄水量,也就是求t
等于10时所对应的V 的值.当10t =时,V 约为1000万米3.同理可知当t 为23天时,V 约为750万米3.
(2)当蓄水量小于400万米3时,将发出严重干旱警报,也就是当V 等于400万米3时,求所对应的t 的值.当V 等于400万米3时,所对应的t 的值约为40天.
3
(3)水库干涸也就是V 为0,所以求函数图象与横轴交点的横坐标即为所求.当V 为0时,所对应的t 的值约为60天.
意图:通过生动的现实情景引入一次函数图象的应用,目的是培养学生的识图能力. 效果:本题插图中干涸的河床势必给学生一个很强的视觉刺激,从而渗透环保教育. 说明:在具体的教学活动中,教师应注意学生对以上问题的掌握情况:如果学生掌握得好,进入下面的练习;如果学生掌握得不好,则可以再引导学生多练习一道类似的习题(见分层教学第1题).
第三环节 反馈练习:
内容:当得知周边地区的干旱情况后,育才
学校的小明意识到节约用水的重要性.当天在班
上倡议节约用水,得到全班同学乃至全校师生的
积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后全校师生都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t (天)的函数关系如图所示.
根据图象回答下列问题:
(1)活动开始当天,全校有多少户家庭参加了该活动? (2)全校师生共有多少户?该活动持续了几天? (3)你知道平均每天增加了多少户?
(4)活动第几天时,参加该活动的家庭数达到800户?
(5)写出参加活动的家庭数S 与活动时间t 之间的函数关系式 答案:(1)200户;
(2)全校师生共有1000户,该活动持续了20天; (3)平均每天增加了40户;
(4)第15天时,参加该活动的家庭数达到800户; (5)40200S t =+ .
意图:通过创设情境,让学生进一步认识到一次函数图象的应用,倡导节约用水.同时,通过练习以检验学生对已学内容是否掌握.
效果:通过练习,学生会运用一次函数的图象去分析现实生活中的问题,同时渗透环保意识,珍惜水资源.
说明:在具体的教学活动中,教师应观察学生的表现,对知识是否掌握,如果学生掌握得好,进入下一个环节;如果学生掌握得不好,则可以再引导,以达到“过手”的目的.(视其情况,可以选用分层教学第2题)
第四环节
深入探究
内容:1.看图填空
4
(1)当0y =时,______x =;
(2)直线对应的函数表达式是________________. 答案:(1)观察图象可知当0y =时,2x =-;
(2)直线过(-2,0)和(0,1) 设表达式为y kx b =+,得
20k b -+= ① 1b =
②
把②代入①得 0.5k =
∴直线对应的函数表达式是0.51y x =+ 2.议一议
一元一次方程0.510x +=与一次函数0.51y x =+有什么联系?(请大家根据刚做的练习来进行解答.)
答案: 一元一次方程0.510x +=的解为2x =-,一次函数0.51y x =+包括许多点.因此0.510x +=是0.51y x =+的特殊情况.
当一次函数0.51y x =+的函数值为0时,相应的自变量的值即为方程0.510x +=的解.
函数0.51y x =+与x 轴交点的横坐标即为方程0.510x +=的解.
意图:通过本题让学生认识到一次函数与一元一次方程的联系,从“数”的角度看,当一次函数0.51y x =+的函数值为0时,相应的自变量的值即为方程0.510x +=的解;从“形”的角度看,函数0.51y x =+与x 轴交点的横坐标即为方程0.510x +=的解. 效果:通过练习,学生明晰了函数与方程的关系,能用函数关系解决方程问题,同时也能用方程的观点来看待函数.
第五环节 反馈练习
内容:全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地面积100万千米2,沙漠面积200万千米2
,土地沙漠化的变化情况如
5
(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?
(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失土地资源?
(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么到第几年底,该地区的沙漠面积能减少到176万千米2.
解:(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将新增加10万千米2.
(2)从图象可知,每年的土地面积减少2万千米2,现有土地面积100万千米2,100÷2=50,故从现在开始,第50年底后,该地区将丧失土地资源.
(3)如果从现在开始采取植树造林等措施,每年改造4万千米2沙漠,每年沙化2万千米2,实际每年改造面积2万千米2,由于(200176)212-÷=,故到第12年底,该地区的沙漠面积能减少到176万千米2.
意图:通过土地沙漠化的问题进一步培养学生的识图能力,让学生能从图象中获取信息,建立相关的代数式,从而求解较复杂的问题;同时,通过土地沙漠化的问题情景引导学生关注自己身边的生存环境.
效果:通过对较复杂的问题的探究,培养了学生分析问题和解决问题的能力,并渗透德育教育.
第六环节 探究升级
内容:(续前一问题)当得知周边地区的干旱情况
后,育才学校的小明意识到节约用水的重要性,当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的
家庭数增加数量相同,最后都参加了活动,并且参加
该活动的家庭数S (户)与宣传时间t (天)的函数
关系如图所示.
根据图象回答下列问题:
(6)若每户每天节约用水0.1吨,那么活动第20天可节约多少吨水? (7)写出活动开展的第t 天节约的水量Y 与天数t 的函数关系. 答案:(6)第20天可节约100吨水;
(7)420Y t =+.
意图:通过问题的层层深入,引导学生的思维向纵深发展,进一步巩固用函数的思想解决生活中的问题.
效果:学生通过合作交流,解决问题,在教师的引导下,逐步加深了对一次函数图象和性质的运用.
说明:视学生的掌握情况,对学有余力的同学可以给出这个问题的第(8)问.(见分层
第七环节课堂小结
内容:本节课主要应掌握以下内容:
1.能通过函数图象获取信息.
2.能利用函数图象解决简单的实际问题.
3.初步体会方程与函数的关系.
意图:引导学生自己小结本节课的知识要点及数学方法,使这节课知识系统化,感性认识上升为理性认识.
效果:学生畅所欲言,相互进行补充,从小结中感知了一次函数的图象在生活中的应用.说明:教师视其情况,可以选择展示一些前面小节中用过的实际问题与一次函数图象的实例的图片,让学生体会到数学与生活的联系,激发学生的学习热情.
第八环节布置作业
内容:
1.课外探究
在生活中,你还遇到过哪些可以用一次函数关系来表示的实际问题?选择你感兴趣的问题,编制一道数学题与同学交流.
2.课外作业习题5.6
六、教学设计反思
(1)设计理念
一次函数是刻画现实世界变量间关系的最为简单的模型,其应用比比皆是.在教学设计中,争取选用最具有现实生活背景,与学生生活密切相关的问题,一方面力求让学生体会数学的广泛运用,另一方面,在学科教育中渗透德育教育.
(2)评价方式
在教学活动中教师应尊重学生的个体差异,满足多样化的学习需要,关注学生对图象的识图能力和解决问题的过程,应关注学生对基本知识技能的掌握情况和对一次函数与方程之间的关系的理解.教学过程中可通过学生对“议一议”、“想一想”的探究情况和学生对反馈练习的完成情况分析学生的认识状况,对于学生的回答,只要学生的方法有道理,教师应给予鼓励和恰当的评价,帮助学生认识自我,建立自信,真正在教学的过程中发挥评价的教育功能.
(3)分层教学
1.某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)之间的关系如图所示.
根据图象回答下列问题:
(1)一箱汽油可供摩托车行驶多少千米?
(2)摩托车每行驶100千米消耗多少升汽油?
(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?
分析:(1)函数图象与x
轴交点的横坐标即为摩托
6
7
车行驶的最长路程.
(2)x 从0增加到100时,y 从10开始减少,减少的数量即为消耗的数量. (3)当y 小于1时,摩托车将自动报警. 答案:(1)观察图象,得
当0y =时,500x =
因此一箱汽油可供摩托车行驶500千米.
(2)x 从0增加到100时,y 从10减少到8,减少了2,因此摩托车每行驶100千米消耗2升汽油.
(3)当1y =时,450x =
因此行驶了450千米后,摩托车将自动报警. 2.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程.
盒内钱数y (元)与存钱月数x 之间的函数关系如图所示.观察图象回答下列问题:
(1)盒内原来有多少元?2个月后盒内有多少元? (2)该同学经过几个月能存够200元?
(3)该同学至少存几个月存款才能超过140元? 解:(1)40,80.
(2)当200y =时,8x =,所以该同学经过8个月能存够200元.
(3)观察图象可知,该同学经过5个月能超过140元.
3.(续前一问题)当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性,当天在班上倡议节约用水,得到全班同学
乃至全校师生的积极响应.从宣传活动开始,假
设每天参加该活动的家庭数增加数量相同,最后都参加了活动,并且参加该活动的家庭数S (户)
与宣传时间t (天)的函数关系如图所示.
根据图象回答下列问题:
(
8)写出活动开展到第5天时,全校师生共节约多少吨水?
答案:(8)第5天时,全校师生共节约160吨水.
意图:学生知识上有一定的分层,可更好地调动不同学生的学习热情.教师可根据学生的掌握情况,适当选择上述题目要求学生分层完成.
效果:通过分层练习,调动了不同学生的学习热情,教师应留给学生充分的时间思考,在独立思考的基础上,
鼓励学生相互讨论,得出结果.
●附:板书设计
(保留性板书)(暂时性板书)
8。