安宁区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安宁区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1.已知A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},则a的值是()
A.a=3 B.a=﹣3 C.a=±3 D.a=5或a=±3
2.不等式≤0的解集是()
A.(﹣∞,﹣1)∪(﹣1,2)B.[﹣1,2] C.(﹣∞,﹣1)∪[2,+∞) D.(﹣1,2]
3.两个随机变量x,y的取值表为
若x,y具有线性相关关系,且y^=bx+2.6,则下列四个结论错误的是()
A.x与y是正相关
B.当y的估计值为8.3时,x=6
C.随机误差e的均值为0
D.样本点(3,4.8)的残差为0.65
4.有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为()A.3,6,9,12,15,18 B.4,8,12,16,20,24
C.2,7,12,17,22,27 D.6,10,14,18,22,26
5.直线l将圆x2+y2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l的方程是()
A.x﹣y+1=0,2x﹣y=0 B.x﹣y﹣1=0,x﹣2y=0
C.x+y+1=0,2x+y=0 D.x﹣y+1=0,x+2y=0
6.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml(含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为()
A .2160
B .2880
C .4320
D .8640
7. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )
A .为直角三角形
B .为锐角三角形
C .为钝角三角形
D .前三种形状都有可能
8. 如图,设全集U=R ,M={x|x >2},N={0,1,2,3},则图中阴影部分所表示的集合是( )
A .{3}
B .{0,1}
C .{0,1,2}
D .{0,1,2,3}
9. 若动点),(),(2211y x B y x A 、分别在直线: 011=-+y x 和2l :01=-+y x 上移动,则AB 中点M 所在直线方程为( )
A .06=--y x
B .06=++y x
C .06=+-y x
D .06=-+y x
10.从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )
A .
B .
C .
D .
11.函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )
A .
B .
C .
D .
12.已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( )
A .[3,+∞)
B .(3,+∞)
C .[﹣∞,3]
D .[﹣∞,3)
二、填空题
13.已知sin α+cos α=,且
<α<
,则sin α﹣cos α的值为 .
14.调查某公司的四名推销员,其工作年限与年推销金额如表
由表中数据算出线性回归方程为=
x+
.若该公司第五名推销员的工作年限为8年,则估计他(她)的年
推销金额为 万元.
15.已知,0()1,0
x e x f x x ì³
ï=í<ïî,则不等式2
(2)()f x f x ->的解集为________.
【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力. 16.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为

17.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则
3s i n c o s (
)4
A B π
-
+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、
转化思想. 18.不等式
的解集为R ,则实数m 的范围是

三、解答题
19.(本小题满分10分)已知函数f (x )=|x -a |+|x +b |,(a ≥0,b ≥0). (1)求f (x )的最小值,并求取最小值时x 的范围; (2)若f (x )的最小值为2,求证:f (x )≥a +b .
20.(本小题满分12分)
如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F . (1)求证://AB EF ;
(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余 弦值.
【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.
21.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视,其余人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,其余人主要
的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)能否在犯错误的概率不超过0.01的前提下,认为休闲方式与性别有关系.独立性检验观察值计算公式
,独立性检验临界值表:
22.一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:
转速x(转/秒)16 14 12 8
每小时生产有缺陷的零件数y(件)11 9 8 5
(1)画出散点图;(2)如果y与x有线性相关的关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围内?
参考公式:线性回归方程系数公式开始=,=﹣x.
23.已知集合A={x|x2+2x<0},B={x|y=}
(1)求(∁R A)∩B;
(2)若集合C={x|a<x<2a+1}且C⊆A,求a的取值范围.
24.已知一个几何体的三视图如图所示.
(Ⅰ)求此几何体的表面积;
(Ⅱ)在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长.
安宁区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】B
【解析】解:∵A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},
∴2a﹣1=9或a2=9,
当2a﹣1=9时,a=5,A∩B={4,9},不符合题意;
当a2=9时,a=±3,若a=3,集合B违背互异性;
∴a=﹣3.
故选:B.
【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题.
2.【答案】D
【解析】解:依题意,不等式化为,
解得﹣1<x≤2,
故选D
【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.
3.【答案】
【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入y^=bx+2.6得b=0.95,即y^=0.95x+^=8.3时,则有8.3=0.95x+2.6,∴x=6,∴B正确.根据性质,随机误差e的均值为0,∴C正确.样2.6,当y
本点(3,4.8)的残差e^=4.8-(0.95×3+2.6)=-0.65,∴D错误,故选D.
4.【答案】C
【解析】解:从30件产品中随机抽取6件进行检验,
采用系统抽样的间隔为30÷6=5,
只有选项C中编号间隔为5,
故选:C.
5.【答案】C
【解析】解:圆x2
+y2﹣2x+4y=0化为:圆(x﹣1)2+(y+2)2=5,圆的圆心坐标(1,﹣2),半径为,直线l将圆
x2+y2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l经过圆心与坐标原点.或者直线经过圆心,直线的斜率为﹣1,
∴直线l的方程是:y+2=﹣(x﹣1),2x+y=0,即x+y+1=0,2x+y=0.
故选:C.
【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题.
6.【答案】C
【解析】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)×10=0.15,
又总人数为28800,故属于醉酒驾车的人数约为:28800×0.15=4320.
故选C
【点评】此题考查了学生的识图及计算能力,还考查了频率分布直方图的定义,并利用定义求解问题.
7.【答案】A
【解析】解:设A(x1,x12),B(x2,x22),
将直线与抛物线方程联立得,
消去y得:x2﹣mx﹣1=0,
根据韦达定理得:x1x2=﹣1,
由=(x1,x12),=(x2,x22),
得到=x1x2+(x1x2)2=﹣1+1=0,
则⊥,
∴△AOB为直角三角形.
故选A
【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.
8.【答案】C
【解析】解:由图可知图中阴影部分所表示的集合∁M∩N,
∵全集U=R,M={x|x>2},N={0,1,2,3},
∴∁M={x|x≤2},
∴∁M∩N={0,1,2},
故选:C
【点评】本题主要考查集合的基本运算,根据条件确定集合的基本关系是解决本题的关键.
9.【答案】D
【解析】
考点:直线方程
10.【答案】A
【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,
取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,
故取出的3个数可作为三角形的三边边长的概率P=.
故选:A.
【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.
11.【答案】B
【解析】解:根据选项可知a≤0
a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],
∴2|b|=16,b=4
故选B.
【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.
12.【答案】B
【解析】解:∵集合A={x|1≤x≤3},B={x|0<x<a},
若A⊆B,则a>3,
故选:B.
【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题.
二、填空题
13.【答案】.
【解析】解:∵sinα+cosα=,<α<,
∴sin2α+2sinαcosα+cos2α=,
∴2sinαcosα=﹣1=,
且sinα>cosα,
∴sinα﹣cosα=
==.
故答案为:.
14.【答案】.
【解析】解:由条件可知=(3+5+10+14)=8,=(2+3+7+12)=6,
代入回归方程,可得a=﹣,所以=x﹣,
当x=8时,y=,
估计他的年推销金额为万元.
故答案为:.
【点评】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.
15.【答案】(-
【解析】函数()f x 在[0,)+?递增,当0x <时,220x ->,解得0x -<<;当0x ³时,22x x ->,
解得01x ?,综上所述,不等式2
(2)()f x f x ->的解集为(-. 16.【答案】12π 【解析】

点:球的体积与表面积.
【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键.
17.【答案】(1,2




18.【答案】 .
【解析】解:不等式,
x 2﹣8x+20>0恒成立
可得知:mx 2
+2(m+1)x+9x+4<0在x ∈R 上恒成立.
显然m <0时只需△=4(m+1)2
﹣4m (9m+4)<0,
解得:m <﹣或m >
所以m <﹣
故答案为:
三、解答题
19.【答案】
【解析】解:(1)由|x-a|+|x+b|≥|(x-a)-(x+b)|
=|a+b|得,
当且仅当(x-a)(x+b)≤0,即-b≤x≤a时,f(x)取得最小值,
∴当x∈[-b,a]时,f(x)min=|a+b|=a+b.
(2)证明:由(1)知a+b=2,
(a+b)2=a+b+2ab≤2(a+b)=4,
∴a+b≤2,
∴f(x)≥a+b=2≥a+b,
即f(x)≥a+b.
20.【答案】
【解析】
∵BG ⊥平面PAD ,∴)0,3,0(=GB 是平面PAF 的一个法向量,
21.【答案】
【解析】解:(1)
(2)
所以不能在犯错误的概率不超过0.01的前提下认为休闲方式与性别有关系﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)
【点评】独立性检验是考查两个分类变量是否有关系,并且能较精确的给出这种判断的可靠程度的一种重要的统计方法,主要是通过k2的观测值与临界值的比较解决的
22.【答案】
【解析】
【专题】应用题;概率与统计.
【分析】(1)利用所给的数据画出散点图;
(2)先做出横标和纵标的平均数,做出利用最小二乘法求线性回归方程的系数的量,做出系数,求出a,写出线性回归方程.
(3)根据上一问做出的线性回归方程,使得函数值小于或等于10,解出不等式.
【解答】解:(1)画出散点图,如图所示:
(2)=12.5,=8.25,∴b=≈0.7286,
a=﹣0.8575
∴回归直线方程为:y=0.7286x﹣0.8575;
(3)要使y≤10,则0.728 6x﹣0.8575≤10,x≤14.901 9.故机器的转速应控制在14.9转/秒以下.
【点评】本题考查线性回归分析,考查线性回归方程,考查线性回归方程的应用,考查不等式的解法,是一个综合题目.
23.【答案】
【解析】解:(1)A={x|x2+2x<0}={x|﹣2<x<0},
B={x|y=}={x|x+1≥0}={x|x≥﹣1},
∴∁R A={x|x≤﹣2或x≥0},
∴(∁R A)∩B={x|x≥0};…
(2)当a≥2a+1时,C=∅,此时a≤﹣1满足题意;
当a<2a+1时,C≠∅,
应满足,
解得﹣1<a≤﹣;
综上,a的取值范围是.…
24.【答案】
【解析】解:(Ⅰ)由三视图知:几何体是一个圆锥与一个圆柱的组合体,且圆锥与圆柱的底面半径为2,母线长分别为2、4,
其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.
S圆锥侧=×2π×2×2=4π;
S圆柱侧=2π×2×4=16π;
S圆柱底=π×22=4π.
∴几何体的表面积S=20π+4π;
(Ⅱ)沿A点与B点所在母线剪开圆柱侧面,如图:
则AB===2,
∴以从A点到B点在侧面上的最短路径的长为2.。

相关文档
最新文档