高考必备物理动量守恒定律技巧全解及练习题(含答案)(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考必备物理动量守恒定律技巧全解及练习题(含答案)(1)
一、高考物理精讲专题动量守恒定律
1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.
①求弹簧恢复原长时乙的速度大小;
②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】
(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:
又知
联立以上方程可得
,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为
由动量定理可得,挡板对乙滑块冲量的最大值为:
2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的
1
2
反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度2
10m/s g =。
求:
(1)碰撞后瞬间,小球受到的拉力是多大?
(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】
解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:
22
1111011=22
m gL m v m v μ--
解之可得:1=4m/s v 因为1v v <,说明假设合理
滑块与小球碰撞,由动量守恒定律:21111221
=+2
m v m v m v - 解之得:2=2m/s v
碰后,对小球,根据牛顿第二定律:2
22
2m v F m g l
-=
小球受到的拉力:42N F =
(2)设滑块与小球碰撞前的运动时间为1t ,则()0111
2
L v v t =+ 解之得:11s t =
在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=
设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭
解之得:22s t =
滑块向左运动最大位移:121122m x v t ⎛⎫
=
⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度
11
2
v <v , 说明滑块与小球碰后在传送带上的总时间为22t
在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程
22212X vt m ∆==
因此,整个过程中,因摩擦而产生的内能是
()112Q m g x x μ=∆+∆=13.5J
3.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:
(1)A球与B球碰撞中损耗的机械能;
(2)在以后的运动过程中弹簧的最大弹性势能;
(3)在以后的运动过程中B球的最小速度.
【答案】(1);(2);(3)零.
【解析】
试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:
碰后A、B的共同速度
损失的机械能
(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大
根据动量守恒定律有:
三者共同速度
最大弹性势能
(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.
弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:
根据机械能守恒定律:
此时A、B的速度,C的速度
可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.
考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.
【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定
律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答
4.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0
2
v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;
(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.
【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20
1532
mv E ∆=
【解析】 【详解】
(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:
mv 0=m
2
v +2mv B 解得v B =
4
v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量
2
220001
11()2()22224
v v mgL mv m m μ⨯=--
解得20
516v gL
μ=
(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:
2
mv +mv B =2mv A 、C 系统机械能守恒:
22200111
()()222242
v v mgR m m mv +-⨯=
解得20
64v R g
= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒
00
24
A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,
2222
001111()()222422
A C m m m m +=+v v v v 解得v A =
4
v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:
2
220
015112232
A mv E mv mv ∆=-=
【点睛】
该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能
够熟练运用动量守恒定律和能量守恒定律列出等式求解.
5.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
已知磁场的磁感应强度B=0.5T ,导轨的间距与导体棒的长度均为L=0.5m ,导轨的半径r=0.5m ,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s 2,不计空气阻力。
(1)求导体棒刚进入凹槽时的速度大小;
(2)求导体棒从开始下落到最终静止的过程中系统产生的热量;
(3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J ,求导体棒第一次通过最低点时回路中的电功率。
【答案】(1) 210/v m s = (2)25J (3)9
W 4
P = 【解析】 【详解】
解:(1)根据机械能守恒定律,可得:212
mgh mv = 解得导体棒刚进入凹槽时的速度大小:210/v m s =
(2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点
根据能力守恒可知,整个过程中系统产生的热量:()25Q mg h r J =+=
(3)设导体棒第一次通过最低点时速度大小为1v ,凹槽速度大小为2v ,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:12mv Mv = 由能量守恒可得:
22
12111()22
mv mv mg h r Q +=+- 导体棒第一次通过最低点时感应电动势:12E BLv BLv =+
回路电功率:2
E P R
=
联立解得:94
P W =
6.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数3
6
μ=
;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:
(1)释放后物块A 和凹槽B 的加速度分别是多大?
(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;
(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】 【详解】
(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2
凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下;
因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;
AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;
由能量关系:
2220111112222
A A
B mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s
7.如图所示,在光滑的水平面上放置一个质量为2m 的木板B ,B 的左端放置一个质量为m 的物块A ,已知A 、B 之间的动摩擦因数为μ,现有质量为m 的小球以水平速度0υ飞来与A 物块碰撞后立即粘住,在整个运动过程中物块A 始终未滑离木板B ,且物块A 和小球均可视为质点(重力加速度g).求:
①物块A 相对B 静止后的速度大小; ②木板B 至少多长.
【答案】①0.25v 0.②20
16v L g
μ=
【解析】
试题分析:(1)设小球和物体A 碰撞后二者的速度为v 1,三者相对静止后速度为v 2,规定向右为正方向,根据动量守恒得, mv 0=2mv 1,① (2分) 2mv 1=4mv 2② (2分)
联立①②得,v 2=0.25v 0. (1分)
(2)当A 在木板B 上滑动时,系统的动能转化为摩擦热,设木板B 的长度为L ,假设A 刚好滑到B 的右端时共速,则由能量守恒得,
③ (2分)
联立①②③得,L=
考点:动量守恒,能量守恒.
【名师点睛】小球与 A 碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A 相对B 静止后的速度大小;对子弹和A 共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.
8.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m 、厚度为2d 的钢板静止在水平光滑
桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影
响.
【答案】
【解析】
设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)
此过程中动能损失为:ΔE损=f·2d=1
2
mv20-
1
2
×3mV2(2分)
解得ΔE=1
3
mv20
分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)
因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2
(1分),
由能量守恒得:
1 2mv21+
1
2
mV21=
1
2
mv20-ΔE损1(2分)
且考虑到v1必须大于V1,
解得:v1=
13
(
26
v0
设子弹射入第二块钢板并留在其中后两者的共同速度为V2,
由动量守恒得:2mV 2=mv 1(1分) 损失的动能为:ΔE′=12mv 21-12
×2mV 2
2(2分) 联立解得:ΔE′=
13(1)22
+×mv 2
因为ΔE′=f·
x (1分), 可解得射入第二钢板的深度x 为:
(2分)
子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解
9.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108
K 时,可以发生“氦燃烧”。
①完成“氦燃烧”的核反应方程:γBe ___He 8
442+→+。
②Be 84是一种不稳定的粒子,其半衰期为2.6×10-16
s 。
一定质量的Be 8
4,经7.8×10-16
s
后所剩下的Be 8
4占开始时的 。
(2)如图所示,光滑水平轨道上放置长木板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端,三者质量分别为kg 2=A m 、kg 1=B m 、kg 2=C m 。
开始时C 静止,A 、B 一起以
s /m 5=0v 的速度匀速向右运动,A 与C 发生碰撞(时间极短)后C 向右运动,经过一段
时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 碰撞。
求A 与C 发生碰撞后瞬间A 的速度大小。
【答案】(1)①4
2He (或α) ②1
8
(或12.5%) (2)2m/s
【解析】(1)①由题意结合核反应方程满足质量数和电荷数守恒可得答案。
②由题意可知经过3个半衰期,剩余的8
4Be 的质量30011
()28
m m m ==。
(2)设碰后A 的速度为A v ,C 的速度为C v ,由动量守恒可得0A A A C C m v m v m v =+, 碰后A 、B 满足动量守恒,设A 、B 的共同速度为1v ,则01()A A B A B m v m v m m v +=+ 由于A 、B 整体恰好不再与C 碰撞,故1C v v = 联立以上三式可得A v =2m/s 。
【考点定位】(1)核反应方程,半衰期。
(2)动量守恒定律。
10.如图所示,木块m 2静止在高h=0.45 m 的水平桌面的最右端,木块m 1静止在距m 2 左侧s 0=6.25 m 处.现木块m 1在水平拉力F 作用下由静止开始沿水平桌面向右运动,与 m 2碰前瞬间撤去F ,m 1和m 2发生弹性正碰.碰后m 2落在水平地面上,落点距桌面右端水平 距离s=l .2 m .已知m 1=0.2 kg ,m 2 =0.3 kg ,m 1与桌面的动摩擦因素为0.2.(两个木块都可以视为质点,g=10 m /s 2
)求:
(1)碰后瞬间m 2的速度是多少?
(2)m 1碰撞前后的速度分别是多少?
(3)水平拉力F 的大小?
【答案】(1)4m/s (2)5m/s ;-1m/s (3)0.8N
【解析】
试题分析:(1)m 2做平抛运动,则:h=
12
gt 2; s=v 2t ;
解得v 2=4m/s
(2)碰撞过程动量和能量守恒:m 1v=m 1v 1+m 2v 2 12m 1v 2=12m 1v 12+12
m 2v 22 代入数据解得:v=5m/s v 1=-1m/s
(3)m 1碰前:v 2
=2as 11F m g m a μ-=
代入数据解得:F=0.8N
考点:动量守恒定律;能量守恒定律;牛顿第二定律的应用
【名师点睛】此题关键是搞清两个物体的运动特征,分清物理过程;用动量守恒定律和能量守恒定律结合牛顿定律列出方程求解.
11.(20分)如下图所示,光滑水平面MN 左端挡板处有一弹射装置P ,右端N 与处于同一高度的水平传送带之间的距离可忽略,传送带水平部分NQ 的长度L=8m ,皮带轮逆时针转动带动传送带以v = 2m/s 的速度匀速转动。
MN 上放置两个质量都为m = 1 kg 的小物块
A 、
B ,它们与传送带间的动摩擦因数μ = 0.4。
开始时A 、B 静止,A 、B 间压缩一轻质弹簧,其弹性势能E p = 16 J 。
现解除锁定,弹开A 、B ,并迅速移走弹簧。
取g=10m/s 2。
(1)求物块B 被弹开时速度的大小;
(2)求物块B 在传送带上向右滑行的最远距离及返回水平面MN 时的速度v B ′;
(3)A 与P 相碰后静止。
当物块B 返回水平面MN 后,A 被P 弹出,A 、B 相碰后粘接在一起向右滑动,要使A 、B 连接体恰好能到达Q 端,求P 对A 做的功。
【答案】(1) 4.0/B v m s =(2)'2/B v m s =(3)162 W J =
【解析】
试题分析:(1)(6分)解除锁定弹开AB 过程中,系统机械能守恒:2B 2A p 2
121mv mv E += ……2分 设向右为正方向,由动量守恒 0B A mv mv -= ……2分
解得 4.0/B A v v m s == ①……2分
(2)(6分)B 滑上传送带做匀减速运动,当速度减为零时,滑动的距离最远。
由动能定理得 2B M 2
10mv mgs -=-μ ……2分 解得222B M v S m g
μ== ……1分 ② 物块B 在传送带上速度减为零后,受传送带给它的摩擦力,向左加速,若一直加速,则受力和位移相同时,物块B 滑回水平面MN 时的速度'4/B v m s = ,高于传送带速度,说明B 滑回过程先加速到与传送带共速,后以2/m s 的速度做匀速直线运动。
……1分 物块B 滑回水平面MN 的速度'2/B v v m s == ……2分 ③
(3)(8分)弹射装置将A 弹出后与B 碰撞,设碰撞前A 的速度为A
v ',碰撞后A 、B 共同的速度为V ,根据动量守恒定律,mV v m v m 2B A ='-'
……2分 ④ A 、B 恰好滑出平台Q 端,由能量关系有mgL mV 222
12⋅=⨯μ ……2分⑤ 设弹射装置对A 做功为W ,2
A
21v m W '= ……2分 ⑥ 由④⑤⑥ 解得162 W J = ……2分
考点:相对运动 动能定理 动量守恒
12.如图所示,小球A 质量为m ,系在细线的一端,线的另一端固定在O 点,O 点到水平面的距离为h .物块B 质量是小球的5倍,置于粗糙的水平面上且位于O 点正下方,物块与水平面间的动摩擦因数为μ.现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为
16h .小球与物块均视为质点,不计空气阻力,重力加速度为g ,求碰撞过程物块获得的冲量及物块在地面上滑行的距离.
【答案】16h μ
【解析】
【分析】
对小球下落过程由机械能守恒定律可求得小球与物块碰撞前的速度;对小球由机械能守恒可求得反弹的速度,再由动量守恒定律可求得物块的速度;对物块的碰撞过程根据动量定理列式求解获得的冲量;对物块滑行过程由动能定理可求得其滑行的距离.
【详解】
小球的质量为m,设运动到最低点与物块相撞前的速度大小为v 1,取小球运动到最低点时的重力势能为零,根据机械能守恒定律有:mgh=
12mv 12 解得:v 12gh 设碰撞后小球反弹的速度大小为v′1,同理有:'211162h mg mv ⋅
= 解得:v′18
gh 设碰撞后物块的速度大小为v 2,取水平向右为正方向,由动量守恒定律有:
mv 1=-mv′1+5mv 2
解得:v 28
gh 由动量定理可得,碰撞过程滑块获得的冲量为I=5mv 2=
524
m gh 物块在水平面上滑行所受摩擦力的大小为F=5μmg
设物块在水平面上滑行的时间为t,由动能定理有: 221052
Fs mv -=-⋅ 解得:16h s μ
=
【点睛】
本题综合考查动量守恒定律、机械能守恒定律及动能定理,要注意正确分析物理过程,选择合适的物理规律求解.。