《圆锥曲线中的轨迹方程问题(3)》
圆锥曲线中动点的轨迹方程的求法
![圆锥曲线中动点的轨迹方程的求法](https://img.taocdn.com/s3/m/231b86401fd9ad51f01dc281e53a580216fc5002.png)
知识导航有关圆锥曲线的题型较多,有求圆锥曲线的离心率、轨迹方程、判定两图形的位置关系、求弦长等,其中,求动点的轨迹方程比较常见.本文总结了求圆锥曲线中动点的轨迹方程的三种方法,供大家参考.一、直接法直接法主要应用于解答题目中所给的有关动点的几何条件较为明显的问题.运用直接法求动点的轨迹方程的主要步骤是:(1)建立合适的直角坐标系,设出所求动点的坐标;(2)根据题意,列出相关关系式;(3)将相关的点代入,化简并整理关系式即可得到动点的轨迹方程.例1.已知点Q (2,0)在圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程并说明它是什么曲线.分析:通过分析可知,动点M 到圆C 的切线长与|MQ |的比等于常数λ,所以可以考虑运用直接法求解.设出动点M 的坐标,根据题设建立关系式,化简便可得到动点的轨迹方程.解:设M (x ,y ),由直线MN 切圆于N ,MN|MQ |=λ,可得22=λ,整理得则(λ1)x 2+(λ2-1)y 2-4λ2x +(1+4λ2)=0,若λ=1,方程可化为x =54,它代表过点(54,0),与x 轴垂直的一条直线;若λ≠1,方程可化为æèçöø÷x -2λ2λ2-12+y 2=1+3λ2(λ2-1)2,它代表以æèçöø÷2λ2λ2-1,0为半径的圆.二、代入法若动点M 依赖已知曲线上的另一动点N 而运动,就可以运用代入法来求动点的轨迹方程.首先设出两动点的坐标,建立两动点的关系式,然后将转化后的动点N 的坐标代入已知曲线的方程或条件中,从而得到动点M 的轨迹方程.例2.已知点B 是椭圆x 2a 2+y 2b2=1上的动点,A (2a ,Q )为定点,求线段AB 的中点M 的轨迹方程.分析:动点M 是线段AB 的中点,M 随着动点B 而运动,本题需采用代入法来求解.解:设动点M 的坐标为(x ,y ),B 点坐标为(x 0,y 0),由M 为线段AB 的中点,可得ìíîïïïïx 0+2a2=x ,y 0+02=y ,则点B 的坐标为(2x -2a ,2y ),则(2x -2a )2a 2+(2y )2b2=1,故动点M 的轨迹方程为4(x -a )2a 2+4y 2b2=1.三、参数法参数法是指通过引入一些新变量(参数)为媒介来解答问题的方法.运用参数法求圆锥曲线中动点的轨迹方程的基本思路是,设出合适的参数,根据题意列出参数方程,通过消参将方程化为普通方程即可解题.但在解题的过程中需注意参数的取值范围.例3.如图,过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB的中点M 的轨迹方程.解:设M (x ,y ),直线l 1的方程为y -4=k (x -2),(k ≠0),由l 1⊥l 2,得直线l 2的方程为y -4=-1k(x -2),∴l 1与x 轴焦点A 的坐标为(2-4k,0),l 2与y 轴焦点B 的坐标为(0,4+2k),∵M 为AB 的中点,∴ìíîïïïïx =2-4k 2=1-2k ,y =4+2k 2=2+1k ,消去k ,得到x +2y -5=0,当k =0时,AB 的中点为M (1,2),满足上述方程,当k 不存在时,AB 的中点为M (1,2),也满足上述方程,综上所述,M 的轨迹方程为x +2y -5=0.这里通过引入参数k ,得到两条直线的方程,然后结合题意建立关于k 的关系式,通过消参得到动点的轨迹方程.相比较而言,直接法较为简单,是最常用也是适用范围最广的方法;代入法的适用范围较窄,只适用于两个动点相关的题型;运用参数法解题的运算量较大.无论采用什么方法求动点的轨迹方程,都要关注轨迹方程中变量的取值范围.(作者单位:江苏省南通市海门四甲中学)蒋秋霞39Copyright©博看网 . All Rights Reserved.。
圆锥曲线直译法和定义求轨迹方程
![圆锥曲线直译法和定义求轨迹方程](https://img.taocdn.com/s3/m/1aa9d7dc580216fc710afd0a.png)
直译法和定义法求轨迹方程圆锥曲线大题的第一问,往往是求轨迹方程。
求轨迹方程的方法很多,今天介绍两种,直译法和定义法。
这两种方法都要求对点的几何性质非常熟悉,根据几何性质,找出关系,列出式子从而得解。
一、直译法所谓直译法,其实就是指直接从题目给出的几何性质,列出等式,从而化简得到轨迹方程。
题目给的几何性质,往往跟斜率,距离公式,切线等有关。
步骤一般是:(1)设出动点坐标(x,y )(2)根据几何性质列出方程(),0f x y =(3)化简整理得到结果例1 (2019全国2卷)已知点()2,0A -,(2,0)B ,动点M 满足直线AM 与直线BM 的斜率之积为12-。
记M 的轨迹为曲线C ,求C 的轨迹方程 解:根据斜率之积可以非常容易写出关系式,所以利用直译法即可。
设(),M x y 则,,22AM BM y y k k x x ==+- 由12AM BM k k =-得到1222y y x x =-+- 化简为2224x y +=即为所求例2 已知点()0,1A -,点B 在y=-3上,动点M 满足MB OA ‖且•·MA AB MB BA =,求M 轨迹方程 解析:有非常明确的向量关系,式子也是比较容易列出来。
因此用直译法,然后化简即可。
设(),M x y ,由MBOA ‖,OA 是个竖直的线段以及B 在y=-3上,非常容易知道B 点作为(,3)x -。
那么容易求出:()()(),1,0,3,,2MA x y MB y AB x =---=--=-由•·MA AB MB BA =得到()()22123x y y ----=--化简为248x y -=即为所求例3 已知圆O :2220x y +-=,圆O ':228100x y x +-+=。
由点P 向两圆引切线长相等,求P 轨迹方程解析:这个就需要画一画图找到关系式。
如下图设圆O 的半径为1r ,圆O '的半径为2r 。
圆锥曲线的方程与轨迹方程(解析版)
![圆锥曲线的方程与轨迹方程(解析版)](https://img.taocdn.com/s3/m/830846304531b90d6c85ec3a87c24028915f8565.png)
专题1圆锥曲线的方程与轨迹方程一、考情分析求圆锥曲线的方程,一般出现在圆锥曲线解答题的第(1)问,多用待定系数法,通过解方程确定待定系数,考查频率非常高,也比较容易得分;求圆锥曲线的轨迹方程一般用定义法,有时可用到直接法、相关点法、交轨法等,难度一般中等或中等以下.二、解题秘籍(一)用待定系数法求圆锥曲线的方程1.求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a,b的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx2+ny2=1(m>0,n>0,m≠n)的形式.2.双曲线标准方程的形式,注意焦点F1,F2的位置是双曲线定位的条件,它决定了双曲线标准方程的类型.“焦点跟着正项走”,若x2项的系数为正,则焦点在x轴上;若y2项的系数为正,那么焦点在y轴上.确定方程的形式后,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值, 当双曲线焦点的位置不确定时,为了避免讨论焦点的位置,常设双曲线方程为Ax2+By2=1(A·B<0),这样可以简化运算.3.如果已知双曲线的渐近线方程y=±b a x a>0,b>0,求双曲线的标准方程,可设双曲线方程为x2 a2-y2 b2=λ(λ≠0),再由条件求出λ的值即可.与双曲线x2a2-y2b2=1(a>0,b>0)有共同渐近线的方程可表示x2a2-y2b2=λ(λ≠0).4.利用待定系数法求抛物线的标准方程的步骤(1)依据条件设出抛物线的标准方程的类型.(2)求参数p的值.(3)确定抛物线的标准方程.【例1】(2023届山西省长治市高三上学期质量检测)已知点P1,3 2在椭圆C:x2a2+y2b2=1(a>b>0)上,且点P到椭圆右顶点M的距离为13 2.(1)求椭圆C的方程;(2)若点A,B是椭圆C上不同的两点(均异于M)且满足直线MA与MB斜率之积为14.试判断直线AB 是否过定点,若是,求出定点坐标,若不是,说明理由.【解析】(1)点P1,3 2,在椭圆C:x2a2+y2b2=1(a>b>0)上代入得:1a2+94b2=1,点P到椭圆右顶点M的距离为132,则132=a-12+94,解得a=2,b=3,故椭圆C的方程为x24+y23=1.(2)由题意,直线AB的斜率存在,可设直线AB的方程为y=kx+m(k≠0),M2,0,A x1,y1,B x2,y2.联立y=kx+m3x2+4y2=12得3+4k2x2+8km x+4m2-12=0.Δ=64k2m2-43+4k24m2-12=484k2-m2+3>0.∴x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2,∵直线MA 与直线MB 斜率之积为14.∴y 1x 1-2⋅y 2x 2-2=14,∴4kx 1+m kx 2+m =x 1-2 x 2-2 .化简得4k 2-1 x 1x 2+4km +2 x 1+x 2 +4m 2-4=0,∴4k 2-1 4m 2-123+4k 2+4km +2-8km 3+4k 2+4m -4=0, 化简得m 2-2km -8k 2=0,解得m =4k 或m =-2k .当m =4k 时,直线AB 方程为y =k x +4 ,过定点-4,0 .m =4k 代入判别式大于零中,解得-12<k <12(k ≠0).当m =-2k 时,直线AB 的方程为y =k x -2 ,过定点2,0 ,不符合题意. 综上所述:直线AB 过定点-4,0 .【点评】利用待定系数法求椭圆的方程,一般需要两个独立的条件确定关于a ,b 的等式.【例2】(2023届广东省开平市忠源纪念中学高三阶段性检测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为62,点A 6,4 在C 上.(1)求双曲线C 的方程.(2)设过点B 1,0 的直线l 与双曲线C 交于D ,E 两点,问在x 轴上是否存在定点P ,使得PD ⋅PE为常数?若存在,求出点P 的坐标以及该常数的值;若不存在,请说明理由.【解析】(1)因为双曲线C 的离心率为62,所以62 2=1+b 2a2,化简得a 2=2b 2.将点A 6,4 的坐标代入x 22b 2-y 2b 2=1,可得18b 2-16b2=1,解得b 2=2,所以C 的方程为x 24-y 22=1.(2)设D x 1,y 1 ,E x 2,y 2 ,直线l 的方程为y =k (x -1),联立方程组y =k x -1 ,x 24-y 22=1,消去y 得(1-2k 2)x 2+4k 2x -2k 2-4=0,由题可知1-2k 2≠0且Δ>0,即k 2<23且k 2≠12,所以x 1+x 2=-4k 21-2k 2,x 1x 2=-2k 2+41-2k 2.设存在符合条件的定点P t ,0 ,则PD =x 1-t ,y 1 ,PE=x 2-t ,y 2 ,所以PD ⋅PE=x 2-t x 1-t +y 1y 2=k 2+1 x 1x 2-t +k 2 x 1+x 2 +t 2+k 2.所以PD ⋅PE =k 2+1 -2k 2-4 +4k 2t +k 2 +t 2+k 2 1-2k 2 1-2k 2,化简得PD ⋅PE =k 2-2t 2+4t -5 +t 2-4-2k 2+1.因为PD ⋅PE 为常数,所以-2t 2+4t -5-2=t 2-41,解得t =134.此时该常数的值为t 2-4=10516,所以,在x 轴上存在点P 134,0 ,使得PD ⋅PE 为常数,该常数为10516.【点评】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.注意用待定系数法确定双曲线的标准方程要注意方程的个数要与未知数的个数相等.【例3】(2023届甘肃省张掖市高三上学期诊断)已知抛物线C :y 2=2px (p >1)上的点P x 0,1 到其焦点F 的距离为54.(1)求抛物线C 的方程;(2)点E (t ,4)在抛物线C 上,过点D (0,2)的直线l 与抛物线C 交于A x 1,y 1 ,B x 2,y 2 y 1>0,y 2>0 两点,点H 与点A 关于x 轴对称,直线AH 分别与直线OE ,OB 交于点M ,N (O 为坐标原点),求证:|AM |=|MN |.【解析】(1)由点P x 0,1 在抛物线上可得,12=2px 0,解得x 0=12p.由抛物线的定义可得|PF |=x 0+p 2=12p +p 2=54,整理得2p 2-5p +2=0,解得p =2或p =12(舍去).故抛物线C 的方程为y 2=4x .(2)由E (t ,4)在抛物线C 上可得42=4t ,解得t =4,所以E (4,4),直线OE 的方程为y =x ,因为点A 和点H 关于x 轴对称,所以H x 1,-y 1 ,x 1,x 2均不为0.由题意知直线l 的斜率存在且大于0,设直线l 的方程为y =kx +2(k >0),联立y =kx +2,y 2=4x ,消去y ,得k 2x 2+(4k -4)x +4=0.则Δ=(4k -4)2-16k 2=16-32k >0,得0<k <12,所以x 1+x 2=4-4k k 2,x 1x 2=4k 2.由直线OE 的方程为y =x ,得M x 1,x 1 .易知直线OB 的方程为y =y 2x 2x ,故N x 1,x 1y 2x 2.要证|AM |=|MN |,即证2y M =y 1+y N ,即证x 1y 2x 2+y 1=2x 1,即证x 1y 2+x 2y 1=2x 1x 2,即证(2k -2)x 1x 2+2x 1+x 2 =0,则(2k -2)×4k 2+8-8kk 2=0,此等式显然成立,所以|AM |=|MN |.【点评】用待定系数法求抛物线的标准方程,只需要确定p 的值,因此只需要由已知条件整理出一个关于p 的等式.(二)直接法求曲线轨迹方程1.直接法求曲线方程的关键就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系、设点、列式、代换、化简、证明这几个步骤,但最后的证明可以省略.2.求出曲线的方程后还需注意检验方程的纯粹性和完备性.3.对方程化简时,要保证前后方程解集相同,必要时可说明x ,y 的取值范围.【例4】设动点M 在直线y =0和y =-2上的射影分别为点N 和R ,已知MN ⋅MR =OM 2,其中O 为坐标原点.(1)求动点M 的轨迹E 的方程;(2)过直线x -y -2=0上的一点P 作轨迹E 的两条切线PA 和PB (A ,B 为切点),求证:直线AB 经过定点.【分析】(1)利用直接法求轨迹方程,设M (x ,y ),把MN ⋅MR =OM 2 坐标化,即可得到动点M 的轨迹E 的方程;(2)利用导数的几何意义,求得切线斜率,设A (x 1,y 1),B (x 2,y 2),可得切线PA 、PB 的方程,联立可得切点P的坐标为x 1+x 22,x 1x 22,又点P 在直线x -y -2=0上,代入可得x 1x 2=x 1+x 2-4,再代入到直线AB的方程即可得解.【解析】(1)设M (x ,y ),则N (x ,0),R (x ,-2),所以OM =(x ,y ),MN =(0,-y ),MR=(0,-2-y ),由条件可得-y (-y -2)=x 2+y 2,整理可得点M 的轨方程为x 2=2y ;(2)由(1)知,y =12x 2,求导可得y =x ,设A (x 1,y 1),B (x 2,y 2),则切线PA 的方程为y -x 122=x 1(x -x 1),即y =x 1x -x 122①,同理可得切线PB 的方程为y =x 2x -x 222②,联立①②,解得点P 的坐标为x 1+x 22,x 1x 22,因为点P 在直线x -y -2=0上,所以x 1+x 22-x 1x 22-2=0,即x 1x 2=x 1+x 2-4,又直线AB 的斜率k =x 222-x 122x 2-x 1=x 1+x 22,所以直线AB 的方程为:y -x 122=x 1+x 22(x -x 1),即y =(x 1+x 2)x -x 1x 22,又x 1x 2=x 1+x 2-4,代入可得y =(x 1+x 2)(x -1)2+2,所以直线AB 过定点(1,2).【点评】利用直接法求曲线的轨迹方程一般是根据题中的一个等量关系式,将其坐标化,即可得到曲线的轨迹方程.(三)定义法求曲线轨迹方程1.运用圆锥曲线的定义求轨迹方程,可从曲线定义出发直接写出方程,或从曲线定义出发建立关系式,从而求出方程.2.定义法和待定系数法适用于已知曲线的轨迹类型,利用条件把待定系数求出来,使问题得解.3.平面内与两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数:(1)若a >c ,则集合P 为椭圆;(2)若a =c ,则集合P 为线段;(3)若a <c ,则集合P 为空集.4.平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0.(1)当2a <|F 1F 2|时,P 点的轨迹是双曲线;(2)当2a =|F 1F 2|时,P 点的轨迹是以F 1,F 2为端点的两条射线;(3)当2a >|F 1F 2|时,P 点不存在.5.平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.注意:(1)定直线l 不经过定点F .(2)定义中包含三个定值,分别为一个定点,一条定直线及一个确定的比值.【例5】(2023届河北省示范性高中高三上学期调研)已知圆A :x 2+y 2+6x +5=0,直线l (与x 轴不重合)过点B (3,0)交圆A 于C 、D 两点,过点B 作直线AC 的平行线交直线DA 于点E .(1)证明||EB |-|EA ||为定值,并求点E 的轨迹方程;(2)设点E 的轨迹方程为C 1,直线l 与曲线C 1交于M 、N 两点,线段MN 的垂直平分线交x 轴于点P ,是否存在实常数入,使得|MN |=λ|PB |,若存在,求出λ的值;若不存在,请说明理由.【解析】(1)x 2+y 2+6x +5=0⇒x +3 2+y 2=4,得A (-3,0),当|BD |>|BC |时,如图1所示,因为D ,C 都在圆A 上所以|AD |=|AC |,即∠ADC =∠ACD 又因为BE ∥AC ,所以∠ACD =∠EBD ,所以∠EDB =∠EBD ,∴|ED |=|EB |,所以|EB |-|EA |=|ED |-|EA |=|AD |=2当|BD |<|BC |时,如图2所示,同理可得,|EB |-|EA |=|ED |-|EA |=-|AD |=-2因此|EB |-|EA |=2<|AB |=6,所以点E 的轨迹是以A ,B 为焦点的双曲线,故2a =2,2c =6,即a =1,c =3,所以b 2=c 2-a 2=9-1=8,∴||EB |-|EA ||为定值2,且点E 的轨迹方程为x 2-y 28=1.(2)由题知,直线l 的斜率不为0,设l :x =my +3,联立x =my +38x 2-y 2=8消去x 得,8m 2-1 y 2+48my +64=0,于是Δ=(48m )2-4×648m 2-1 =256m 2+1 >0,设M x 1,y 1 ,N x 2,y 2 ,则有y 1+y 2=-48m 8m 2-1,y 1y 2=648m 2-1,故x 1+x 2=my 1+3+my 2+3=m y 1+y 2 +6=-48m 2+48m 2-68m 2-1=68m 2-1,所以线段MN 的中点为-38m 2-1,-24m8m 2-1,从而线段MN 的中垂线的方程为y +24m 8m 2-1=-m x +38m 2-1 令y =0得,x =-278m 2-1,∴|PB |=3--278m 2-1 =3+278m 2-1=24m 2+1 8m 2-1又|MN |=1+m 2y 1+y 2 2-4y 1y 2=1+m 2-48m 8m 2-1 2-4×648m 2-1=16m 2+1 8m 2-1故|MN ||PB |=16m 2+1 8m 2-1×8m 2-1 24m 2+1 =23,于是λ=23即存在λ=23使得|MN |=λ|PB |.【点评】利用双曲线定义求轨迹方程,关键是利用题中条件,确定动点到两定点距离之差的绝对值为定值.【例6】已知一定点F (0,1),及一定直线l :y =-1,以动点M 为圆心的圆M 过点F ,且与直线l 相切.(1)求动点M 的轨迹C 的方程;(2)设P 在直线l 上,直线PA ,PB 分别与曲线C 相切于A ,B ,N 为线段AB 的中点.求证:|AB |=2|NP |,且直线AB 恒过定点.【解析】(1)动点M 为圆心的圆M 过点F ,且与直线l 相切,动圆圆心到定点F (0,1)与定直线y =-1的距离相等,∴动圆圆心的轨迹为抛物线,其中F (0,1)为焦点,y =-1为准线,∴p2=1⇒p =2,∴动圆圆心轨迹方程为x 2=4y .(2)依题意可设P x 0,-1 ,A x 1,x 214 ,B x 2,x 224,又x 2=4y ,∴y =14x 2∴y =12x故切线PA 的斜率为k 1=12x 1,故切线PA :y -14x 21=12x 1x -x 1 ⇒2x 1x -4y -x 21=0同理可得到切线PB :2x 2x -4y -x 22=0又P x 0,-1 ,∴2x 1x 0+4-x 12=0且2x 2x 0+4-x 22=0,故方程x 2-2x 0x -4=0有两根x 1,x 2∴x 1x 2=-4,∴k 1k 2=12x 1×12x 2=14x 1x 2=-1∴PA ⊥PB又N 为线段AB 的中点,∴|AB |=2|NP |又由2x 1x 0+4-x 21=0得到:12x 1x 0+1-x 214=0即12x 1x 0+1-y 1=0同理可得到12x 2x 0+1-y 2=0,故直线AB 方程为:12x 0x -y +1=0,故直线过定点F 0,1 .【点评】利用抛物线定义求轨迹方程关键是确定动点到一定点与定直线距离相等.(四)相关点法求曲线轨迹方程“相关点法”求轨迹方程的基本步骤(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1);(2)求关系式:求出两个动点坐标之间的关系式x 1=f x ,y ,y 1=g x ,y ;(3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.【例7】(2023届广东省揭阳市高三上学期调研)已知F 1、F 2是椭圆C :x 24+y 23=1的左、右焦点,点P m ,n n ≠0 是椭圆上的动点.(1)求△PF1F 2的重心G 的轨迹方程;(2)设点Q s ,t 是△PF 1F 2的内切圆圆心,求证:m =2s .【解析】(1)连接PO ,由三角形重心性质知G 在PO 的三等分点处(靠近原点)设G (x ,y ),则有m =3x ,n =3y又m 24+n 23=1,所以9x 24+9y 23=1,即9x 24+3y 2=1△PF 1F 2的重心G 的轨迹方程为9x24+3y 2=1(y ≠0);(2)根据对称性,不妨设点P 在第一象限内,易知圆Q 的半径为等于t ,利用等面积法有:S △PF 1F 2=12|PF 1|⋅t +12|PF 2|⋅t +12|F 1F 2|⋅t =12|F 1F 2|⋅n结合椭圆定义:|PF 1|+|PF 2|=4,|F 1F 2|=2有12⋅4⋅t +12⋅2⋅t =12⋅2⋅n ,解得t =n 3由P (m ,n )、F 1(-1,0)两点的坐标可知直线PF 1的方程为nx -(m +1)y +n =0根据圆心Q 到直线PF 1的距离等于半径,有ns -(m +1)n3+n n 2+(m +1)2=n3∴3s -m +2 n 2+(m +1)2=1,∴9s 2-6sm +12s -6m +3-n 2=0∴3s 2-2sm +4s -2m +1-n 23=0,又m 24+n 23=1化简得12s 2-8sm +16s -8m +m 2=0,即12s 2-8sm +m 2 +16s -8m =0∴2s -m 6s -m +82s -m =0,即2s -m 6s -m +8 =0由已知得-2<m <2,-1<s <1,则6s -m +8>0所以2s -m =0,即m =2s .(五)交轨法求曲线轨迹方程求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程,称之交轨法.若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点的轨迹方程,也可以解方程组先求出交点坐标的参数方程,再化为普通方程.【例8】(2022届重庆市第八中学高三上学期月考)已知抛物线C :y =x 2,过点M 1,2 的直线交抛物线C 于A ,B 两点,以A ,B 为切点分别作抛物线C 的两条切线交于点P .(1)若线段AB 的中点N 的纵坐标为32,求直线AB 的方程;(2)求动点P 的轨迹.【分析】(1)联立直线与抛物线,根据韦达定理及中点求出k 即可;(2)写出圆的切线方程,根据P 是交点可得x 1,x 2是方程x 2-2x 0x +y 0=0的两根,由(1)中x 1+x 2=k ,x 1x 2=k -2代入化简即可求出.【解析】(1)依题意有:直线AB 的斜率必存在,故可设直线AB 的方程为y -2=k (x -1).由y -2=k (x -1),y =x 2,可得:x 2-kx +k -2=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=k ,x 1x 2=k -2.于是:y 1+y 2=x 21+x 22=(x 1+x 2)2-2x 1x 2=k 2-2k +4=3,解得k =1,故直线AB 的方程为x -y +1=0.(2)设P (x 0,y 0),对于抛物线y =x 2,y =2x ,于是:A 点处切线方程为y -y 1=2x 1(x -x 1),点P 在该切线上,故y 0-x 21=2x 1(x 0-x 1),即x 21-2x 0x 1+y 0=0.同理:P 点坐标也满足x 22-2x 0x 2+y 0=0,于是:x 1,x 2是方程x 2-2x 0x +y 0=0的两根,所以x 1+x 2=2x 0,x 1x 2=y 0.又由(1)可知:x 1+x 2=k ,x 1x 2=k -2,于是x 0=k2,y 0=k -2,消k 得y 0=2x 0-2,于是P 的轨迹方程为2x -y -2=0,点P 的轨迹是一条直线.【点评】求两条动直线交点轨迹方程一般用交轨法三、跟踪检测1.(2023届广东省广东广雅中学高三上学期9月阶段测试)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为22.圆O (O 为坐标原点)在椭圆C 的内部,半径为63.P ,Q 分别为椭圆C 和圆O 上的动点,且P ,Q 两点的最小距离为1-63.(1)求椭圆C 的方程;(2)A ,B 是椭圆C 上不同的两点,且直线AB 与以OA 为直径的圆的一个交点在圆O 上.求证:以AB 为直径的圆过定点.【解析】(1)设椭圆的长半轴为a ,短半轴为b ,半焦距为c ,由圆的性质,|PQ |≥|PO |-63当点P 在椭圆上运动时,当P 处于上下顶点时|PO |最小,故|PQ |≥|PO |-63≥b -63,即b -63=1-63依题意得c a =22b -63=1-63a 2=b 2+c 2,解得a =2b =1c =1,所以C 的方程为x 22+y 2=1.(2)因为直线AB 与以OA 为直径的圆的一个交点在圆O 上,所以直线AB 与圆O 相切.(i )当直线AB 垂直于x 轴时,不妨设A 63,63 ,B 63,-63,此时OA ⋅OB=0,所以OA ⊥OB ,故以AB 为直径的圆过点O .(ii )当直线AB 不垂直于x 轴时,设直线AB 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 .因为AB 与圆O 相切,所以O 到直线AB 的距离|m |k 2+1=63,即3m 2-2k 2-2=0.由y =kx +m ,x 22+y 2=1,得2k 2+1 x 2+4km x +2m 2-2=0,所以x 1+x 2=-4km 2k 2+1,x 1x 2=2m 2-22k 2+1,OA ⋅OB=x 1x 2+y 1y 2=x 1x 2+kx 1+m kx 2+m =1+k 2 x 1x 2+km x 1+x 2 +m 2,=1+k 22m 2-22k 2+1 +km -4km 2k 2+1+m 2,=1+k 2 2m 2-2 +km (-4km )+m 22k 2+1 2k 2+1,=3m 2-2k 2-22k 2+1=0,所以OA ⊥OB ,故以AB 为直径的圆过点O .综上,以AB 为直径的圆过点O .2.(2023届山西省忻州市高三上学期联考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率是5,点F 是双曲线C 的一个焦点,且点F 到双曲线C 的一条渐近线的距离是2.(1)求双曲线C 的标准方程.(2)设点M 在直线x =14上,过点M 作两条直线l 1,l 2,直线l 1与双曲线C 交于A ,B 两点,直线l 2与双曲线C 交于D ,E 两点.若直线AB 与直线DE 的倾斜角互补,证明:MA MD =MEMB.【解析】(1)根据双曲线的对称性,不妨设F c ,0 ,其渐近线方程为bx ±ay =0,因为焦点F 到双曲线C 的一条渐近线的距离是2.所以2=bcb 2+a 2,因为双曲线C 的离心率是5,所以,c a =52=bc b 2+a 2c 2=a 2+b 2,解得a =1,b =2.所以,双曲线C 的标准方程为x 2-y 24=1.(2)证明:由题意可知直线l 1的斜率存在,设M 14,t ,直线l 1:y =k x -14+t ,A x 1,y 1 ,B x 2,y 2 .联立y =k x -14 +tx 2-y 24=1整理得k 2-4 x 2+2kt -12k 2 x +116k 2-12kt +t 2+4=0,所以,x 1+x 2=-2kt -12k 2k 2-4,x 1x 2=116k 2-12kt +t 2+4k 2-4.故MA ⋅MB =k 2+1 x 1-14 x 2-14 =k 2+1 x 1x 2-14x 1+x 2 +116 =k 2+1 4t 2+15 4k 2-4.设直线l 2的斜率为k,同理可得MD ⋅ME =k2+1 4t 2+154k 2-4.因为直线AB 与直线DE 的倾斜角互补,所以k =-k ,所以k 2=k 2,则k 2+1 4t 2+15 4k 2-4 =k 2+1 4t 2+15 4k 2-4 ,即MA ⋅MB =MD ⋅ME ,所以MA MD =MEMB.3.(2023届广东省茂名市高三上学期9月大联考)如图,平面直角坐标系xOy 中,点Q 为x 轴上的一个动点,动点P 满足PO =PQ =32,又点E 满足PE =12EQ .(1)求动点E 的轨迹Γ的方程;(2)过曲线Γ上的点A x 0,y 0 (x 0y 0≠0)的直线l 与x ,y 轴的交点分别为M 和N ,且NA =2AM,过原点O 的直线与l 平行,且与曲线Γ交于B 、D 两点,求△ABD 面积的最大值.【解析】(1)法一:由题意,设E x ,y ,P 12x ,y ,由PO =PQ =32得Q x ,0 ,且x 24+y 2=94,由PE =12EQ 得E 23x ,23y ,则x =23x y =23y ,得x =32x y=32y,代入x 24+y 2=94整理得x 24+y 2=1,故动点E 的轨迹Γ的方程为x 24+y 2=1.法二:设∠POQ =α,P 32cos α,32sin α ,Q 3cos α,0 ,设E x ,y ,则由PE =12EQ 得x =23×3cos α=2cos αy =23×32sin α=sin α,消去α得x 24+y 2=1,故动点E 的轨迹Γ的方程为x 24+y 2=1.(2)如图,设A x 0,y 0 (x 0y 0≠0),又直线l 的斜率存在且k ≠0,∴设直线l 为:y -y 0=k x -x 0 ,可得:M x 0-y 0k,0 ,N0,y 0-kx 0 ,由NA =2AM ,则x 0,kx 0 =2-y 0k ,-y 0 ,故x 0=-2y 0k,kx 0=-2y 0,联立x 204+y 20=1x 0=-2y 0k,可得:y 20=k 21+k 2,即y 0 =k 1+k 2,又BD ⎳l ,故直线BD 的方程为y =kx ,联立x 24+y 2=1y =kx,得:x 2=41+4k 2,即B 、D 的横坐标为±21+4k 2,∴BD =1+k 2x B -x D =41+k 21+4k 2,∵点A 到直线BD 的距离d =kx 0-y 0 1+k 2=3y 01+k 2=3k 1+k 2,∴S △ABD =12BD ⋅d =6k 1+4k 21+k 2=61+k 2 1+4k 2k2=64k 2+1k2+5≤624k 2×1k2+5=2,当且仅当4k 2=1k2,即k =±22时等号成立,∴△ABD 面积的最大值为2.4.(2023届湖南省永州市高三上学期适应性考试)点P (4,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,离心率e =72.(1)求双曲线C 的方程;(2)A ,B 是双曲线C 上的两个动点(异于点P ),k 1,k 2分别表示直线PA ,PB 的斜率,满足k 1k 2=32,求证:直线AB 恒过一个定点,并求出该定点的坐标.【解析】(1)由题意点P (4,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,离心率e =72可得;16a 2-9b 2=1a 2+b 2a =72,解出,a =2,b =3,所以,双曲线C 的方程是x 24-y 23=1(2)①当直线AB 的斜率不存在时,则可设A n ,y 0 ,B n ,-y 0 ,代入x 24-y 23=1,得y 02=34n 2-3,则k 1k 2=y 0-3n -4⋅-y 0-3n -4=9-y 20(n -4)2=12-34n 2(n -4)2=32,即9n 2-48n +48=0,解得n =43或n =4,当n =4时,y 0=±3,A ,B 其中一个与点P 4,3 重合,不合题意;当n =43时,直线AB 的方程为x =43,它与双曲线C 不相交,故直线AB 的斜率存在;②当直线AB 的斜率存在时,设直线AB 的方程y =kx +m 代入x 24-y 23=1,整理得,3-4k 2 x 2-8km x -4m 2-12=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=8km 3-4k 2,x 1x 2=-4m 2+123-4k 2,由Δ=(-8km )2-43-4k 2 -4m 2-12 >0,∴m 2+3>4k 2,所以k 1k 2=y 1-3x 1-4⋅y 2-3x 2-4=kx 1+m -3x 1-4⋅kx 2+m -3x 2-4=k 2x 1x 2+k m -3 x 1+x 2 +(m -3)2x 1x 2-4x 1+x 2 +16=32所以,2k 2-3 x 1x 2+2km -6k +12 x 1+x 2 +2m 2-12m -30=0,即2k 2-3 ⋅-4m 2-123-4k 2+2km -6k +12 ⋅8km 3-4k2+2m 2-12m -30=0,整理得3m 2+16k -6 m +16k 2-9=0,即3m +4k +3 m +4k -3 =0,所以3m +4k +3=0或m +4k -3=0,若3m +4k +3=0,则m =-4k +33,直线AB 化为y =k x -43 -1,过定点43,-1 ;若m +4k -3=0,则m =-4k +3,直线AB 化为y =k x -4 +3,它过点P 4,3 ,舍去综上,直线AB 恒过定点43,-1 5.(2023届福建师范大学附属中学高三上学期月考)在平面直角坐标系xOy 中, 设点P -13,0 ,Q 13,0 ,点G 与P ,Q 两点的距离之和为43,N 为一动点, 点N 满足向量关系式:GN +GP +GQ =0 .(1)求点N 的轨迹方程C ;(2)设C 与x 轴交于点A ,B (A 在B 的左侧), 点M 为C 上一动点(且不与A ,B 重合).设直线AM ,x 轴与直线x =4分别交于点R ,S ,取E (1,0),连接ER ,证明:ER 为∠MES 的角平分线.【解析】(1)设点N (x ,y ),G (x ,y ),则由点G 与P ,Q 两点的距离之和为43>|PQ |=23,可得点G 的轨迹是以P ,Q 为焦点且长轴长为43的椭圆,其轨迹方程为94x 2+3y 2=1,由GN +GP +GQ =0 ,可得x =x 3,y =y 3,代入点G 的轨迹方程,可得:94x 3 2+3y 32=1,所以点N 的轨迹方程C :x 24+y 23=1;(2)设点M (x 0,y 0),则ME :y =y 0x 0-1(x -1),即y 0x -(x 0-1)y -y 0=0,MA :y =y 0x 0+2(x +2),令x =4,得y =6y 0x 0+2,∴R 4,6y 0x 0+2,则点R 到直线ME 的距离为:d =4y 0-6y 0(x 0-1)x 0+2-y 0y 20+(x 0-1)2=|3y 0(4-x 0)|(x 0+2)y 20+(x 0-1)2=(12-3x 0)|y 0|(x 0+2)y 20+(x 0-1)2,要证ER 为∠MES 的角平分线,只需证d =|RS |,又|RS |=|y R |=6|y 0|x 0+2,∵y 0≠0,所以d =|RS |,当且仅当4-x 0y 20+(x 0-1)2=2,即(4-x 0)2=4[y 20+(x 0-1)2]时,又(x 0,y 0)在C 上,则x 204+y 203=1,即4y 20=12-3x 20,代入上式可得16-8x 0+x 20=12-3x 20+4x 20-8x 0+4恒成立,∴ER 为∠MES 的角平分线.6.(2023届云南省大理市辖区高三统一检测)已知F 1,F 2为椭圆C 的左、右焦点,点M 1,32为其上一点,且MF 1 +MF 2 =4.(1)求椭圆C 的标准方程;(2)过点F 1的直线l 与椭圆C 相交于P ,Q 两点,点P 关于坐标原点O 的对称点R ,试问△PQR 的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.【解析】(1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),则2a =4,1a 2+94b2=1,解之得:{a 2=4,b 2=3,所以椭圆的标准方程为x 24+y 23=1.(2)如图所示,设直线l :x =my -1,则{x =my -1,3x 2+4y 2=12,消去x 整理得3m 2+4 y 2-6my -9=0,设P x 1,y 1 ,Q x 2,y 2 ,△PQR 的面积为S ,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4又Δ=36m 2+363m 2+4 =36×4m 2+1 >0,则S =2S △POQ =2×12×OF 1 ×y 1-y 2 =y 1-y 2 =(y 1+y 2)2-4y 1y 2=36×4m 2+13m 2+4=12m 2+13m 2+4,令m 2+1=t (t ≥1),则S =12t 3t 2+1=123t +1t(t ≥1),又设f (t )=3t +1t ,则f (t )=3-1t2>0,∴f (t )在[1,+∞)上为增函数,f (t )min =f (1)=4,∴S max =3,所以,存在当m =0时,即直线l 的方程为x =-1,△PQR 的面积有最大值,其最大值为37.(2022届福建省福州第十八中学高三上学期考试)已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ =9QF,求直线OQ 斜率的最大值.【解析】(1)抛物线C :y 2=2px (p >0)的焦点F p 2,0 ,准线方程为x =-p2,由题意,该抛物线焦点到准线的距离为p 2--p2=p =2,所以该抛物线的方程为y 2=4x ;(2)设Q x 0,y 0 ,则PQ =9QF=9-9x 0,-9y 0 ,所以P 10x 0-9,10y 0 ,由P 在抛物线上可得10y 0 2=410x 0-9 ,即x 0=25y 20+910,据此整理可得点Q 的轨迹方程为y 2=25x -925,所以直线OQ 的斜率k OQ =y 0x 0=y 025y 20+910=10y 025y 20+9,当y 0=0时,k OQ =0;当y 0≠0时,k OQ =1025y 0+9y 0,当y 0>0时,因为25y 0+9y 0≥225y 0⋅9y 0=30,此时0<k OQ ≤13,当且仅当25y 0=9y 0,即y 0=35时,等号成立;当y 0<0时,k OQ <0;综上,直线OQ 的斜率的最大值为13.8.(2023届陕西师范大学附属中学、渭北中学等高三上学期联考)已知抛物线C :y 2=2px (p >0),O 是坐标原点,F 是C 的焦点,M 是C 上一点,|FM |=4,∠OFM =120°.(1)求抛物线C 的标准方程;(2)设点Q x 0,2 在C 上,过Q 作两条互相垂直的直线QA ,QB ,分别交C 于A ,B 两点(异于Q 点).证明:直线AB 恒过定点.【解析】(1)由|FM |=4,∠OFM =120°,可得M p2+2,±23 ,代入C :12=2p p2+2=p 2+4p .解得p =2或p =-6(舍),所以抛物线的方程为:y 2=4x .(2)由题意可得Q (1,2),直线AB 的斜率不为0,设直线AB 的方程为x =my +n ,设A x 1,y 1 ,B x 2,y 2 ,由y 2=4x x =my +n ,得y 2-4my -4n =0,从而Δ=16m 2+16n >0,则y 1+y 2=4m y 1y 2=-4n .所以x 1+x 2=m y 1+y 2 +2n =4m 2+2n ,x 1x 2=my 1+n my 2+n =m 2y 1y 2+mn y 1+y 2 +n 2=n 2,∵QA ⊥QB ,∴QA ⋅QB=x 1-1 x 2-1 +y 1-2 y 2-2 =0,故x 1x 2-x 1+x 2 +1+y 1y 2-2y 1+y 2 +4=0,整理得n 2-4m 2-6n -8m +5=0.即(n -3)2=4(m +1)2,从而n -3=2(m +1)或n -3=-2(m +1),即n =2m +5或n =-2m +1.若n =-2m +1,则x =my +n =my -2m +1=m (y -2)+1,过定点(1,2),与Q 点重合,不符合;若n =2m +5,则x =my +n =my +2m +5=m (y +2)+5,过定点(5,-2).综上,直线AB 过异于Q 点的定点(5,-2).9.(2023届广东省潮阳实验、湛江一中、深圳实验三校高三上学期9月联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,椭圆上一动点P 与左、右焦点构成的三角形面积最大值为 3.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A ,B ,直线PQ 交椭圆C 于P ,Q 两点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,已知k 1=3k 2.①求证:直线PQ 恒过定点;②设△APQ 和△BPQ 的面积分别为S 1,S 2,求S 1-S 2 的最大值.【解析】(1)由题意c a =32bc =3a 2=b 2+c2 ,解得a 2=4b 2=1 ,所以椭圆C 的方程为x 24+y 2=1.(2)①依题意A (-2,0),B (2,0),设P x 1,y 1 ,Q x 2,y 2 ,若直线PQ 的斜率为0则P ,Q 关于y 轴对称,必有k AP =-k BQ ,不合题意.所以直线PQ 斜率必不为0,设其方程为x =ty +n (n ≠±2),与椭圆C 联立x 2+4y 2=4x =ty +n,整理得:t 2+4 y 2+2tny +n 2-4=0,所以Δ=16t 2+4-n 2 >0,且y 1+y 2=-2tn t 2+4,y 1y 2=n 2-4t 2+4.因为P x 1,y 1 是椭圆上一点,即x 214+y 21=1,所以k AP ⋅k BP =y 1x 1+2⋅y 1x 1-2=y 21x 21-4=1-x 214x 21-4=-14,则k AP =-14k BP =3k BQ ,即12k BP ⋅k BQ =-1因为12k BP ⋅k BQ =12y 1y 2x 1-2 x 2-2 =12y 1y 2ty 1+n -2 ty 2+n -2=12y 1y 2t 2y 1y 2+t (n -2)y 1+y 2 +(n -2)2=12n 2-4t 2+4t 2n 2-4 t 2+4-2t 2n (n -2)t 2+4+(n -2)2=12(n +2)t 2(n +2)-2t 2n +(n -2)t 2+4 =3(n +2)n -2=-1,所以n =-1,此时Δ=16t 2+4-n 2 =16t 2+3 >0,故直线PQ 恒过x 轴上一定点D -1,0 .②由①得:y 1+y 2=2t t 2+4,y 1y 2=-3t 2+4,所以S 1-S 2 =12⋅y 1-y 2 ⋅2--1 -12⋅y 1-y 2 ⋅-2--1 =y 1-y 2=y 1+y 2 2-4y 1y 2=4t 2+3t 2+4=4t 2+4 -1t 2+4 2=41t 2+4-1t 2+42=4-1t 2+4-12 2+14,而1t 2+4∈0,14 ,当1t 2+4=14时S 1-S 2 的最大值为3.10.(2022届云南省红河州高三检测)在平面直角坐标系xOy 中,点M 是以原点O 为圆心,半径为a 的圆上的一个动点.以原点O 为圆心,半径为b a >b >0 的圆与线段OM 交于点N ,作MD ⊥x 轴于点D ,作NQ ⊥MD 于点Q .(1)令∠MOD =α,若a =4,b =1,α=π3,求点Q 的坐标;(2)若点Q 的轨迹为曲线C ,求曲线C 的方程;(3)设(2)中的曲线C 与x 轴的正半轴交于点A ,与y 轴的正负半轴分别交于点B 1,B 2,若点E 、F 分别满足AE =-3OE ,4AF =3OB 2,证明直线B 1E 和B 2F 的交点K 在曲线C 上.【解析】(1)设Q x ,y ,则由题知x =x M =4cos π3=2y =y D =sin π3=32,因此Q 2,32 ;(2)设∠MOD =α及Q x ,y ,则由题知x =a cos αy =b sin α ,则点Q 的轨迹C 为椭圆,方程为:x2a 2+y 2b 2=1a >b >0 ;(3)设K x ,y ,由知,B 10,b ,E a 4,0 ,B 20,-b ,F a ,-34b ,l B 1E :xa 4+y b =1,即4bx +ay =ab ,l B 2F :y +b -34b +b=x a ,即bx -4ay =4ab ,联列上述直线方程,解得x =817ay =-1517bx 2a 2+y 2b 2=82172+152172=1,因此交点K 在椭圆C 上.11.(2022届广东省六校高三上学期联考)在平面直角坐标系xoy 中,已知圆A :x +2 2+y 2=8,B 2,0 ,动圆P 经过点B 且与圆A 相外切,记动圆的圆点P 的轨迹为C .(1)求C 的方程;(2)试问,在x 轴上是否存在点M ,使得过点M 的动直线l 交C 于E ,F 两点时,恒有∠EAM =∠FAM ?若存在,求出点M 的坐标;若不存在,请说明理由.【解析】(1)设动圆P 的半径长为r ,则PB =r ,PA =r +22,∴PB -PA =2 2.因此,圆心P 的轨迹为以A -2,0 、B 2,0 为焦点,实轴长为22的双曲线的右支,设C 的方程为x 2a 2-y 2b2=1(x >0),则根据双曲线定义a =2,c =2,∴b 2=c 2-a 2=2,因此C 的方程为x 22-y 22=1(x >0).(说明:没写x 的范围扣1分)(2)不存在满足条件的点M ,理由如下:假设存在满足条件的点M ,设点M 的坐标为m ,0 ,直线l 的斜率为k ,则直线l 的方程为y =k x -m ,由y =k x -m ,x 22-y 22=1,消去y 并整理,得k 2-1 x 2-2mk 2x +k 2m 2+2=0,设E x 1,y 1 、F x 2,y 2 ,则x 1+x 2=2mk 2k 2-1,x 1x 2=k 2m 2+2k 2-1,(*)由∠EAM =∠FAM ,得k AE +k AF =0,即y 1x 1+2+y 2x 1+2=0,将y 1=k x 1-m ,y 2=k x 2-m 代入上式并化简,得2x 1x 2+2-m x 1+x 2 -4m =0.将(*)式代入上式,有2⋅k 2m 2+2k 2-1+2-m ⋅2mk 2k 2-1-4m =0,解得m =-1.而当直线l 交C 于E ,F 两点时,必须有x 1+x 2>0且x 1x 2>0.当m =-1时,x 1+x 2=-2k 2k 2-1,x 1x 2=k 2+2k 2-1,由-2k 2k 2-1>0,k 2+2k 2-1>0,⇒k 2<1,k 2>1, k 无解,则当m =-1时,不符合条件.因此,不存在满足条件的点M .12.(2022届广东省高三上学期12月大联考)已知圆(x +1)2+y 2=16的圆心为A ,点P 是圆A 上的动点,点B 是抛物线y 2=4x 的焦点,点G 在线段AP 上,且满足GP =GB .(1)求点G 的轨迹E 的方程;(2)不过原点的直线l 与(1)中轨迹E 交于M ,N 两点,若线段MN 的中点Q 在抛物线y 2=4x 上,求直线l 的斜率k 的取值范围.【解析】(1)易知A -1,0 ,∵点B 是抛物线y 2=4x 的焦点,∴B 1,0 ,依题意GA +GB =AP =4>2=AB ,所以点G 轨迹是一个椭圆,其焦点分别为A ,B ,长轴长为4,设该椭圆的方程为x 2a 2+y 2b2=1(a >b >0),则2a =4,2c =2,∴a =2,c =1,∴b 2=a 2-c 2=3,故点G 的轨迹E 的方程为x 24+y 23=1.(2)易知直线1的斜率存在,设直线1:y =kx +t t ≠0 ,M x 1,y 1 ,N x 2,y 2 ,Q x 0,y 0 ,由y =kx +t 3x 2+4y 2=12得:4k 2+3 x 2+8ktx +4t 2-12=0,∵Δ=(8kt )2-43+4k 2 4t 2-12 >0,即4k 2-t 2+3>0①又x 1+x2=-8kt 4k 2+3,x 1⋅x 2=4t 2-124k 2+3故Q -4kt 4k 2+3,3t 4k 2+3 ,将Q -4kt 4k 2+3,3t4k 2+3,代λy 2=4x ,得t =-16k 4k 2+39②,k ≠0 ,将②代入①,得:162k 24k 2+3 <81,4×162k 4+3×162k 2-81<0,即k 4+34k 2-932 2<0,即k 2-332 k 2+2732 <0,即k 2-332<0,∴-68<k <68且k ≠0,即k 的取值范围为:-68<k <0或0<k <68.。
圆锥曲线中轨迹方程问题的求法
![圆锥曲线中轨迹方程问题的求法](https://img.taocdn.com/s3/m/c6ca20ee80c758f5f61fb7360b4c2e3f57272572.png)
第3讲 圆锥曲线中轨迹方程问题的求法一、考情分析 求曲线的轨迹方程是解析几何的两个基本问题之一。
求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系 这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点 。
二、经验分享求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法(1)直接法 直接法是将圆锥曲线中动点满足的几何关系或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求;(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程;(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程;求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程”是两个不同的概念三、题型分析(一) 直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程 当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1 已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常 数()0>λλ(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【变式训练】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。
最全的圆锥曲线轨迹方程求法(知识借鉴)
![最全的圆锥曲线轨迹方程求法(知识借鉴)](https://img.taocdn.com/s3/m/644d7934c8d376eeafaa3144.png)
圆锥曲线轨迹方程的解法目录一题多解 (2)一.直接法 (4)二. 相关点法 (7)三. 几何法 (11)四. 参数法 (13)五. 交轨法 (15)六. 定义法 (17)一题多解设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦OQ ,求所对弦的中点P 的轨迹方程。
一.直接法设P (x,y ),OQ 是圆C 的一条弦,P 是OQ 的中点,则CP ⊥OQ ,x ≠0,设OC 中点为M (0,21),则|MP |=21|OC |=21,得(x -21)2+y 2=41(x ≠0),即点P 的轨迹方程是(x -21)2+y 2=41(0<x ≤1)。
二.定义法∵∠OPC =90°,∴动点P 在以M (0,21)为圆心,OC 为直径的圆(除去原点O )上,|OC |=1,故P 点的轨迹方程为(x -21)2+y 2=41(0<x ≤1)三.相关点法设P (x,y ),Q (x 1,y 1),其中x 1≠0,∴x 1=2x,y 1=2y ,而(x 1-1)2+y 2=1 ∴(2x -1)2+2y 2=1,又x 1≠0,∴x ≠0,即(x -21)2+y 2=41(0<x ≤1)四.参数法①设动弦PQ 的方程为y=kx ,代入圆的方程(x -1)2+kx 2=1,即(1+k 2)x 2-2x =0,∴.12221k x x +=+ 设点P (x,y ),则22211],1,0(112kkkx y k x x x +==∈+=+= 消去k 得(x -21)2+y 2=41(0<x ≤1)②另解 设Q 点(1+cos θ,sin θ),其中cos θ≠-1,P (x,y ),则,2sin ],1,0(2cos 1θθ=∈+=y x 消去θ得(x -21)2+y 2=41(0<x ≤1)一.直接法课本中主要介绍的方法。
若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标),(y x 后,就可根据命题中的已知条件研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x 、y 的关系式。
圆锥曲线轨迹问题
![圆锥曲线轨迹问题](https://img.taocdn.com/s3/m/7943c413c281e53a5802ff24.png)
有关圆锥曲线轨迹问题1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、已知直角坐标系,点Q (2,0),圆C 方程为122=+y x ,动点M 到圆C 的切线长与MQ的比等于常数)0(>λλ,求动点M 的轨迹。
【练习】如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得PM =. 试建立适当的坐标系,并求动点P 的轨迹方程.2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。
例2、已知动圆过定点,02p ⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.求动圆圆心C 的轨迹的方程;,02p ⎛⎫ ⎪⎝⎭2p x =-【练习】 已知圆O 的方程为 x 2+y 2=100,点A 的坐标为(-6,0),M 为圆O 上任一点,AM 的垂直平分线交OM 于点P ,求点P 的方程。
三、相关点法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x ’,y ’)的运动而有规律的运动,且动点Q 的轨迹为给定或容易求得,则可先将x ’,y ’表示为x,y 的式子,再代入Q 的轨迹方程,然而整理得P 的轨迹方程,代入法也称相关点法。
几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律和动点满足的条件,然而得出动点的轨迹方程。
例3、如图,从双曲线x 2-y 2=1上一点Q 引直线x+y=2的垂线,垂足为N 。
求线段QN 的中点P 的轨迹方程。
【练习】已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT求点T 的轨迹C 的方程;四、参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。
高三数学解答题难题突破—圆锥曲线中动点轨迹方程问题
![高三数学解答题难题突破—圆锥曲线中动点轨迹方程问题](https://img.taocdn.com/s3/m/5d15c689c67da26925c52cc58bd63186bdeb9258.png)
高三数学解答题难题突破—圆锥曲线中动点轨迹方程问题本文介绍了解动点轨迹问题的四种方法:直译法、定义法、代入法和参数法。
其中,直译法包括建系、设点、列式、代换和证明五个步骤;定义法则是根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;代入法和参数法则是在特定条件下使用的方法。
此外,文章还提到了解轨迹问题时需要注意的两点:求点的轨迹与求轨迹方程是不同的要求,要验证曲线上的点是否都满足方程。
接下来,文章以一个例题为例,介绍了利用代点法求轨迹方程的具体步骤。
该例题要求求出点P的轨迹方程,通过设点、列式、代换和证明四个步骤,最终得出了轨迹方程x2+y2=2.此外,文章还介绍了如何利用轨迹方程验证曲线上的点是否都满足方程,以及如何去掉满足方程的解而不再曲线上的点。
最后,文章介绍了另一种解轨迹问题的方法:定义法。
该方法是先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程。
I)设圆心C的坐标为(x,y),则圆方程为(x-1)^2+y^2=1,又因为在y轴上截得的弦长为2,所以C到y轴的距离为1,即x^2+y^2=1.联立两式可得圆心C的轨迹方程为x^2+y^2-x-1=0.II)由题意可知,直线l的斜率为k,且过点Q(1,0),则直线方程为y=k(x-1)。
将直线方程代入圆的方程中,得到方程x^2+(k(x-1))^2-x-1=0,化简可得x^2(1+k^2)-2xk^2+k^2-1=0.由于直线l与轨迹C有交点A、B,所以方程有两个不同的实根,即Δ=4k^4-4(k^2+1)(k^2-1)≥0.解得-1≤k≤1.再将k带入直线方程可求出交点A、B的坐标,进而证明AR//FQ。
求AB中点的坐标为((k^2-1)/(1+k^2),k(k^2-2)/(1+k^2)),将其代入x^2+y^2-x-1=0中得到轨迹方程为x^4-2x^3+6x^2-2x+1-4y^2=0.1.定点、定值问题的解法定点、定值问题通常可以通过设定参数或取特殊值来确定“定点”是什么、“定值”是多少。
最全的圆锥曲线轨迹方程求法
![最全的圆锥曲线轨迹方程求法](https://img.taocdn.com/s3/m/7f91e9c627284b73f3425076.png)
圆锥曲线轨迹方程的解法目录一题多解 (2)一.直接法 (3)二. 相关点法 (6)三. 几何法 (10)四. 参数法 (12)五. 交轨法 (14)六. 定义法 (16)一题多解设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦OQ ,求所对弦的中点P 的轨迹方程。
一.直接法设P (x,y ),OQ 是圆C 的一条弦,P 是OQ 的中点,则CP ⊥OQ ,x ≠0,设OC中点为M (0,21),则|MP |=21|OC |=21,得(x -21)2+y 2=41(x ≠0),即点P 的轨迹方程是(x -21)2+y 2=41 (0<x ≤1)。
二.定义法∵∠OPC =90°,∴动点P 在以M (0,21)为圆心,OC 为直径的圆(除去原点O )上,|OC |=1,故P 点的轨迹方程为(x -21)2+y 2=41(0<x ≤1) 三.相关点法设P (x,y ),Q (x 1,y 1),其中x 1≠0,∴x 1=2x,y 1=2y ,而(x 1-1)2+y 2=1∴(2x -1)2+2y 2=1,又x 1≠0,∴x ≠0,即(x -21)2+y 2=41(0<x ≤1) 四.参数法①设动弦PQ 的方程为y=kx ,代入圆的方程(x -1)2+kx 2=1,即(1+k 2)x 2-2x =0,∴.12221k x x +=+ 设点P (x,y ),则22211],1,0(112k k kx y k x x x +==∈+=+=消去k 得(x -21)2+y 2=41(0<x ≤1) ②另解 设Q 点(1+cos θ,sin θ),其中cos θ≠-1,P (x,y ),则,2sin ],1,0(2cos 1θθ=∈+=y x 消去θ得(x -21)2+y 2=41(0<x ≤1)一.直接法课本中主要介绍的方法。
若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标),(y x 后,就可根据命题中的已知条件研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x 、y 的关系式。
高考数学解答题(新高考)圆锥曲线中的轨迹方程问题 (典型例题+题型归类练)(解析版)
![高考数学解答题(新高考)圆锥曲线中的轨迹方程问题 (典型例题+题型归类练)(解析版)](https://img.taocdn.com/s3/m/205ce583f424ccbff121dd36a32d7375a417c63b.png)
专题01 圆锥曲线中的轨迹方程问题(典型例题+题型归类练)目录类型一:定义法求轨迹方程类型二:直接法类型三:代入法(相关点法)类型四:点差法一、必备秘籍1、曲线方程的定义一般地,如果曲线C 与方程(,)0F x y =之间有以下两个关系: ①曲线C 上的点的坐标都是方程(,)0F x y =的解; ②以方程(,)0F x y =的解为坐标的点都是曲线C 上的点.此时,把方程(,)0F x y =叫做曲线C 的方程,曲线C 叫做方程(,)0F x y =的曲线. 2、求曲线方程的一般步骤:(1)建立适当的直角坐标系(如果已给出,本步骤省略); (2)设曲线上任意一点的坐标为),(y x ; (3)根据曲线上点所适合的条件写出等式; (4)用坐标表示这个等式,并化简; (5)确定化简后的式子中点的范围.上述五个步骤可简记为:求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围. 3、求轨迹方程的方法: 3.1定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
3.2直接法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(,)x y 表示该等量关系式,即可得到轨迹方程。
3.3代入法(相关点法):如果动点P 的运动是由另外某一点P '的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线y x 、例题5.(2022·湖北武汉·模拟预测)已知P 是平面上的动点,且点P 与(2,0),(2,0)F F -的距离之差的的直线分别与x 轴的正半轴和y 为坐标原点.若2BP PA =,且1OQ AB ⋅=,则点,则0,0a b >>,(,BP x y ∴=,(PA a =-2BP PA =,a ∴又(),AB a b =-=,(,OQ x =-,1OQ AB ⋅=,()332x x ⎛⎫∴-⋅-+ ⎪⎝⎭)2230,0x y y +=>.故答案为:)2302x y +>.例题2.(2022·全国·高二课时练习)已知定点()0,4A ,满足12NR NM =,又12NR NM =,可得例题5.(2022·全国·高二课时练习)已知两个定点AP OB PB ⋅=(O 为坐标原点).(1)求动点P 的轨迹【答案】(1)24y x =设(),P x y ,()AP x =+,()1,0OB =,(1PB =-,(AP OB x ⋅=+()221x B y P =-+,因为AP OB PB ⋅=,则)221x x y +=-+,所以222121x x x x ++=-+,即24y x =.例题6.(2022·四川·富顺第二中学校高二阶段练习(文))已知直线线l 垂直于轴,动点在直线l 上,且OP OQ ⊥,记点的轨迹为C ,设点P 的坐标为(),x y ,则(Q x OP OQ ⊥,∴0OP OQ ⋅= 220x y -=,0x =时,P 、O 、Q 三点共线,不符合题意,故曲线C 的方程为(22x y x =≠ 412NR NM =;AP OB PB ⋅=;OP OQ ⊥等,根据这些已知条件直接转化为代数式求解.类型三:代入法(相关点法)21y =上运动时,连接A 与定点故答案为:()()22211x y -+-=,)()0,+∞.()22,x y ,(1221y y k-=)221212y y +=圆a=,24∴动圆圆心6.(2022·和2,动圆【答案】动圆O O=,大圆O的半径为5.过动点P分别作7.(2022·全国·高二课时练习)如图,圆O与圆O内切,且4【答案】圆心为(6,0),半径为3的圆.【详解】如图,以O O所在直线为x轴,以O O的中点为原点,设动点(,)P x y ,(,0)Q t (01)t ≤≤, 高二专题练习)在ABC 中,2BC y x =⨯+足,且33QM QP =. 求动点M 的轨迹Γ的方程;【答案】(1)221x y +=;0,),(,)y M x y ,则Q ,所以0(,0),(,QP x QM x y ==,由33QM QP =得x y ⎧=⎪⎨⎪⎩,即()22313x y +=,故动点的轨迹Γ的方程为x【答案】点M的轨迹方程为:x2+y2=a2(a>0).表示圆心在原点半径为a的圆.M x y,若A、B不与原点重合时,则AOB是直角三角形,且∠O为直角,设线段AB的中点(,)为半径的圆,。
圆锥曲线中轨迹问题
![圆锥曲线中轨迹问题](https://img.taocdn.com/s3/m/1c1aad57f61fb7360a4c6585.png)
圆锥曲线中轨迹问题曲线轨迹方程的探求一直是高考中的重点和热点,涉及面广,综合性强。
曲线轨迹方程的探求有两种类型,第一种类型是几何关系已知,轨迹未知;第二种类型是曲线形状已知,求方程。
类型一常用的方法有直接法、相关点法和参数法。
类型二常用的方法有定义法和待定系数法。
(1)直接法:如果题目中的条件有明显的等量关系,或者可以利用平面几何的基本知识推出等量关系,求方程时便可利用直接法。
(2)定义法:如果所给几何条件能够确定符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用曲线定义写出方程,这种方法称为定义法。
(3)相关点法:如果动点P(x,y)依赖于另一动点Q(a,b),而Q(a,b)又在某一已知曲线上运动,则可先列出关于x,y,a,b的方程组,利用x,y表示出a,b,把a,b代入已知曲线方程便可得出动点P的轨迹方程,又称为代入法。
(4)参数法:求轨迹方程有时很难直接找出动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然后再从所求式子中消去参数,得出动点的轨迹方程。
(5)交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,如求两动直线的交点时常用这种方法,也可以引入参数来建立这些动曲线的联系,然后消去参数得到轨迹方程。
(6)几何法:利用平面几何或解析几何的有关基础知识去分析图形性质,发现动点运动规律和动点满足的条件,然后求出动点的轨迹方程。
热点透析题型1:直接法【例1】已知定点A、B,且AB=2a。
如果动点P到点A的距离和到点B的距离之比为2:1,求点P的轨迹方程,并说明它表示什么曲线?【解】本题首先要建立坐标系,建立坐标系的要求是保持对称性,以使所求方程简单,容易看出方程表示什么曲线。
如图,取AB所在的直线为x轴,从A到B为正方向,以AB的中点O为原点,以AB的中垂线为y轴,建立直角坐标系,则A(-a,0)、B(a,0)。
设P(x,y)。
∵即化简整理,得,即。
这就是动点P的轨迹方程。
高中数学中的圆锥曲线与轨迹问题
![高中数学中的圆锥曲线与轨迹问题](https://img.taocdn.com/s3/m/78706e4ef02d2af90242a8956bec0975f465a49e.png)
高中数学中的圆锥曲线与轨迹问题在高中数学中,圆锥曲线与轨迹问题是一个重要的课题。
圆锥曲线是指在平面上由一个动点与一个固定点和一个固定直线的位置关系所确定的曲线。
而轨迹问题则是研究动点在运动过程中所形成的路径。
圆锥曲线包括椭圆、双曲线和抛物线三种类型。
这些曲线在数学和物理学中都有广泛的应用。
在几何学中,椭圆常常用于描述行星的轨道、电子的轨道等。
双曲线则常常用于描述双星系统、双曲线天体轨道等。
抛物线则常常用于描述抛物运动、天体轨道等。
在解决圆锥曲线问题时,我们需要掌握一些基本的概念和性质。
例如,椭圆的定义是平面上到两个定点的距离之和等于常数的点的集合。
而双曲线的定义是平面上到两个定点的距离之差等于常数的点的集合。
抛物线的定义是平面上到一个定点的距离等于定直线的距离的点的集合。
在研究圆锥曲线的性质时,我们还需要掌握一些重要的定理。
例如,离心率是椭圆和双曲线的一个重要参数,它可以用来描述曲线的形状。
离心率越接近于0,曲线越接近于圆形;离心率越大于1,曲线越接近于双曲线。
另外,焦点和准线也是圆锥曲线的重要概念。
对于椭圆和双曲线来说,焦点是定点到曲线上任意一点的距离之和等于常数的点;准线是定直线与曲线的交点。
对于抛物线来说,焦点是定点到曲线上任意一点的距离等于定直线的距离的点。
除了圆锥曲线,轨迹问题也是数学中的一个重要课题。
轨迹问题是研究动点在运动过程中所形成的路径。
例如,如果一个点在平面上以一定的速度沿着一条直线运动,那么它所形成的路径就是一条直线。
如果一个点在平面上以一定的速度绕着一个固定点旋转,那么它所形成的路径就是一个圆。
轨迹问题在物理学中也有广泛的应用。
例如,行星绕太阳的轨道、地球上物体的自由落体运动等都可以用轨迹问题来描述。
解决轨迹问题时,我们需要运用一些基本的数学方法。
例如,我们可以使用向量来描述动点的位置和速度。
向量可以表示动点的位移和速度的方向和大小。
另外,我们还可以使用微积分的方法来解决轨迹问题。
圆锥曲线的轨迹方程的求法
![圆锥曲线的轨迹方程的求法](https://img.taocdn.com/s3/m/0929d04fbb4cf7ec4afed0a3.png)
圆锥曲线轨迹方程的求法知识归纳求轨迹方程的常用方法:⒈直接法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直接法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点M 的坐标x ,y 表示相关点P 的坐标(Xo 、Yo ),然后代入点P 的坐标(Xo 、Yo )所满足的曲线方程,整理化简便得到动点Q 轨迹方程,这种求轨迹方程的方法叫做相关点法。
(用未知表示已知,带入已知求未知)⒋参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一变数t 的关系,得再消去参变数t ,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
类型一 直接法求轨迹方程【例1】已知两点M(-2,0),N(2,0),点P 为坐标平面内的动点,满足|MN ⃑⃑⃑⃑⃑⃑ |⋅|MP ⃑⃑⃑⃑⃑⃑ |+MN ⃑⃑⃑⃑⃑⃑ ⋅NP ⃑⃑⃑⃑⃑ =0 ,则动点P(x ,y)的轨迹方程为 。
【点评】直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、化简这四个步骤,如果给出了直角坐标系则可省去建系这一步,求出曲线的方程后还需注意检验方程。
【变式训练】1.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.2.已知两点M(-1,0),N(1,0),点P 为坐标平面内的动点,且满足|MN ⃑⃑⃑⃑⃑⃑⃑ |⋅|MP ⃑⃑⃑⃑⃑⃑ |+MN ⃑⃑⃑⃑⃑⃑⃑ ⋅NP ⃑⃑⃑⃑⃑ =0,则动点P 的轨迹方程为3.在平面直角坐标系xOy 中,点P(a ,b)为动点,F 1,F 2分别为椭圆x 2a 2+y2b 2=1(a >b >0)的左、右焦点,已知△F 1PF 2为等腰三角形.设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.类型二 定义法求轨迹方程【例2】已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N 内切,圆心P的轨迹为曲线C,求C的方程.【点评】定义法求轨迹方程1.概念:求轨迹方程时,若动点与定点、定线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可以直接根据定义先定轨迹类型,再写出其方程,这种求轨迹方程的方法叫做定义法,其关键是准确应用解析几何中有关曲线的定义.(1)在利用圆锥曲线的定义求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.(2)利用定义法求轨迹方程时,还要看轨迹是不是完整的曲线,如果不是完整的曲线,则应对其中的变量x或y进行限制.【变式训练】1. 在△ABC中,BC=4,△ABC的内切圆切BC于D点,且BD-CD=22,则顶点A的轨迹方程为______________.2.设定点F(1,0),动圆D过点F且与直线x=−1相切.则动圆圆心D的轨迹方程为3.如图所示:在圆C:(x+1)2+y2=16内有一点A(1,0),点Q为圆C上一动点,线段AQ的垂直平分线与直线CQ 的连线交于点M ,根据椭圆定义可得点M 的轨迹方程为x 24+y 23=1;利用类比推理思想:在圆C :(x +3)2+y 2=16外有一点A(3,0),点Q 为圆C 上一动点,线段AQ 的垂直平分线与直线CQ 的连线交于点M ,根据双曲线定义可得点M 的轨迹方程为______.类型三 相关点法求轨迹方程【例3】 如图所示,抛物线E :y 2=2px(p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P(x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M. (1)求p 的值;(2)求动点M 的轨迹方程.【点评】相关点法的基本步骤(1)设点:设被动点坐标为(x ,y),主动点坐标为(x 1,y 1); (2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f (x ,y ),y 1=g (x ,y ); (3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.【变式训练】1.如图,动圆C 1:x 2+y 2=t 2,1<t <3与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点.点A 1,A 2分别为C 2的左、右顶点,求直线AA 1与直线A 2B 交点M 的轨迹方程.2.已知三角形ABC 的顶点A (−3,0)、B (3,0),若顶点C 在抛物线y 2=6x 上移动,则三角形ABC 的重心的轨迹方程为______类型四 参数法求轨迹方程【例4】在平面直角坐标系xOy 中,已知两点M(1,-3),N(5,1),若点C 的坐标满足OC →=tOM →+(1-t)ON →(t ∈R),且点C 的轨迹与抛物线y 2=4x 相交于A ,B 两点. (1)求证:OA ⊥OB ;(2)在x 轴上是否存在一点P(m,0)(m≠0),使得过点P 任意作一条抛物线y 2=4x 的弦,并以该弦为直径的圆都经过原点?若存在,求出m 的值及圆心的轨迹方程;若不存在,请说明理由.【点评】利用参数法求轨迹方程:一是选择合适的参数(可以是单参数,也可以是双参数);二是建立参数方程后消掉参数,消参数的方法有代入消参法、加减消参法、平方消参法等.【变式训练】设椭圆中心为原点O,一个焦点为F(0,1),长轴和短轴的长度之比为t.(1)求椭圆的方程;(2)设经过原点且斜率为t的直线与椭圆在y轴右侧部分的交点为Q,点P在该直线上,且OP2-1,当t变化时,求点P的轨迹方程,并说明轨迹是什么图形.OQ=t t类型五 交轨法法求轨迹方程例5 如右图,垂直于x 轴的直线交双曲线12222=-by a x 于M 、N 两点,21,A A 为双曲线的左、右顶点,求直线M A 1与N A 2的交点P 的轨迹方程,并指出轨迹的形状.【变式训练】抛物线)0(42>=p px y 的顶点作互相垂直的两弦OA 、OB ,求抛物线的顶点O 在直线AB 上的射影M 的轨迹。
圆锥曲线(求轨迹方程)
![圆锥曲线(求轨迹方程)](https://img.taocdn.com/s3/m/382dcbfdac51f01dc281e53a580216fc700a533e.png)
专题 圆锥曲线(求轨迹方程)求轨迹方程的常用方法(1)直接法:直接利用条件建立x ,y 之间的关系或F (x ,y )=0;(2)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;(3)代入转移法(相关点法):动点P (x ,y )依赖于另一动点Q (x 0,y 0)的变化而变化,并且Q (x 0,y 0)又在某已知曲线上,则可先用x ,y 的代数式表示x 0,y 0,再将x 0,y 0代入已知曲线得要求的轨迹方程.1.一个区别——“轨迹方程”与“轨迹”“求动点的轨迹方程”和“求动点的轨迹”是不同的.前者只须求出轨迹的方程,标出变量x ,y 的范围;后者除求出方程外,还应指出方程的曲线的图形,并说明图形的形状、位置、大小等有关的数据.2.双向检验——求轨迹方程的注意点求轨迹方程,要注意曲线上的点与方程的解是一一对应关系,检验应从两个方面进行:一是方程的化简是否是同解变形;二是是否符合实际意义,注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.考向一 直接法求轨迹方程【例1】 已知动点P (x ,y )与两定点M (-1,0),N (1,0)连线的斜率之积等于常数λ(λ≠0).(1)求动点P 的轨迹C 的方程;(2)试根据λ的取值情况讨论轨迹C 的形状.【解】 (1)由题意可知,直线PM 与PN 的斜率均存在且均不为零,所以k PM ·k PN =y x +1·y x -1=λ,整理得x 2-y 2λ=1(λ≠0,x ≠±1).即动点P 的轨迹C 的方程为x 2-y 2λ=1(λ≠0,x ≠±1).(2)①当λ>0时,轨迹C 为中心在原点,焦点在x 轴上的双曲线(除去顶点);②当-1<λ<0时,轨迹C 为中心在原点,焦点在x 轴上的椭圆(除去长轴的两个端点); ③当λ=-1时,轨迹C 为以原点为圆心,1为半径的圆除去点(-1,0),(1,0).④当λ<-1时,轨迹C 为中心在原点,焦点在y 轴上的椭圆(除去短轴的两个端点).【对点练习1】已知A ,B 为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若MN →2=λAN →·NB →,其中λ为常数,则动点M 的轨迹不可能是( )A .圆B .椭圆C .抛物线D .双曲线【解析】以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立坐标系,设M (x ,y ),A (-a,0),B (a,0),则N (x,0).因为MN →2=λAN →·NB →,所以y 2=λ(x +a )(a -x ),即λx 2+y 2=λa 2,当λ=1时,是圆的轨迹方程;当λ>0且λ≠1时,是椭圆的轨迹方程;当λ<0时,是双曲线的轨迹方程;当λ=0时,是直线的轨迹方程.综上,方程不表示抛物线的方程.【答案】 C图8-8- 2 图8-8- 1考向二 定义法求轨迹方程【例2】已知两个定圆O 1和O 2,它们的半径分别是1和2,且|O 1O 2|=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线.【解】 如图所示,以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴建立平面直角坐标系.由|O 1O 2|=4,得O 1(-2,0),O 2(2,0).设动圆M 的半径为r ,则由动圆M 与圆O 1内切,有|MO 1|=r -1;由动圆M 与圆O 2外切,有|MO 2|=r +2.∴|MO 2|-|MO 1|=3.∴点M 的轨迹是以O 1,O 2为焦点,实轴长为3的双曲线的左支.∴a =32,c =2,∴b 2=c 2-a 2=74.∴点M 的轨迹方程为4x 29-4y 27=1⎝ ⎛⎭⎪⎫x ≤-32.【对点练习2】如图8-8-1所示,已知圆A :(x +2)2+y 2=1与点B (2,0),分别求出满足下列条件的动点P 的轨迹方程.(1)△P AB 的周长为10;(2)圆P 与圆A 外切,且过B 点(P 为动圆圆心);(3)圆P 与圆A 外切,且与直线x =1相切(P 为动圆圆心).【解】(1)根据题意,知|P A |+|PB |+|AB |=10,即|P A |+|PB |=6>4=|AB |,故P 点轨迹是椭圆,且2a =6,2c =4,即a =3,c =2,b = 5.因此其轨迹方程为x 29+y 25=1(y ≠0).(2)设圆P 的半径为r ,则|P A |=r +1,|PB |=r ,因此|P A |-|PB |=1.由双曲线的定义知,P 点的轨迹为双曲线的右支,且2a =1,2c =4,即a =12,c =2,b =152,因此其轨迹方程为4x 2-415y 2=1⎝ ⎛⎭⎪⎫x ≥12. (3)依题意,知动点P 到定点A 的距离等于到定直线x =2的距离,故其轨迹为抛物线,且开口向左,p =4. 因此其轨迹方程为y 2=-8x .考向三 代入法(相关点法)求轨迹方程【例3】如图8-8-2所示,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.【解】(1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎪⎨⎪⎧x P=x ,y P =54y . ∵P 在圆上,∴x 2+⎝ ⎛⎭⎪⎫54y 2=25,即C 的方程为x 225+y 216=1.图8-8-5(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x 225+(x -3)225=1,即x 2-3x -8=0.∴x 1=3-412,x 2=3+412.∴线段AB 的长度为|AB |=(x 1-x 2)2+(y 1-y 2)2=⎝ ⎛⎭⎪⎫1+1625(x 1-x 2)2=4125×41=415.【对点练习2】(2014·合肥模拟)如图8-8-5所示,以原点O 为圆心的两个同心圆的半径分别为3和1,过原点O 的射线交大圆于点P ,交小圆于点Q ,P 在y 轴上的射影为M .动点N 满足PM →=λPN →且PM →·QN→=0. (1)求点N 的轨迹方程;(2)过点A (0,3)作斜率分别为k 1,k 2的直线l 1,l 2与点N 的轨迹分别交于E ,F 两点,k 1·k 2=-9.求证:直线EF 过定点.【解】(1)由PM →=λPN →且PM →·QN →=0可知N ,P ,M 三点共线且PM ⊥QN . 过点Q 作QN ⊥PM ,垂足为N ,设N (x ,y ),∵|OP |=3,|OQ |=1,由相似可知P (3x ,y ).∵P 在圆x 2+y 2=9上,(3x )2+y 2=9,即y 29+x 2=1. 所以点N 的轨迹方程为y 29+x 2=1.(2)证明:设E (x E ,y E ),F (x F ,y F ),依题意,由⎩⎪⎨⎪⎧ y =k 1x +3,y 29+x 2=1⇒(k 21+9)x 2+6k 1x =0,① 解得x =0或x =-6k 1k 21+9. 所以x E =-6k 1k 21+9,y E =k 1⎝ ⎛⎭⎪⎫-6k 1k 21+9+3=27-3k 21k 21+9, ∴E ⎝ ⎛⎭⎪⎫-6k 1k 21+9,27-3k 21k 21+9. ∵k 1k 2=-9,∴k 2=-9k 1.用k 2=-9k 1替代①中的k 1, 同理可得F ⎝ ⎛⎭⎪⎫6k 1k 21+9,3k 21-27k 21+9. 显然E ,F 关于原点对称,∴直线EF 必过原点O .【达标训练】一、选择题1.若M ,N 为两个定点,且|MN |=6,动点P 满足PM →·PN →=0,则P 点的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 2.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线3.(2014·天津模拟)平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )图8-8-4 A .直线 B .椭圆 C .圆 D .双曲线4.(2014·合肥模拟)如图8-8-4所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于E ,则点E 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线5.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若BP →=2P A →, 且OQ →·AB →=1,则点P 的轨迹方程是 ( )A.32x 2+3y 2=1(x >0,y >0)B.32x 2-3y 2=1(x >0,y >0)C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)6.已知动点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线中点的轨迹方程是( )A .y =2x 2B .y =8x 2C .2y =8x 2-1D .2y =8x 2+1二、填空题7.平面上有三个点A (-2,y ),B ⎝ ⎛⎭⎪⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程是_______________________.8.动圆与⊙C 1:x 2+y 2=1外切,与⊙C 2:x 2+y 2-8x +12=0内切,则动圆圆心的轨迹是_______________________.9.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为_______________________.10.(2014·佛山模拟)在△ABC 中,A 为动点,B ,C 为定点,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a 2,0(a >0),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程是_____________.三、解答题11.已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆的圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于P ,Q 两点,交直线l 1于点R ,求RP →·RQ →的最小值.12.(2011·课标全国卷)在平面直角坐标系xOy 中,已知点A (0,-1),B 点在直线y =-3上,M 点满足MB →∥OA →,MA →·AB →=MB →·BA →,M 点的轨迹为曲线C .(1)求C 的方程;(2)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.13.(2013·课标全国卷Ⅱ)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程.【达标训练】 参考答案一、选择题1.A. 【解析】∵PM →·PN →=0,∴PM ⊥PN ,∴点P 的轨迹是以线段MN 为直径的圆.2.D. 【解析】由已知:|MF |=|MB |,由抛物线定义知,点M 的轨迹是以F 为焦点,l 为准线的抛物线.3.A .【解析】设C (x ,y ),因为OC →=λ1OA →+λ2OB →,所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎨⎧ x =3λ1-λ2,y =λ1+3λ2,解得⎩⎪⎨⎪⎧ λ1=y +3x 10,λ2=3y -x 10,又λ1+λ2=1,所以y +3x 10+3y -x 10=1,即x +2y =5,所以点C 的轨迹为直线,故选A.4.B .【解析】由题意知,|EA |+|EO |=|EB |+|EO |=r (r 为圆的半径)且r >|OA |,故E 的轨迹为以O ,A 为焦点的椭圆,故选B.5.A. 【解析】设P (x ,y ),A (x A,0),B (0,y B ),则BP →=(x ,y -y B ),P A →=(x A -x ,-y ),∵BP →=2P A →,∴⎩⎨⎧ x =2(x A -x ),y -y B =-2y ,即⎩⎪⎨⎪⎧ x A =32x ,y B=3y .∴A ⎝ ⎛⎭⎪⎫32x ,0,B (0,3y ). 又Q (-x ,y ),∴OQ →=(-x ,y ),AB →=⎝ ⎛⎭⎪⎫-32x ,3y ,∴OQ →·AB →=32x 2+3y 2=1, 则点P 的轨迹方程是32x 2+3y 2=1(x >0,y >0).6.C .【解析】设AP 中点M (x ,y ),P (x ′,y ′),则x =x ′2,y =y ′-12,∴⎩⎨⎧x ′=2x ,y ′=2y +1, 代入2x 2-y =0,得2y =8x 2-1,故选C.二、填空题7.y 2=8x 。
圆锥曲线轨迹方程的求法
![圆锥曲线轨迹方程的求法](https://img.taocdn.com/s3/m/a192ff00f011f18583d049649b6648d7c1c70832.png)
圆锥曲线轨迹方程的求法
一、直接法求轨迹方程
利用动点运动的条件得到等量关系,表示为x和y的等式。
例如,已知点A(-2,0)和B(3,0),动点P(x,y)满足PA·PB=x²,
那么点P的轨迹是抛物线。
二、有定义法求轨迹方程
根据圆锥曲线的基本定义解题。
例如,已知圆O的方程
为x²+y²=100,点A的坐标为(-6,0),M为圆O上的任意一点,AM的垂直平分线交OM于点P,那么点P的轨迹方程为
25/16=(x+3)²/y²,即椭圆。
三、用相关点法求轨迹方程
当动点M随着已知方程的曲线上另一动点C(x,y)运动时,找出点M与点C之间的坐标关系式,用(x,y)表示(x,y),再将
x和y代入已知曲线方程,即可得到点M的轨迹方程。
例如,从双曲线x²-y²=1上一点Q引直线x+y=2的垂线,垂足为N,
求线段QN的中点P的轨迹方程。
设动点P的坐标为(x,y),点
Q的坐标为(x₁,y₁),则N点的坐标为(2x-x₁,2y-y₁)。
因为N
点在直线x+y=2上,所以2x-x₁+2y-y₁=2.又因为PQ垂直于直线x+y=2,所以x-y+y₁-x₁=0.将两个方程联立,得到
x₁=2x+2y-1和y₁=2x+2y-1.因为点Q在双曲线上,所以x₁²-y₁²=1.将x₁和y₁代入公式中,得到动点P的轨迹方程式为2x²-2y²-2x+2y-1=0.
四、用参数法求轨迹方程
选取适当的参数,分别用参数表示动点坐标得到动点轨迹的普通方程。
圆锥曲线中的轨迹方程问题-(解析版)
![圆锥曲线中的轨迹方程问题-(解析版)](https://img.taocdn.com/s3/m/9e51406ba517866fb84ae45c3b3567ec102ddccb.png)
专题1 圆锥曲线的轨迹方程问题轨迹与轨迹方程高考题中在选择题或填空题中单独考查,在解答题中也会出现轨迹与轨迹方程的问题.本文主要研究圆锥曲线中关于轨迹方程求法。
首先正确理解曲线与方程的概念,会用解析几何的基本思想和坐标法研究几何问题,用方程的观点实现几何问题的代数化解决,并能根据所给条件选择适当的方法求曲线的轨迹方程,常用方法有:直译法、定义法、相关点法、参数(交轨)法等方法1、直译法:若动点运动的条件是一些已知(或通过分析得出)几何量的等量关系,可转化成含x,y 的等式,就得到轨迹方程。
直译法知识储备:两点间距离公式,点到直线的距离公式,直线的斜率(向量)公式。
经典例题:1.(2020·江苏徐州市·高三月考)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A 、B 的距离之比为定值λ(1λ≠)的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -、()4,0B ,点P 满足12PA PB =,设点P 所构成的曲线为C ,下列结论正确的是( ) A .C 的方程为()22416x y ++= B .在C 上存在点D ,使得D 到点()1,1的距离为3 C .在C 上存在点M ,使得2MO MA = D .在C 上存在点N ,使得224NO NA += 【答案】ABD【分析】设点P 的坐标,利用12PA PB =,即可求出曲线C 的轨迹方程,然后假设曲线C 上一点坐标,根据BCD 选项逐一列出所满足条件,然后与C 的轨迹方程联立,判断是否有解,即可得出答案.【详解】设点P (x ,y ),()2,0A -、()4,0B ,由12PA PB =,12=,化简得x 2+y 2+8x =0,即:(x +4)2+y 2=16,故A 选项正确;曲线C 的方程表示圆心为(﹣4,0),半径为4的圆,圆心与点(1,1)=﹣4,+4,而3∈﹣4,故B 正确;对于C 选项,设M (x 0,y 0),由|MO |=2|MA |,=又 ()2200416x y ++=,联立方程消去y 0得x 0=2,解得y 0无解,故C 选项错误;对于D 选项,设N (x 0,y 0),由|NO |2+|NA |2=4,得 ()2222000024x y x y ++++=,又()2200416x y ++=,联立方程消去y 0得x 0=0,解得y 0=0,故D 选项正确.2.(2020·湖南省高三期末)点(,)P x y 与定点(1,0)F 的距离和它到直线:4l x =距离的比是常数12. 求点P 的轨迹方程;【答案】22143x y +=12=,化简即可求出;12=,化简得:223412x y +=,故1C 的方程为22143x y +=.【点睛】该题考查的是有关解析几何的问题,涉及到的知识点是动点轨迹方程的求解.3.(2021年湖南省高三月考)已知动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54,求P 点的轨迹方程.【答案】轨迹方程是221169x y -=.【分析】利用动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54可得方程,化简由此能求出轨迹M 的方程.【详解】由题意,设P (x ,y ),则()22252516165x y x -+=⎛⎫- ⎪⎝⎭,化简得轨迹方程是221169x y -=. 故答案为221.169x y -=【点睛】本题主要考查轨迹方程的求法,属于基础题.由2、3题推广:圆锥曲线统一定义(第二定义):到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。
圆锥曲线轨迹方程经典例题
![圆锥曲线轨迹方程经典例题](https://img.taocdn.com/s3/m/f9026b017e21af45b307a8ab.png)
轨迹方程经典例题一、轨迹为圆:1、长为的线段的两个端点在轴和轴上移动,求线段AB的中点M的轨迹方程:已知M与两个定点(0,0),A(3,0)的距离之比为,求点M的轨迹方程;2、线段AB的端点B的坐标是(4,3),端点A在圆上运动,求AB的中点M的轨迹。
(2013新课标2卷文20)在平面直角坐标系中,已知圆在轴上截得线段长为,在轴上截得线段长为。
(1)求圆心的的轨迹方程;(2)若点到直线的距离为,求圆的方程。
3如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.4在平面直角坐标系中,点,直线.设圆的半径为,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.5(2013陕西卷理20)已知动圆过定点,且在轴上截得弦的长为8.(1)求动圆圆心的轨迹的方程;(2)已知点,设不垂直于轴的直线与轨迹交于不同的两点,若轴是的角平分线,证明直线过定点。
二、椭圆类型:3、定义法:点M(,)与定点F(2,0)的距离和它到定直线的距离之比为,求点M的轨迹方程.4、圆锥曲线第一定义:一个动圆与圆外切,同时与圆内切,求动圆的圆心轨迹方程。
5、圆锥曲线第一定义:点M()圆上的一个动点, 点(1,0)为定点。
线段的垂直平分线与相交于点Q(,),求点Q的轨迹方程;(注意点(1,0)在圆内)6、其他形式:设点A,B的坐标分别是(-5,0),(5,0),直线AM,BM相交于点M,且他们的斜率的乘积为,求点M的轨迹方程:(是一个椭圆)(讨论当他们的斜率的乘积为时可以得到双曲线)(2013新课标1卷20)已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线。
(1)求的方程;(2)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长时,求(2013陕西卷文20)已知动点到直线的距离是它到点的距离的倍。
圆锥曲线中两垂直切线的交点的轨迹方程.docx
![圆锥曲线中两垂直切线的交点的轨迹方程.docx](https://img.taocdn.com/s3/m/aea6985d03020740be1e650e52ea551810a6c9b0.png)
圆锥曲线中两垂直切线的交点的轨迹方程圆锥曲线的两条垂直切线交点轨迹问题,有以下几个结论:结论1:椭圆x2a2+y2b2=1两条互相垂直的切线的交点的轨迹方程是x2+y2=a2+b2证明:设M(x0,y0)为椭圆x2a2+y2b2=1①两条互相垂直的切线的交点,k为过M点所作这椭圆的切线的斜率,则切线的方程为y−y0=k(x−x0)②由①②可得b2x2+a2[k(x−x0)+y0]2−a2b2=0即(a2k2+b2)·x2+2a2k(y0−kx0)·x+a2[(y0−kx0)2−b2]=0③由题意可得:∆=0化简得:a2k2+b2−(y0−kx0)2=0整理得:(a2−x02)·k2+2x0y0·k+b2−y02=0当a2≠x02时,设此方程的二根为k1,k2,则k1·k2=−1,即b2−y02a2−x02=−1,故得x2+y2=a2+ b2.当a2=x02时,此时切线MT⊥x轴,切线MT′⊥y轴,即x0=a,y0=b,故点M的轨迹方程依然满足x2+y2=a2+b2综上所述,点M的轨迹是以原点为圆心,√a2+b2为半径的圆.结论2:双曲线x2a2−y2b2=1两条互相垂直的切线的交点的轨迹是x2+y2=a2−b2当a>b时,轨迹是以原点为圆心,√a2−b2为半径的圆;当a=b时,轨迹是原点(0,0);当a<b时,轨迹不存在.证明:双曲线的两切线若垂直,则斜率必然存在,且不为零设M(x0,y0)为双曲线x2a2−y2b2=1①两条互相垂直的切线的交点,k为过M点所作这双曲线的切线的斜率,则切线的方程为y−y0=k(x−x0)②由①②可得b2x2−a2[k(x−x0)+y0]2−a2b2=0即(a2k2−b2)·x2+2a2k(y0−kx0)·x+a2[(y0−kx0)2+b2]=0③由题意可得:∆=0化简得:a2k2−b2−(y0−kx0)2=0整理得:(a2−x02)·k2+2x0y0·k−b2−y02=0设此方程的二根为k1,k2,则k1·k2=−1,即−b2−y02a2−x02=−1,故得x2+y2=a2−b2.当a>b时,轨迹是以原点为圆心,√a2−b2为半径的圆;当a=b时,轨迹是原点(0,0);当a<b时,轨迹不存在.结论3:抛物线y2=2px两条互相垂直的切线的交点的轨迹是x=−p2.证明:抛物线的两切线若垂直,则斜率必然存在,且不为零设M(x0,y0)为双曲线y2=2px①两条互相垂直的切线的交点,1m为过M点所作这椭圆的切线的斜率,则切线的方程为x−x0=m(y−y0)②由①②可得y2−2pm·y+2p(my0−x0)=0由题意可得:∆=0化简得:4p2m2−4·2p(my0−x0)=0整理得:p2·m2−2py0·m+2px0=0设此方程的二根为1m1,1m2,则1m1·1m2=−1,即m1m2=−1∴2px0p2=−1,∴x0=−p22p=−p225届雅礼高三入学考试原题及解答:同类题及解答:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1、2节.取值范围(上)
1.(2016•天津)设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O 为原点,e为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴于点H,若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.
2.(2016•新课标2)已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E 于A,M两点,点N在E上,MA⊥NA.
(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;
(Ⅱ)当2|AM|=|AN|时,求k的取值范围.
3. (2012•四川)如图,动点M到两定点A(﹣1,0)、B(2,0)构成△MAB,且∠MBA=2∠MAB,设动点M 的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)设直线y=﹣2x+m与y轴交于点P,与轨迹C相交于点Q、R,且|PQ|<|PR|,求的取值范围.
第3、4节.极值和取值范围(下)
1. (2015•天津)已知椭圆+=1(a>b>0)的左焦点为F(﹣c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2+y2=截得的线段的长为c,|FM|=.
(Ⅰ)求直线FM的斜率;
(Ⅱ)求椭圆的方程;
(Ⅲ)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围.
2.(2015•重庆)如题图,椭圆=1(a>b>0)的左右焦点分别为F1,F2,且过F2的直线交椭圆于P,Q 两点,且PQ⊥PF1.
(Ⅰ)若|PF 1|=2+,|PF2|=2﹣,求椭圆的标准方程.
(Ⅱ)若|PQ|=λ|PF1|,且≤λ<,试确定椭圆离心率e的取值范围.
3.(2014•湖北)在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1,记点M的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)设斜率为k的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.
第5、6节.定点
1. (2014•天津模拟)已知椭圆C:的右焦点为F(1,0),且点(﹣1,)在椭圆C 上.
(1)求椭圆C的标准方程;
(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.
2. (2012•福建)如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.
(Ⅰ)求椭圆E的方程.
(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.
3.(2015•四川)如图,椭圆E:的离心率是,过点P(0,1)的动直线l与椭圆相交于A、B两点,当直线l平行于x轴时,直线l被椭圆E截得的线段长为2.
(Ⅰ)求椭圆E的方程;
(Ⅱ)在平面直角坐标系xOy中,是否存在与点P不同的定点Q,使得恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.
第7、8节.轨迹方程(上)
1. (2011春•柳东新区校级期末)已知抛物线C:y2=4x,直线l:y=kx+b与C交于A,B两点,O为坐标原点.(1)当k=1,且直线l过抛物线C的焦点时,求|AB|的值;
(2)当直线OA,OB的倾斜角之和为45°时,求k,b之间满足的关系式,并证明直线l过定点.
2.(2016•新课标3)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.
(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;
(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.
3.(2014•广东)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为.
(1)求椭圆C的标准方程;
(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.
3. (2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;
(2)求线段AB 的中点M的轨迹C的方程;
第9、10节.轨迹方程(下)
1.(2011•天津)在平面直角坐标系xOy中,点P(a,b)(a>b>0)为动点,F1,F2分别为椭圆的左、右焦点.已知△F1PF2为等腰三角形.
(Ⅰ)求椭圆的离心率e;
(Ⅱ)设直线PF 2与椭圆相交于A,B两点,M是直线PF2上的点,满足,求点M的轨迹方程.
2.(2013•四川)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点.
(Ⅰ)求椭圆C的离心率:
(Ⅱ)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.
3.(2011•安徽)设λ>0,点A的坐标为(1,1),点B在抛物线y=x2上运动,点Q满足,经过点Q 与x轴垂直的直线交抛物线于点M,点P满足,求点P的轨迹方程.。