四年级上册数学教案三位数除以两位数的口算和估算_西师大版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级上册数学教案7
教材分析
三位数除以两位数的除法,是在学生差不多熟练地把握了表内乘除法、三位数除以一位数的基础上展开教学的。
本单元教学内容是一种引伸和进展性的新内容。
说它是引伸,它要紧是以三位数除以一位数和表内除法为最直截了当的认知基础。
三位数除以两位数的运算方法与三位数除以一位数在本质上完全相同。
说它是进展,是因为除数由一位数变成两位数,三位数除以两位数笔算的试商比三位数除以一位数要复杂得多,它是学生学习笔算除法的难点。
本单元教科书的教学内容包括整百数、几百几十的数除以整十数的口算,三位数除以两位数的估算、笔算,探究规律,解决问题,综合应用等内容。
1、注重题材的现实性,表达三位数除以两位数的价值
三位数除以两位数的除法,是数的运算中重要的学习内容,它与其他运算一样,是反映现实世界数量关系的数学模型,也是解决现实生活中问题的工具,但它的这些价值只有通过具体的现实情境才能表现出来,换句话说,学生只有通过从具有现实性的题材中去发觉除法问题,分析并解决问题,才能让他们感受到三位数除以两位数的价值。
因此,本单元教科书在价值取向上,注重选取现实的、有意义的、富有挑战性的题材,通过具体情境让学生发觉情境中的数学问题,通过多样化的学习方式解决问题,让学生感受到三位数除以两位数与现实生活的联系和有用价值。
例如,在口算学习时,引导学生解决游乐场及学校新生分班中的数学问题;在笔算学习时,引导学生解决养鸡场中的数学问题。
口算、估算与笔算结合,培养学生的数感
能判定不同的算术运算,有能力运算,具有选择适当算法(如口算、估算、笔算、使用运算器运算)实施运算的体会,是数学教学中培养数感的重要内容。
在除法运算中,口算、估算与笔算联系十分紧密。
具体讲,在笔算的试商时,第一能够把被除数、除数看作整十整百数,并用口算的方法找到初商,表达了口算和估算在笔算中的作用。
因此,本单元教科书没有
在笔算的试商中把口算、估算结合起来去找初商,这不但表达了3种运算方法的有机结合,互相促进,也有利于进展学生的数感。
借助运算器探究规律,培养学生的探究发觉能力
乘除法是一种反映现实世界中数量关系的数学模型,在这些关系中,隐含着一些有味的运算规律。
探究简单的数学规律,它能够让学生感受到数学的内在美,培养学生的探究发觉能力和归纳概括能力,激发学生学习数学的爱好。
本单元教科书安排探究规律这一内容,要紧是让学生借助运算器探究乘、除法算式中的一些简单规律,其中包括商不变的规律。
同时,也注重让学生把探究到的规律进行运用,培养学生运用规律解决数学问题的能力。
注重实践应用,培养学生解决问题的能力
在本单元中,连续安排了解决问题的内容,表达了解决问题与知识教学紧密结合的编写理念,突出了解决问题的课程价值,不但有利于落实《标准》中提出的培养学生解决问题能力的目标,也有利于进一步加深学生对三位数除以两位数除法的明白得和运算方法的巩固。
在解决问题的编排上,不但注重内容的现实性,表达三位数除以两位数除法与现实生活的联系,也注重表达数学知识的内在联系,让学生应用差不多学习过的做工问题、行程问题的数量关系解决问题。
注重知识的整理,促进学生认知结构的完善
人的认识过程是按总体——部分——总体这一顺序进行的。
本单元安排的三位数除以两位数的除法,是小学时期最后一次学习整数除法。
因此,在那个地点安排整理与复习,不但有利于学生对三位数除以两位数知识更好地把握,也有利于让学生在认知结构中沟通有关知识的联系,形成更加充实、完善的数学认知结构。
本单元安排的整理与复习,既有对所学知识的梳理,又有对各种运算方法的系统复习,同时安排了相关的练习来达到巩固、运用的目的。
教学目标
会口算整百、几百几十的数除以整十数的除法,能正确笔算、估算三位数除以两位数的除法。
结合估算探究三位数除以两位数的笔算方法,能正确进行三位数除以两位数的笔算。
3、能借助运算器进行较复杂的除法运算,探究乘除法算式的简单规律。
经历三位数除以两位数运算方法的探究过程,进展学生初步的归纳推理、类比推理能力。
5、体验三位数除以两位数与现实生活的联系和应用价值,培养学生解决简单的实际问题的能力。
重点:经历三位数除以两位数运算方法的探究过程,把握三位数除以两位数的口算、估算及笔算方法。
难点:把握三位数除以两位数笔算的试商方法。
能灵活运用三位数除以两位数的运算方法解决生活中的实际问题。
重点、难点
教学建议
重视原有知识在新知识学习中的迁移
学生的学习,从本质上说是利用已有知识和体会进行主动建构的过程。
数学知识具有内在的联系,学生已有的知识基础是推动后继知识学习的重要体会。
在本单元学习前,学生已有表内除法,整百数、几百几十的数除以一位数(如200÷4,840÷4)的口算及三位数除以一位数的估算、笔算等认知基础,这些运算方法,在学习三位数除以两位数时都能够借鉴。
因此,在教学中应让学生沟通知识的这种内在联系,引导学生主动运用已有知识探究新知识,培养学生迁移、类推能力,获得积极的情感体验。
把口算、估算结合,让学生把握试商方法
教学实践体会告诉我们:运算除数是两位数的除法,最大的障碍是试商的准确,即学生不易找到准确的商而导致运算速度慢和运算的正确率低。
克服这一障碍的有效方法是让学生把握三位数除以两位数笔算的试商方法,减少调商的次数。
因此,在教学三位数除以两位数的笔算时,应注意把口算、估算结合起来,突出整百数除以整十数的口算在试商中的基础作用,让学生结合估算和口算去找初商,切实把握三位数除以两位数的试商规律。
尊重学生对算法的选择
由于学生的生活情境、已有知识体会和思维方式的不同,他们在运算三位数除以两位数的口算和解决问题时,其摸索的方法也不尽相同。
在教学中,应尊重学生的选择,承诺他们采纳自己明白得的口算方法进行口算,鼓舞学生从不同角度摸索,用不同的方法解决问题。
4、注意三位数除法与现实生活的联系
前面已讲到,除法是现实问题的数学模型,是解决问题的工具。
在本单元教学中,不能单独为把握运算方法而教学,而应注意三位数除以两位数的现实情形,让学生感受到三位数除以两位数的有用价值,使他们在学习中产生主动探究的心理需要。
为此,除了在例题学习时,注意从学生的现实生活动身引出三位数除以两位数的除法运算外,还应注意在练习中为学生运用三位数除以两位数的除法解决问题搭建活动平台,使他们感受到三位数除以两位数的有用价值。
课时安排
7.1 三位数除以两位数的口算和估算
教学内容
教科书77页相关的课堂活动及练习。
三位数除以两位数的口算和估算。
教学提示
本节内容学习整百数、几百几十数乘整十数的口算和三位数除以两位数的估算。
这些内容在除法知识体系中具有内在的联系,一是整百数除以一位数、整十数除以整十数的口算,表内乘法是学习本内容的直截了当认知基础,它是对口算除法学习的进一步进展,同时又是估算和笔算的重要基础。
二是三位数除以两位数的估算方法,以整百数除以整十数的口算为基础,同时也是两位数除以两位数估算方法的迁移和进展。
三是口算和估算又是学习笔算的重要基础,在笔算时,既要借助口算的方法来推动笔算的学习,又能够通过估算来大致把握笔算结果是否正确。
因此,教科书在编写时,注意让学生利用已有知识体会推动新知识的学习,切实让他们把握整百数、几百几十数除以整十数的口算及三位数除以两位数的估算。
教学目标
知识与技能:
1、在解决实际问题的过程中,让学生经历发觉整百数除以整十数口算差不多方法的全过程,体验其口算方法的多样化,并能正确进行口算。
2、把握三位数除以两位数的估算。
过程与方法:在解决实际问题的过程中,学会估算的方法,并能熟练地进行估算。
经历整数除法口算方法的形成过程,体验解决问题策略的多样性。
情感态度与价值观:感受知识的内在联系,培养学生的迁移学习能力。
培养学生养成认真计口算的良好学习适应。
重点、难点
重点:体验整百数及几百几十的数除以整十数的口算在现实生活中的应用,感受数学的价值把握三位数除以两位数的估算方法,并能熟练进行相关估算。
难点:把握整百数及几百几十的数除以整十数的口算方法,并能正确进行口算。
联系已有知识体会明白得三位数除以整十数的口算方法。
教学预备
教师预备:教学课件
学生预备:题卡
教学过程
新课导入(由单元主题图引入新课)
多媒体出示教科书第76页的单元主题图,
师:同学们,喜爱小动物吗?今天老师就带着同学们去参观野生动物园,在乘车的过程中,老师给我们带来了哪些数学问题。
(多媒体出示例1情形图)从这些图中你能提出哪些数学问题?
师让学生观看情境图,说一说从图中获得哪些数学信息。
预设1:师生一共200人,假如每辆车能坐40人。
预设2:租一辆车需要840元,每辆车乘坐40人。
师让学生依照获得的信息提出有关的数学问题。
预设1:一共需要租几辆车?
预设2:平均每人需要车费多少元?
今天我们先来探究第这2个问题,研究整百数除以整十数的口算。
板书课题:整百数除以整十数的口算
设计意图:那个环节要紧解决什么缘故要学习三位数除以两位数的除法,教学中紧密联系生活情形,使学生感受到学习的必要性,激发学生的学习需要和学习爱好,为学习新知奠定心理基础。
探究新知
整百数除以整十数的口算(教学例1)
(1)出示例1(1)
①列式
师让学生说出例1(1)的已知条件和问题。
预设:已知条件:师生一共200人,假如每辆车能坐40人。
问题是:一共需要租几辆车?
师和学生交流:师生一共200人,假如每辆车能坐40人。
一共需要租几辆车?确实是求200里面有多少个40,依照除法的意义,200除以40。
师:依照除法的意义,200除以40。
列式:200÷40
②探究200÷40的运算方法
师让学生在小组内交流200÷40的运算方法。
预设1:想乘法算除法。
因为40×5=200,除法是乘法的逆运算,因此200÷40=5。
预设2:看200里面有几个40,商确实是几。
200里面有5个40,因此200÷40=5。
预设3:能够把200看成20个十,40看成4个十,20个十除以4个十等于5,因此200÷40=5。
板书:200÷40=5
师和学生交流,让学生选择适合自己的口算方法进行运算。
板书:
200÷40=5(辆)
答:一共需要租5辆车。
师小结:整百数除以整十数的口算方法:
方法一:想乘法算除法。
方法二:看整百数里面有几个整十数,商确实是几。
方法三:能够把整百数看成几十个十,整十看成几个十,再运算。
(2)出示例1(2)
①列式
师让学生说出例1(2)的已知条件和问题。
预设:已知条件:租一辆车需要840元,每辆车乘坐40人。
问题是:平均每人需要车费多少元?
师和学生交流:租一辆车需要840元,每辆车乘坐40人,平均每人需要车费多少元?确实是把840平均分成40份,求一份是多少。
依照除法的意义,用840除以40。
列式:840÷40
②探究840÷40的运算方法
师让学生在小组内交流840÷40的运算方法。
预设1:想乘法算除法。
因为21×40=840,除法是乘法的逆运算,因此840÷40=21。
预设2:把840分成800+40。
先看800里面有几个40,800÷40=20。
4 0÷40=1,20+1=21。
因此840÷40=21。
预设3:能够把840看成84个十,40看成4个十。
84个十除以4个十等于21,因此840÷40=21。
板书:840÷40=21
师和学生交流,让学生选择适合自己的口算方法进行运算。
板书:
840÷40=21(元)
答:平均每人需要车费21元。
师小结:整十数除以整十数的口算,把三位数看成整百数加整十数,用整百数除以除数,再用整十数除以除数,把两次除得的商加在一起,确实是所求的商。
也能够把整百整十数看成多少个十,把除数看成几个十。
再算多少个十除以几个十等于多少。
设计意图:从在图中发觉信息,到提出数学问题,并解决问题,这一学习过程都以学生为主体,让学生自己通过摸索,和与别人交流,从而把握口算除法的不同方法,并选择适合自己的一种。
除法估算(例2)
出示例2
(1)列式
师让学生说出例2的已知条件和问题。
预设:已知条件:重庆到三峡大坝的路程是624千米,一般客船的速度是23千米/时,快船的速度是48千米/时。
问题:去三峡大坝大约需要多少时刻?回重庆大约需要多少时刻?
师和学生交流:因为“去三峡大坝大约需要多少时刻?回重庆大约需要多少时刻?
”,因此这道题要估算。
师让学生试着说出数量关系式。
预设:依照关系式:路程÷速度=时刻。
已知路程和行驶的速度,求行驶的时刻,用除法运算。
预设:依照关系式:路程÷速度=时刻,用624÷23求去三峡大坝大约需要多少时刻;用624÷48求回重庆大约需要多少时刻。
板书:624÷23
624÷48
师:因为问题问的是“大约”多少时刻,因此这两道题需要估算。
探究运算方法
①估算:624÷23
师让学生在小组之内交流624÷23的估算方法
预设1:因为624接近600,因此把624估成600;23接近20,因此把23估成20。
624≈600 23≈20
估算的式子为:600÷20
预设2:因为624接近620,因此把624估成620;23接近20,因此把23估成20。
624≈620 23≈20
估算的式子为:620÷20
师板书:624≈600 23≈20
600÷20=30(小时)答:去三峡大坝大约需要30小时。
624≈620 23≈20
620÷20=31(小时)答:去三峡大坝大约需要31小时。
②估算:624÷48
师让学生在小组之内交流624÷48的估算方法
预设1:因为624接近600,因此把624估成600;48接近50,因此把48估成50。
624≈600 48≈50
估算的式子为:600÷50
板书:624≈600 48≈50
600÷50=12(小时)答:去三峡大坝大约需要12小时。
师:除数是两位数的估算,找到与除数和被除数最接近的整十数、整百数或整百整十数,转化为口算的形式进行估算。
为了使商的估算值与精确值比较接近,通常采纳“同大同小”的估算原则。
用“四舍五入”法进行估算。
设计意图:那个教学片断从除法的直截了当算出得数,到估算;从除法算式中的一个数估算进行运算,到两个数同时估算进行运算。
要紧是让学生循序渐进地学习,一步一步对知识进行提升,达到拓展学习的目的。
巩固新知
课本第78页第1、2题
设计意图:本题是需要估算解决的实际问题,既培养学生的估算意识,又巩固相应的口算,同时培养学生分析问题,解决问题的能力。
达标反馈
1、口算300÷50时,能够想:300里面有()个50;也能够想:()×50=300,因此300÷50=()。
2、估算312÷58时,把312≈300,58≈60,因此300÷60≈(
)。
3、口算
300÷60= 100÷20= 200÷40= 800÷50= 700÷70=
420÷60= 600÷40= 810÷90= 560÷80= 720÷90=
4、估算下面各题
431÷83≈200÷19≈562÷63≈296÷33≈876÷11≈586÷18≈
5、解决问题
苹果园里有320棵苹果树,每行40棵,果园里一共有多少行苹果树?
(2)胜利餐厅8月份用水329吨,那个月平均每天大约用水多少吨?
(3)一辆汽车限载20吨物资,要运走160吨物资,至少要多少辆汽车?
(4)一篇稿件有2021个字,播音员的速度每分钟大约210个字,多少分钟能播完?
答案:
1、6 6 6
2、5
3、5 5 5 16 10 7 15 9 7 8
4、5 10 10 10 8 30
(1)320÷40=8(行)答:果园里一共有8行苹果树。
(2)8月=31天
329≈300 31≈30
300÷30=10(吨)
答:那个月平均每天大约用水10吨。
(3)160÷20=8(辆)
答:至少要8辆汽车。
(4)2021÷210=20(分钟)答:20分钟能播完。
课堂小结
这节课你有什么收成?我们一起说一下吧!
预设1:我们明白了三位数除以两位数的口算方法。
预设2:我们明白了三位数除以两位数的估算方法。
预设3:我们探究了已知路程和速度,求时刻的运算方法。
设计意图:让学生谈谈自己的收成,表达了一种“反思”思想,使学生学会总结知识,深化知识,把所学知识变成自己内在的东西。
布置作业
口算
300÷20= 500÷25= 800÷40= 720÷80= 320÷80=
400÷80= 810÷90= 630÷90= 350÷70= 420÷60=
2、估算
420÷81≈147÷51≈238÷61≈423÷57≈
509÷51≈560÷75≈242÷61≈289÷54≈
()里最大能填几?
20×()<92 ()×40<210 308>30×()
40×()<254
()×80<456 327>40×()60×()<280 8 0×()<333
4、解决实际问题
幸福村修一条450米的水渠。
①假如每天修55米,8天能修完吗?
②假如每天修50米,几天能修完?
(2)
①平均每个小梨多少元?
②平均每个大梨多少元?
(3)席殊书屋打算把240本《故事大王》寄往外地,假如每包40本,需要捆成几包?假如每60本呢?
(4)甲乙两地相距446千米,一辆汽车以85千米/时的速度从甲地开往乙地,大约需要几小时到达?
答案:1、15 20 20 9 4 5 9 7 5 7
2、7 3 4 7 10 8 4 6
3、4 5 10 6 4 8 4 4
(1)①55×8=440(米)440<450
答:8天不能修完。
②450÷50=9(天)答:9天能修完。
①210÷30=7(元)答:平均每个小梨7元。
②150÷10=15(元)答:平均每个小梨10元。
(3)240÷40=6(包)答:需要捆成6包;
240÷60=4(包)答:需要捆成4包。
(4)446≈450 85≈90
450÷90=5(小时)答:大约需要5小时到达。
板书设计
三位数除以两位数的口算和估算
例1:
(1)200÷40=5(辆)
答:一共需要租5辆车。
(2)840÷40=21(元)
答:平均每人需要车费21元。
例2:(1)624≈600 23≈20
600÷20=30(小时)答:去三峡大坝大约需要30小时。
624≈620 23≈20
620÷20=31(小时)答:去三峡大坝大约需要31小时。
(2)624≈600 48≈50
600÷50=12(小时)答:去三峡大坝大约需要12小时。
教学反思
教学生成要随着学生实际改变。
我只有尽可能地预设各种可能,才能把握课堂中动态生成。
正如叶澜教授所说:“在教学过程中强调课堂的动态生成,但并不主张教师和学生在课堂上信马由缰式地展开学习,而是要求教师有教学方案的设计,并在教学方案中预先为学生的主动参与留出时刻和空间,为教学过程的动态生成创设条件。
”生成也要跟随学生的实际情形来看,有时学生的生成是漫无目的的,也能够说是与教学设计是不相符的,但我们也要学会利用和处理这些生成为教学所用,为我们的教学服务,从学生的角度看待问题,会更能关心学生把握知识。
课堂教学的有效性对教学预设提出了更高的要求,教师只有明确学习目标、找准真实的学习起点、研究学生的实际现状、精心设计学习活动、预设多种可能,如此的预设才富有成效,如此的课堂教学才能焕发出生命的活力,才能显现不曾预料的杰出。
整堂课设计,充分表达了以学生为主体,教师是学生的组织者、引导者、合作者。
在整个教学过程中,学生在自主探究中学习知识,学生乐学,爱学,使学生从学会变成“我要学,我会学”,让学生充分认识估算的意义,把握除法估算的方法,并能用除法估算解决实际问题。
在培养学生估算能力的过程中进展学生思维的灵活性和制造性,使学生充分获得成功的体验,培养其探究能力和自主学习的意识。