人教版数学七年级下册 期末试卷(提升篇)(Word版 含解析) (4)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学七年级下册 期末试卷(提升篇)(Word 版 含解析)
一、选择题
1.如图,1∠和2∠不是同旁内角的是( )
A .
B .
C .
D .
2.下列各组图形可以通过平移互相得到的是( ) A .
B .
C .
D .
3.在平面直角坐标系中,点(﹣1,a +1)一定在( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
4.下列命题:(1)无理数是无限小数;(2)过一点有且只有一条直线与已知直线平行;(3)过一点有且只有一条直线与已知直线垂直;(4)平方根等于它本身的数是0和1,其中是假命题的个数有( ) A .1个
B .2个
C .3个
D .4个
5.直线12//l l ,125A ∠=︒,85B ∠=︒,115∠=︒,则2∠=( )
A .15°
B .25°
C .35
D .20°
6.下列等式正确的是( ) A .93-=-
B .
497
14412
=± C .23(8)4-=
D .3273
82
--
=- 7.如图,已知//AB CD ,BC 平分ABE ∠,64BED ∠=︒,则C ∠的度数是( )
A .26︒
B .32︒
C .48︒
D .54︒
8.已知点0(E x ,)o y ,点2(F x ,2)y ,点1(M x ,1)y 是线段EF 的中点,则02
12
x x x +=
,
02
12
y y y +=
.在平面直角坐标系中有三个点A (1,1-),B (1-,1-),C (0,1),点P (0,2)关于点A 的对称点1P (即P ,A ,1P 三点共线,且1)PA P A =,1P 关于点B 的对称点2P ,2P 关于点C 的对称点3P ,⋯按此规律继续以A ,B ,C 三点为对称点重复前面的操作.依次得到点4P ,5P ,6P ⋯,则点2015P 的坐标是( ) A .(0,0)
B .(0,2)
C .(2,4-)
D .(4-,2)
二、填空题
9.36的平方根是______,81的算术平方根是______.
10.已知点A (2a +3b ,﹣2)和点B (8,3a +1)关于y 轴对称,那么a +b =_____. 11.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和38,则△EDF 的面积为_____.
12.如图,已知a //b ,∠1=50°,∠2=115°,则∠3=______.
13.如图,将长方形ABCD 沿DE 折叠,使点C 落在边AB 上的点F 处,若44EFB ∠=︒,则
EDC ∠=___º.
14.已知,a b 为两个连续的整数,且 15a b <<,则 a b +=_______ 15.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________.
16.如图,在平面直角坐标系中,有若干个整数点(纵横坐标都是整数的点),其顺序按图中“→”方向排列如(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)…根据这个规律探索可得,第2021个点的坐标为_____.
三、解答题
17.计算:
(1)利用平方根意义求x 值:()2
136x -= (2)
()
2
35832-----
18.求下列各式中x 的值: (1)()2
4264x -=; (2)3
338
x -=.
19.如图,C 、E 分别在AB 、DF 上,小华想知道∠ACE 和∠DEC 是否互补,但是他又没有带量角器,只带了一副三角尺,于是他想了这样一个办法:首先连接CF ,再找出CF 的中点O ,然后连接EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO =BO ,因此他得出结论:∠ACE 和∠DEC 互补.
请将小华的想法补充完整: ∵CF 和BE 交于点O . ∴COB EOF ∠=∠;( )
而O 是CF 的中点,那么CO FO =,又已知EO BO =, ∴COB FOE △≌△( ),
∴BC EF =,(全等三角形对应边相等)
∴BCO F ∠=∠,( ) ∴//AB DF ,( )
∴ACE ∠和DEC ∠互补.( ) 20.如图,ABC 在平面直角坐标系中.
(1)写出ABC 各顶点的坐标; (2)求出ABC 的面积;
(3)若把ABC 向上平移2个单位长度,再向右平移1个单位长度后得111A B C △,请画出
111A B C △,并写出1A ,1B ,1C 的坐标.
21.阅读下面的文字,解答问题:2是无理数,而无理数是无限不循环小数,因212<2212部分.请解答下列问题:
29_______,小数部分是_________;
(2)1015a ,b ,求10a b +
二十二、解答题
22.已知足球场的形状是一个长方形,而国际标准球场的长度a 和宽度b (单位:米)的取值范围分别是100110a ≤≤,6475b ≤≤.若某球场的宽与长的比是1:1.5,面积为7350平方米,请判断该球场是否符合国际标准球场的长宽标准,并说明理由.
二十三、解答题
23.已知,如图:射线PE 分别与直线AB 、CD 相交于E 、F 两点,PFD ∠的角平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设PFM α∠=︒,EMF β∠=︒且
()
2
350αβα-+-=.
(1)α=________,β=________;直线AB 与CD 的位置关系是______;
(2)如图,若点G 是射线MA 上任意一点,且MGH PNF ∠=∠,试找出FMN ∠与GHF ∠之间存在一个什么确定的数量关系?并证明你的结论.
(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图)分别与AB 、CD 相交于点
1M 和点1N 时,作1PM B ∠的角平分线1M Q 与射线FM 相交于点Q ,问在旋转的过程中
1
FPN Q
∠∠的值变不变?若不变,请求出其值;若变化,请说明理由.
24.(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1).
①请你仿照以上过程,在图2中画出一条直线b ,使直线b 经过点P ,且//b a ,要求保留折纸痕迹,画出所用到的直线,指明结果.无需写画法:
②在(1)中的步骤(b )中,折纸实际上是在寻找过点P 的直线a 的 线.
(2)已知,如图3,//AB CD ,BE 平分ABC ∠,CF 平分BCD ∠.求证://BE CF (写出每步的依据).
25.操作示例:如图1,在△ABC 中,AD 为BC 边上的中线,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1=S 2.
解决问题:在图2中,点D 、E 分别是边AB 、BC 的中点,若△BDE 的面积为2,则四边形ADEC 的面积为 . 拓展延伸:
(1)如图3,在△ABC 中,点D 在边BC 上,且BD =2CD ,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1与S 2之间的数量关系为 .
(2)如图4,在△ABC 中,点D 、E 分别在边AB 、AC 上,连接BE 、CD 交于点O ,且BO =2EO ,CO =DO ,若△BOC 的面积为3,则四边形ADOE 的面积为 .
26.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在
GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒;
(1)如图1,求BAN ∠的度数;
(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.
【参考答案】
一、选择题 1.B 解析:B 【分析】
两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.根据同旁内角的概念可得答案. 【详解】
解:选项A 、C 、D 中,∠1与∠2在两直线的之间,并且在第三条直线(截线)的同旁,是同旁内角;
选项B 中,∠1与∠2的两条边都不在同一条直线上,不是同旁内角. 故选:B . 【点睛】
此题主要考查了同旁内角,关键是掌握同旁内角的边构成“U ”形.
2.C 【分析】
根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案. 【详解】
解:观察图形可知图案C 通过平移后可以得到. 故选:C .
【点睛】
本题考查的是
解析:C
【分析】
根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.
【详解】
解:观察图形可知图案C通过平移后可以得到.
故选:C.
【点睛】
本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.
3.B
【分析】
根据非负数的性质判断出点的纵坐标是正数,再根据各象限点的特点解答.
【详解】
,
∴>0,
∴点(-1)一定在第二象限,
故选B.
【点睛】
本题考查了点的坐标,记住各象限内点的坐标的符号并判断出点的纵坐标是负数是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.C
【分析】
根据无理数的定义,平行线公理,垂线的性质,平方根的定义逐项判断即可.
【详解】
解:(1)应该是无理数是无限不循环小数,是无限小数,故(1)是真命题;
(2)应该是过直线外一点,有且只有一条直线与已知直线平行,故(2)是假命题;(3)应该是同一平面内,过一点有且只有一条直线与已知直线垂直,故(3)是假命题;(4)1的平方根 ,故(4)是假命题;
所以假命题的个数有3个,
故选:C.
【点睛】
本题主要考查了无理数的定义,平行线公理,垂线的性质,平方根的定义,熟练掌握相关知识点是解题的关键.
5.A
【分析】
分别过A、B作直线
1
l的平行线AD、BC,根据平行线的性质即可完成.【详解】
分别过A、B作直线1l∥AD、1l∥BC,如图所示,则AD∥BC
∵
1
l∥2l
∴
2
l∥BC
∴∠CBF=∠2
∵
1
l∥AD
∴∠EAD=∠1=15゜
∴∠DAB=∠EAB-∠EAD=125゜-15゜=110゜
∵AD∥BC
∴∠DAB+∠ABC=180゜
∴∠ABC=180゜-∠DAB=180゜-110゜=70゜
∴∠CBF=∠ABF-∠ABC=85゜-70゜=15゜
∴∠2=15゜
故选:A.
【点睛】
本题考查了平行线的性质与判定等知识,关键是作两条平行线.
6.C
【分析】
根据算术平方根、立方根的定义计算即可
【详解】
A、负数没有平方根,故错误
B
49
144
497
14412
,故错误
C23
3(8)64=4
-,故正确
D、32733 822
⎛⎫
----=
⎪
⎝⎭
,故错误
故选:C
【点睛】
本题考查算术平方根、立方根的计算,熟知任何数都有立方根、负数没有平方根是关键7.B
【分析】
利用平行线的性质,角平分线的定义即可解决问题. 【详解】
解:∵//AB CD ,64BED ∠=︒,BC 平分ABE ∠, ∴64ABE ∠=︒,11
643222
ABC EBC ABE ∠=∠=∠=⨯︒=︒,
∵//AB CD , ∴32C ABC ∠=∠=︒, 故选:B . 【点睛】
本题考查平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
8.A 【分析】
首先利用题目所给公式求出的坐标,然后利用公式求出对称点的坐标,依此类推即可求出的坐标;由的坐标和的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点的坐标 【详解】 解:设, ∵,
解析:A 【分析】
首先利用题目所给公式求出1P 的坐标,然后利用公式求出对称点2P 的坐标,依此类推即可求出7P 的坐标;由7P 的坐标和1P 的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点2015P 的坐标 【详解】
解:设()1P x
y ,, ∵()1,1A -,()0,2P ,且A 是1PP 的中点, ∴
02
1122
x y ++==-,,解得:2y 4x ==-,, ∴()12
4P -, 同理可得:()()()()()()234567424022000224P P P P P P ----,,,,,,,,,,,, ∴每6个点一个循环, ∵
2015
33656
=
∴点2015P 的坐标是()500P , 故选A 【点睛】
此题考查了平面直角坐标系中坐标规律的探索,读懂题目,利用题目所给公式是解题的关键,利用公式求出几个点的坐标,找到循环规律,利用这个规律即可求出.
二、填空题 9.±6 9. 【解析】 ∵(±6)2=36, ∴36的平方根是±6; ∵92=81,
∴81的算术平方根是9.
解析:±6 9. 【解析】 ∵(±6)2=36, ∴36的平方根是±6; ∵92=81,
∴81的算术平方根是9.
10.-3. 【分析】
关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a ,b 的值. 【详解】
解:∵点A (2a+3b ,﹣2)和点B (8,3a+1)关于y 轴对称, ∴, 解得, ∴a+b =
解析:-3. 【分析】
关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a ,b 的值. 【详解】
解:∵点A (2a +3b ,﹣2)和点B (8,3a +1)关于y 轴对称,
∴238312a b a +=-⎧⎨+=-⎩
, 解得12a b =-⎧⎨=-⎩
,
∴a +b =﹣3, 故答案为:﹣3. 【点睛】
本题考查的是关于y 轴对称的两个点的坐标关系,掌握以上知识是解题的关键.
11.6
【详解】
如图,过点D作DH⊥AC于点H,
又∵AD是△ABC的角平分线,DF⊥AB,垂足为F,
∴DF=DH,∠AFD=∠ADH=∠DHG=90°,
又∵AD=AD,DE=DG,
∴△ADF≌
解析:6
【详解】
如图,过点D作DH⊥AC于点H,
又∵AD是△ABC的角平分线,DF⊥AB,垂足为F,
∴DF=DH,∠AFD=∠ADH=∠DHG=90°,
又∵AD=AD,DE=DG,
∴△ADF≌△ADH,△DEF≌△DGH,
设S△DEF=x,则S△AED+x=S△ADG-x,即38+x=50-x,解得:x=6.
∴△EDF的面积为6.
12.65°
【分析】
根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】
解:如图:
∵a//b,∠1=50°,
∴∠4=∠1=50°,
∵∠2=115°,∠2=∠3+∠4,
解析:65°
【分析】
根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.
【详解】
解:如图:
∵a//b,∠1=50°,
∴∠4=∠1=50°,
∵∠2=115°,∠2=∠3+∠4,
∴∠3=∠2﹣∠4=115°﹣50°=65°.
故答案为:65°.
【点睛】
此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键.13.23
【分析】
根据∠EFB求出∠BEF,根据翻折的性质,可得到∠DEC=∠DEF,从而求出∠DEC 的度数,即可得到∠EDC.
【详解】
解:∵△DFE是由△DCE折叠得到的,
∴∠DEC=∠FED
解析:23
【分析】
根据∠EFB求出∠BEF,根据翻折的性质,可得到∠DEC=∠DEF,从而求出∠DEC的度数,即可得到∠ED C.
【详解】
解:∵△DFE是由△DCE折叠得到的,
∴∠DEC=∠FED,
又∵∠EFB=44°,∠B=90°,
∴∠BEF=46°,
∴∠DEC=1
(180°-46°)=67°,
2
∴∠EDC=90°-∠DEC=23°,
故答案为:23.
【点睛】
本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键.
14.7
【分析】
由无理数的估算,先求出a、b的值,再进行计算即可.
【详解】
解:∵,
∴,
∵、为两个连续的整数,,
∴,,
∴;
故答案为:7.
【点睛】
本题考查了无理数的估算,解题的关键是正确
解析:7
【分析】
由无理数的估算,先求出a、b的值,再进行计算即可.
【详解】
解:∵
∴34
<,
∵a
、b为两个连续的整数,a b
<,
∴3
a=,4
b=,
∴347
a b+=+=;
故答案为:7.
【点睛】
本题考查了无理数的估算,解题的关键是正确求出a、b的值,从而进行解题.15.或
【详解】
【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.
【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=,当0≤x<3时,2x≥0,x-3
解析:2或
2 -3
【详解】
【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.
【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=
2
3 -,
当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2,
当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=8
3
<3(不合题意,舍去),
综上,x的值为2或
2
3 -,
故答案为2或
2 3 -.
【点睛】本题考查了坐标与图形的性质,根据x 的取值范围分情况进行讨论是解题的关键. 16.(45,5)
【分析】
观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐
解析:(45,5)
【分析】
观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形1y =直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐标是偶数时,以偶数为横坐标,纵坐标为右下角横坐标的偶数的点结束,根据此规律解答即可.
【详解】
解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于1y =直线上最右边的点的横坐标的平方,
例如:右下角的点的横坐标为1,共有1个,211=,
右下角的点的横坐标为2时,如下图点(2,1)A ,共有4个,242=,
右下角的点的横坐标为3时,共有9个,293=,
右下角的点的横坐标为4时,如下图点(4,1)B ,共有16个,2164=,
⋯
右下角的点的横坐标为n 时,共有2n 个, 2452025=,45是奇数,
∴第2025个点是(45,1),
202520214-=,
点是(45,1)向上平移4个单位,
∴第2021个点是(45,5).
故答案为:(45,5).
【点睛】
本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键.
三、解答题
17.(1)或 (2)
【分析】
(1)由平方根的定义可得答案,
(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案.
【详解】
解:(1) ,
是的平方根,
或
(2)
【点睛
解析:(1)7x =或 5.x =- (2)5
【分析】
(1)由平方根的定义可得答案,
(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案.
【详解】
解:(1) ()2
136x -=, 1x ∴-是36的平方根,
16,16,x x ∴-=-=-
7x ∴=或 5.x =-
(22
5(2)2=--
522=+-
5=
【点睛】
本题考查的是平方根的定义,实数的运算,求解算术平方根,立方根,绝对值的化简,掌握以上知识是解题的关键.
18.(1)或;(2)
【分析】
(1)根据平方根的性质求解即可;
(2)根据立方根的性质求解即可;
【详解】
(1),
,
,
或,
∴或;
(2),
,
;
【点睛】
本题主要考查了平方根的性质应用和
解析:(1)6x =或2x =-;(2)32
x =
【分析】
(1)根据平方根的性质求解即可;
(2)根据立方根的性质求解即可;
【详解】
(1)()24264x -=, ()2216x -=,
24x -=±,
24x -=或24-=-x ,
∴6x =或2x =-;
(2)3338
x -=, 3278x , 32
x =; 【点睛】
本题主要考查了平方根的性质应用和立方根的性质应用,准确计算是解题的关键. 19.对顶角相等;SAS ;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补
【分析】
由“SAS”可证△COB ≌△FOE ,可得∠BCO=∠F ,可证AB ∥DF ,可得结论.
【详解】
解析:对顶角相等;SAS ;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补
【分析】
由“SAS ”可证△COB ≌△FOE ,可得∠BCO =∠F ,可证AB ∥DF ,可得结论.
【详解】
解:∵CF和BE相交于点O,
∴∠COB=∠EOF;(对顶角相等),
而O是CF的中点,那么CO=FO,又已知EO=BO,
∴△COB≌△FOE(SAS),
∴BC=EF,(全等三角形对应边相等),
∴∠BCO=∠F,(全等三角形的对应角相等),
∴AB∥DF,(内错角相等,两直线平行),
∴∠ACE和∠DEC互补.(两直线平行,同旁内角互补),
故答案为:对顶角相等;SAS;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补.
【点睛】
本题考查了全等三角形的判定和性质,平行线的判定和性质,掌握全等三角形的判定定理是解题的关键.
20.(1)A(-1,-1),B(4,2),C(1,3);(2)7;(3)画图见解析,A1(0,1),B1(5,4),C1(2,5)
【分析】
(1)根据平面直角坐标系,确定出所求点坐标即可;
(2)由长
解析:(1)A(-1,-1),B(4,2),C(1,3);(2)7;(3)画图见解析,A1(0,1),B1(5,4),C1(2,5)
【分析】
(1)根据平面直角坐标系,确定出所求点坐标即可;
(2)由长方形面积减去三个直角三角形面积求出所求即可;
(3)直接利用平移的性质进而得出对应点坐标进而得出答案.
【详解】
解:(1)由图可知:
A(-1,-1),B(4,2),C(1,3);
(2)根据题意得:
S△△ABC=111
⨯-⨯⨯-⨯⨯-⨯⨯=7;
54243153
222
(3)如图所示:
△A1B1C1为所求,此时A1(0,1),B1(5,4),C1(2,5).
【点睛】
此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.21.(1)5;-5(2)0
【分析】
(1)先估算出的范围,即可得出答案;
(2)先估算出、的范围,求出a、b的值,再代入求出即可.
【详解】
(1)∵5<<6,
∴的整数部分是5,小数部分是-5,
故
解析:(1)529(2)0
【分析】
(129
(21015a、b的值,再代入求出即可.
【详解】
(1)∵5296,
∴29529,
故答案为:529;
(2)∵3104,
∴a10,
∵3154,
∴b=3,
∴10
a b+1010.
【点睛】
291015
二十二、解答题
22.符合,理由见解析
【分析】
根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案.
【详解】
解:符合,理由如下:
设宽为b 米,则长为1.5b 米,由题意得,
1.5b×b
解析:符合,理由见解析
【分析】
根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案.
【详解】
解:符合,理由如下:
设宽为b 米,则长为1.5b 米,由题意得,
1.5b×b=7350,
∴b=70,或b=-70(舍去),
即宽为70米,长为1.5×70=105米,
∵100≤105≤110,64≤70≤75,
∴符合国际标准球场的长宽标准.
【点睛】
本题考查算术平方根的意义,列出方程求出长和宽是得出正确答案的前提.
二十三、解答题
23.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2
【分析】
(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ;
(2
解析:(1)35,35,平行;(2)∠FMN +∠GHF =180°,证明见解析;(3)不变,2
【分析】
(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ; (2)先根据内错角相等证GH ∥PN ,再根据同旁内角互补和等量代换得出
∠FMN +∠GHF =180°;
(3)作∠PEM 1的平分线交M 1Q 的延长线于R ,先根据同位角相等证ER ∥FQ ,得∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,得出∠EPM 1=2∠R ,即可得1FPN Q
∠∠=2. 【详解】
解:(1)∵(α-35)2+|β-α|=0,
∴α=β=35,
∴∠PFM =∠MFN =35°,∠EMF =35°,
∴∠EMF =∠MFN ,
∴AB ∥CD ;
(2)∠FMN +∠GHF =180°;
理由:由(1)得AB ∥CD ,
∴∠MNF =∠PME ,
∵∠MGH =∠MNF ,
∴∠PME =∠MGH ,
∴GH ∥PN ,
∴∠GHM =∠FMN ,
∵∠GHF +∠GHM =180°,
∴∠FMN +∠GHF =180°;
(3)1FPN Q
∠∠的值不变,为2, 理由:如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R ,
∵AB ∥CD ,
∴∠PEM 1=∠PFN ,
∵∠PER =12∠PEM 1,∠PFQ =1
2∠PFN ,
∴∠PER =∠PFQ ,
∴ER ∥FQ ,
∴∠FQM 1=∠R ,
设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,
则有:122y x R
y x EPM ⎧⎨⎩=+∠=+∠, 可得∠EPM 1=2∠R ,
∴∠EPM 1=2∠FQM 1,
∴11EPM FQM ∠∠=1FPN Q
∠∠=2. 【点睛】
本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.
24.(1)①见解析;②垂;(2)见解析
【分析】
(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;
②步骤(b )中,折纸实际上是在寻找过点的直线的垂线.
(2)先根据
解析:(1)①见解析;②垂;(2)见解析
【分析】
(1)①过P 点折纸,使痕迹垂直直线a ,然后过P 点折纸使痕迹与前面的痕迹垂直,从而得到直线b ;
②步骤(b )中,折纸实际上是在寻找过点P 的直线a 的垂线.
(2)先根据平行线的性质得到ABC BCD ∠=∠,再利用角平分线的定义得到23∠∠=,然后根据平行线的判定得到结论.
【详解】
(1)解:①如图2所示:
②在(1)中的步骤(b )中,折纸实际上是在寻找过点P 的直线a 的垂线.
故答案为垂;
(2)证明:BE 平分ABC ∠,CF 平分BCD ∠(已知),
12∠∠∴=,33∠=∠(角平分线的定义),
//AB CD (已知),
ABC BCD ∴∠=∠(两直线平行,内错角相等),
2223∴∠=∠(等量代换),
23∴∠=∠(等式性质),
//BE CF ∴(内错角相等,两直线平行).
【点睛】
本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质与判定.
25.解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5
【解析】
试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,
S△ABE=S△AEC,从而得到结论;
拓展延伸:(1)
解析:解决问题:6;拓展延伸:(1)S1=2S2(2)10.5
【解析】
试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;
拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论;
(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,
△EOC的面积=△BOC的面积的一半,△AOB的面积=2△AOE的面积.设△AOD的面积
=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.
试题解析:解:解决问题
连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6.
拓展延伸:
解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2.
(2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.
26.(1)60°;(2)15°;(3)30°或15°
【分析】
(1)利用两直线平行,同旁内角互补,得出,即可得出结论;
(2)先利用三角形的内角和定理求出,即可得出结论;
(3)分和两种情况求解即可得
解析:(1)60°;(2)15°;(3)30°或15°
【分析】
(1)利用两直线平行,同旁内角互补,得出90CAN ∠=︒,即可得出结论; (2)先利用三角形的内角和定理求出AFD ∠,即可得出结论;
(3)分90DAF ∠=︒和90AFD ∠=︒两种情况求解即可得出结论.
【详解】
解:(1)//MN GH ,
180ACB NAC ∴∠+∠=︒,
90ACB ∠=︒,
90CAN ∴∠=︒,
30BAC ∠=︒,
9060BAN BAC ∴∠=︒-∠=︒;
(2)由(1)知,60BAN ∠=︒,
45EDF ∠=︒,
18075AFD BAN EDF ∴∠=︒-∠-∠=︒,
90DFE ∠=︒,
15AFE DFE AFD ∴∠=∠-∠=︒;
(3)当90DAF ∠=︒时,如图3,
由(1)知,60BAN ∠=︒,
30FAN DAF BAN ∴∠=∠-∠=︒;
当90AFD ∠=︒时,如图4,
90DFE ∠=︒,
∴点A ,E 重合,
45EDF ∠=︒,
45DAF ∴∠=︒,
由(1)知,60BAN ∠=︒,
15FAN BAN DAF ∴∠=∠-∠=︒,
即当以A 、D 、F 为顶点的三角形是直角三角形时,FAN ∠度数为30或15︒.
【点睛】
此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出60BAN ∠=︒是解本题的关键.。