八年级第二学期 第一次段考数学试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为( )
A .0.8米
B .2米
C .2.2米
D .2.7米
2.如图,AB =AC ,∠CAB =90°,∠ADC=45°,AD =1,CD =3,则BD 的长为( )
A .3
B .11
C .23
D .4 3.直角三角形的面积为 S ,斜边上的中线为 d ,则这个三角形周长为 ( ) A .22d S d ++
B .2d S d --
C .22d S d ++
D .()
22d S d ++ 4.如图,□ABCD 中,对角线AC 与BD 相交于点E ,∠AEB=45°,BD=2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B′,则DB′的长为( )
A .1
B 2
C .32
D 35.如图,小红想用一条彩带缠绕易拉罐,正好从A 点绕到正上方B 点共四圈,已知易拉罐底面周长是12 cm ,高是20 cm ,那么所需彩带最短的是( )
A .13 cm
B .4cm
C .4cm
D .52 cm
6.如图是一块长、宽、高分别为6cm 、4cm 、3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( )
A .cm
B .cm
C .cm
D .9cm
7.如图所示,有一个高18cm ,底面周长为24cm 的圆柱形玻璃容器,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm 的点F 处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( )
A .16cm
B .18cm
C .20cm
D .24cm
8.如图,已知数轴上点P 表示的数为1-,点A 表示的数为1,过点A 作直线l 垂直于PA ,在l 上取点B ,使1AB =,以点P 为圆心,以PB 为半径作弧,弧与数轴的交点C 所表示的数为( )
A 5
B 51
C 51
D .51-
9.在△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,下列结论中不正确的是( ) A .如果∠A ﹣∠B =∠C ,那么△ABC 是直角三角形
B .如果∠A :∠B :∠
C =1:2:3,那么△ABC 是直角三角形
C .如果 a 2:b 2:c 2=9:16:25,那么△ABC 是直角三角形
D .如果 a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠A =90°
10.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长. AC 的长为( )
A.3尺B.4.2尺C.5尺D.4尺
二、填空题
11.如图,∠MON=90°,△ABC的顶点A、B分别在OM、ON上,当A点从O点出发沿着OM向右运动时,同时点B在ON上运动,连接OC.若AC=4,BC=3,AB=5,则OC 的长度的最大值是________.
12.如图,在△中,,∠90°,是边的中点,是边上一动点,则的最小值是__________.
∠+∠=__________°(点A,B,C是13.如图所示的网格是正方形网格,则ABC ACB
网格线交点).
14.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是_____.
15.如图,在矩形ABCD 中,AB =6,AD =8,矩形内一动点P 使得S △PAD =13
S 矩形ABCD ,则点P 到点A 、D 的距离之和PA +PD 的最小值为_____.
16.在ABC ∆中,10AB cm =,17AC cm =,BC 边上的高为8cm ,则ABC ∆的面积为______2cm .
17.如图,O 为坐标原点,四边形OABC 为矩形,()20,0A ,()0,8C ,点D 是OA 的中点,点P 在边BC 上运动,当ODP ∆是以OD 为腰的等腰三角形时,则P 点的坐标为______.
18.在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,且a +b =35,c =5,则ab 的值为______.
19.如图所示,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E ,若AD =4,DC =3,求BE 的长.
20.已知,在△ABC 中,BC=3,∠A=22.5°,将△ABC 翻折使得点B 与点A 重合,折痕与边AC 交于点P ,如果AP=4,那么AC 的长为_______
三、解答题
21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .
()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;
()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12
BE CF AB +=.
()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.
22.如图,在矩形ABCD 中,AB=8,BC=10,E 为CD 边上一点,将△ADE 沿AE 折叠,使点D 落在BC 边上的点F 处.
(1)求BF 的长;
(2)求CE 的长.
23.已知a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225,
(1)求a ,b ,c 的值; (2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.
24.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.
(1)如图1,点D 在边BC 上,1CD =,5AD =,求ABD ∆的面积.
(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.
25.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E .
(1)根据题意用尺规作图补全图形(保留作图痕迹);
(2)设,BC m AC n ==
①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由.
②若线段2AD EC =,求m n
的值.
26.如图,在△ABC 中,∠C =90°,把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合.
(1)若∠A =35°,则∠CBD 的度数为________;
(2)若AC =8,BC =6,求AD 的长;
(3)当AB =m(m>0),△ABC 的面积为m +1时,求△BCD 的周长.(用含m 的代数式表示)
27.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,45AB BC ==.
(1)求CD 的长.
(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.
①若当2v =时,CP BQ =,求t 的值.
②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.
28.阅读下列材料,并解答其后的问题:
我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,△ABC 的面积为S ()()()()a b c a b c a c b b c a +++-+-+-. (1)(举例应用)已知△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a =4,b =5,c =7,则△ABC 的面积为 ;
(2)(实际应用)有一块四边形的草地如图所示,现测得AB =(62)m ,BC =5m ,CD =7m ,AD =6m ,∠A =60°,求该块草地的面积.
29.在平面直角坐标系中,点A(0,4),B(m,0)在坐标轴上,点C,O关于直线AB 对称,点D在线段AB上.
(1)如图1,若m=8,求AB的长;
(2)如图2,若m=4,连接OD,在y轴上取一点E,使OD=DE,求证:CE=2DE;(3)如图3,若m=43,在射线AO上裁取AF,使AF=BD,当CD+CF的值最小时,请在图中画出点D的位置,并直接写出这个最小值.
30.如图,在△ABC中,D是边AB的中点,E是边AC上一动点,连结DE,过点D作DF⊥DE交边BC于点F(点F与点B、C不重合),延长FD到点G,使DG=DF,连结EF、AG.已知
AB=10,BC=6,AC=8.
(1)求证:△ADG≌△BDF;
(2)请你连结EG,并求证:EF=EG;
(3)设AE=x,CF=y,求y关于x的函数关系式,并写出自变量x的取值范围;
(4)求线段EF长度的最小值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
先根据勾股定理求出梯子的长,进而根据勾股定理可得出小巷的宽度.
【详解】
解:如图,由题意可得:
AD2=0.72+2.42=6.25,
在Rt△ABC中,
∵∠ABC=90°,BC=1.5米,BC2+AB2=AC2,AD=AC,
∴AB2+1.52=6.25,
∴AB=±2,
∵AB>0,
∴AB=2米,
∴小巷的宽度为:0.7+2=2.7(米).
故选:D.
【点睛】
本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.
2.B
解析:B
【分析】
过点A作AE⊥AD交CD于E,连接BE,利用SAS可证明△BAE≌△CAD,利用全等的性质证得∠BED=90°,最后根据勾股定理即可求出BD.
【详解】
解:如图,过点A作AE⊥AD交CD于E,连接BE.
∵∠DAE=90°,∠ADE=45°,
∴∠ADE=∠AED=45°,
∴AE=AD=1,
∴在Rt △ADE 中,=
∵∠DAE=∠BAC=90°, ∴∠DAE+∠EAC=∠BAC+∠EAC ,即∠CAD=∠BAE ,
又∵AB=AC,
∴△BAE ≌△CAD(SAS),
∴CD=BE=3,∠AEB=∠ADC=45°,
∴∠BED=90°,
∴在Rt △BED 中,==
故选B.
【点睛】
本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理等知识,作辅助线构造出全等三角形是解题的关键. 3.D
解析:D
【解析】
【分析】
根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可。

【详解】
解:设直角三角形的两条直角边分别为x 、y ,
∵斜边上的中线为d ,
∴斜边长为2d ,由勾股定理得,x 2+y 2=4d 2,
∵直角三角形的面积为S ,
∴12
S xy =,则2xy=4S ,即(x+y )2=4d 2+4S ,
∴x y +=
∴这个三角形周长为:)
2
d ,故选:D. 【点睛】
本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2. 4.B
解析:B
【解析】
【分析】
如图,连接BB′.根据折叠的性质知△BB′E 是等腰直角三角形,则.又B′E 是BD 的中垂线,则DB′=BB′.
【详解】
∵四边形ABCD是平行四边形,BD=2,
∴BE=1
2
BD=1.
如图2,连接BB′.
根据折叠的性质知,∠AEB=∠AEB′=45°,BE=B′E.
∴∠BEB′=90°,
∴△BB′E是等腰直角三角形,则BB′=2BE=2,
又∵BE=DE,B′E⊥BD,
∴DB′=BB′=2.
故选B.
【点睛】
考查了平行四边形的性质以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
5.D
解析:D
【解析】
【分析】
本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决..要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.
【详解】
如图,
由图可知,彩带从易拉罐底端的A处绕易拉罐4圈后到达顶端的B处,将易拉罐表面切开展开呈长方形,则螺旋线长为四个长方形并排后的长方形的对角线长,设彩带最短长度为xcm,
∵∵易拉罐底面周长是12cm,高是20cm,
∴x2=(12×4)2+202∴x2=(12×4)2+202,
所以彩带最短是52cm.
故选D.
【点睛】
本题考查了平面展开−−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,
6.C
解析:C
【解析】
【分析】
本题中蚂蚁要跑的路径有三种情况,知道当蚂蚁爬的是一条直线时,路径才会最短.蚂蚁爬的是一个长方形的对角线.展开成平面图形,根据两点之间线段最短,可求出解.
【详解】
解:如图1,当爬的长方形的长是(4+6)=10,宽是3时,需要爬行的路径的长
==cm;
如图2,当爬的长方形的长是(3+6)=9,宽是4时,需要爬行的路径的长
==cm;
如图3,爬的长方形的长是(3+4)=7时,宽是6时,需要爬行的路径的长==cm.
所以要爬行的最短路径的长cm.
故选C.
【点睛】
本题考查平面展开路径问题,本题关键知道蚂蚁爬行的路线不同,求出的值就不同,有三种情况,可求出值找到最短路线.
7.C
解析:C
【分析】
首先画出圆柱的侧面展开图,进而得到SC=12cm ,FC=18-2=16cm ,再利用勾股定理计算出SF 长即可.
【详解】
将圆柱的侧面展开,蜘蛛到达目的地的最近距离为线段SF 的长,
由勾股定理,SF 2=SC 2+FC 2=122+(18-1-1)2=400,
SF=20 cm ,
故选C.
【点睛】
本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.
8.B
解析:B
【分析】
由数轴上点P 表示的数为1-,点A 表示的数为1,得PA=2,根据勾股定理得5PB 而即可得到答案.
【详解】
∵数轴上点P 表示的数为1-,点A 表示的数为1,
∴PA=2,
又∵l ⊥PA ,1AB =, ∴225PB PA AB +=
∵5
∴数轴上点C 51.
故选B .
【点睛】
本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.
9.D
解析:D
【分析】
根据直角三角形的判定和勾股定理的逆定理解答即可.
【详解】
选项A 中如果∠A ﹣∠B =∠C ,由∠A+∠B+∠C =180°,可得∠A =90°,那么△ABC 是直角
三角形,选项正确;
选项B 中如果∠A :∠B :∠C =1:2:3,由∠A+∠B+∠C =180°,可得∠A =90°,那么△ABC 是直角三角形,选项正确;
选项C 中如果 a 2:b 2:c 2=9:16:25,满足a 2+b 2=c 2,那么△ABC 是直角三角形,选项正确;
选项D 中如果 a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠B =90°,选项错误;
故选D .
【点睛】
考查直角三角形的判定,学生熟练掌握勾股定理逆定理是本题解题的关键,并结合直角三角形的定义解出此题.
10.B
解析:B
【分析】
竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 尺,则斜边为(10)x -尺,利用勾股定理解题即可.
【详解】
解:设竹子折断处离地面x 尺,则斜边为(10)x -尺,
根据勾股定理得:2224(10)x x +=-.
解得: 4.2x =,
∴折断处离地面的高度为4.2尺,
故选:B .
【点睛】
此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
二、填空题
11.5
【解析】
试题分析:取AB 中点E ,连接OE 、CE ,在直角三角形AOB 中,OE=AB ,利用勾股定理的逆定理可得△ACB 是直角三角形,所以CE=AB ,利用OE+CE≥OC ,所以OC 的最大值为OE+CE ,即OC 的最大值=AB=5.
考点:勾股定理的逆定理,
12.
【解析】如图,过点作⊥于点,延长到点,使,连接,交于点,连接,此时的值最小.连接,由对称性可知∠45°,,∴∠90°.根据勾股定理可得

13.45
【分析】
∠+∠=∠,只需证△ADC是如下图,延长BA至网络中的点D处,连接CD. ABC ACB DAC
等腰直角三角形即可
【详解】
如下图,延长BA至网络中的点D处,连接CD
设正方形网络每一小格的长度为1
则根据网络,555BC=5,∴5
其中BD、DC、BC边长满足勾股定理逆定理
∴∠CDA=90°
∵AD=DC
∴△ADC是等腰直角三角形
∴∠DAC=45°
故答案为:45°
【点睛】
本题是在网格中考察勾股定理的逆定理,解题关键是延长BA,构造处△ABC的外角∠CAD 14.(0,21009)
【解析】
【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.
【详解】∵∠OAA1=90°,OA=AA1=1,以OA1为直角边作等腰Rt△OA1A2,再以OA2为直角边作等腰Rt△OA2A3,…,
∴OA1=2,OA2=(2)2,…,OA2018=(2)2018,
∵A1、A2、…,每8个一循环,
∵2018=252×8+2
∴点A2018的在y轴正半轴上,OA2018=()2018
2=21009,
故答案为(0,21009).
【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.
15.82
【分析】
根据S△PAD=1
3
S矩形ABCD,得出动点P在与AD平行且与AD的距离是4的直线l上,作A关
于直线l的对称点E,连接DE,BE,则DE的长就是所求的最短距离.然后在直角三角形ADE中,由勾股定理求得DE的值,即可得到PA+PD的最小值.
【详解】
设△PAD中AD边上的高是h.
∵S△PAD=1
3
S矩形ABCD,
∴1
2
AD•h=
1
3
AD•AB,
∴h=2
3
AB=4,
∴动点P在与AD平行且与AD的距离是4的直线l上,
如图,作A关于直线l的对称点E,连接BE,DE,则DE的长就是所求的最短距离.
在Rt△ADE中,∵AD=8,AE=4+4=8,
DE2222
8882
AE AD
++=
即PA+PD的最小值为2.
故答案2.
本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P 所在的位置是解题的关键.
16.36或84
【分析】
过点A 作AD ⊥BC 于点D ,利用勾股定理列式求出BD 、CD ,再分点D 在边BC 上和在CB 的延长线上两种情况分别求出BC 的长度,然后根据三角形的面积公式列式计算即可得解.
【详解】
解:过点A 作AD ⊥BC 于点D ,
∵BC 边上的高为8cm ,
∴AD=8cm ,
∵AC=17cm ,
由勾股定理得: 22221086BD AB AD =-=-=cm ,
222217815CD AC AD =-=-=cm ,
如图1,点D 在边BC 上时,
BC=BD+CD =6+15=21cm ,
∴△ABC 的面积=
12BC AD =12
×21×8=84cm 2, 如图2,点D 在CB 的延长线上时,
BC= CD −BD =15−6=9cm , ∴△ABC 的面积=
12BC AD =12
×9×8=36 cm 2, 综上所述,△ABC 的面积为36 cm 2或84 cm 2,
故答案为:36或84.
【点睛】
本题考查了勾股定理,作辅助线构造出直角三角形是解题的关键,难点是在于要分情况讨论.
17.()4,8或()6,8或()16,8
【分析】
当ODP ∆是以OD 为腰的等腰三角形时,分为两种情况①点O 是顶角顶点时,②D 是顶角顶点时,根据勾股定理求出CP ,PM 即可.
解:OD是等腰三角形的一条腰时:
①若点O是顶角顶点时,P点就是以点O为圆心,以10为半径的弧与CB的交点,
在直角△OPC中,CP=2222
1086
OP OC
-=-=,则P的坐标是(6,8).
②若D是顶角顶点时,P点就是以点D为圆心,以10为半径的弧与CB的交点,
过D作DM⊥BC于点M,
在直角△PDM中,22
22
1086
PD DM
-=-=,
当P在M的左边时,CP=10-6=4,则P的坐标是(4,8);
当P在M的右侧时,CP=10+6=16,则P的坐标是(16,8).
故P的坐标为:(6,8)或(4,8)或(16,8).
故答案为:(6,8)或(4,8)或(16,8).
【点睛】
本题主要考查等腰三角形的性质及勾股定理的运用,注意正确地进行分类,考虑到所有的可能情况是解题的关键.
18.10
【分析】
先根据勾股定理得出a2+b2=c2,利用完全平方公式得到(a+b)2﹣2ab=c2,再将a+b=5c=5代入即可求出ab的值.
【详解】
解:∵在Rt△ABC中,直角边的长分别为a,b,斜边长c,
∴a2+b2=c2,
∴(a+b)2﹣2ab=c2,
∵a+b=5c=5,
∴(52﹣2ab=52,
∴ab=10.
故答案为10.
【点睛】
本题考查勾股定理以及完全平方公式,灵活运用完全平方公式是解题关键.
19.7 8
【解析】
试题分析:根据矩形性质得AB=DC=6,BC=AD=8,AD∥BC,∠B=90°,再根据折叠性质得∠DAC=∠D′AC,而∠DAC=∠ACB,则∠D′AC=∠ACB,所以AE=EC,设BE=x,则EC=4-
x,AE=4-x,然后在Rt△ABE中利用勾股定理可计算出BE的长即可.试题解析:∵四边形ABCD为矩形,
∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,
∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,
∴∠DAC=∠D′AC,
∵AD∥BC,∴∠DAC=∠ACB,
∴∠D′AC=∠ACB,∴AE=EC,
设BE=x,则EC=4﹣x,AE=4﹣x,
在Rt△ABE中,∵AB2+BE2=AE2,
∴32+x2=(4﹣x)2,解得x=7
8

即BE的长为7
8

20.522,322
++
【分析】
过B作BF⊥CA于F,构造直角三角形,分两种情况讨论,利用勾股定理以及等腰直角三角形的性质,即可得到AC的长.
【详解】
分两种情况:
①当∠C为锐角时,如图所示,过B作BF⊥AC于F,
由折叠可得,折痕PE垂直平分AB,
∴AP=BP=4,
∴∠BPC=2∠A=45°,
∴△BFP是等腰直角三角形,
∴BF=DF=22,
又∵BC=3,
∴Rt△BFC中,CF=221
BC BF
-=,
∴AC=AP+PF+CF=5+22;
②当∠ACB为钝角时,如图所示,过B作BF⊥AC于F,
同理可得,△BFP是等腰直角三角形,
∴BF=FP=
又∵BC=3,
∴Rt △BCF 中,1=,
∴AC=AF-CF=3+
故答案为:5+3+
【点睛】
本题主要考查了折叠问题以及勾股定理的运用,解决问题的关键是分两种情况画出图形进行求解.解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
三、解答题
21.(1)BE =1;(2)见解析;(3)(2y x =
【分析】
(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;
(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;
(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据
30°角的直角三角形的性质可得DM BM ,进而可得BE +CF (BE ﹣CF ),代入x 、y 后整理即得结果.
【详解】
解:(1)如图1,∵△ABC 是等边三角形,
∴∠B =∠C =60°,BC =AC =AB =4.
∵点D 是线段BC 的中点,
∴BD =DC =12
BC =2. ∵DF ⊥AC ,即∠AFD =90°,
∴∠AED =360°﹣60°﹣90°﹣120°=90°,
∴∠BED =90°,∴∠BDE =30°,
∴BE =12BD =1;
(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,
则有∠AMD =∠BMD =∠AND =∠CND =90°.
∵∠A =60°,
∴∠MDN =360°﹣60°﹣90°﹣90°=120°.
∵∠EDF =120°,
∴∠MDE =∠NDF .
在△MBD 和△NCD 中,
∵∠BMD =∠CND ,∠B =∠C ,BD =CD ,
∴△MBD ≌△NCD (AAS ),
∴BM =CN ,DM =DN .
在△EMD 和△FND 中,
∵∠EMD =∠FND ,DM =DN ,∠MDE =∠NDF ,
∴△EMD ≌△FND (ASA ),
∴EM =FN ,
∴BE +CF =BM +EM +CN -FN =BM +CN =2BM =BD =12BC =12
AB ;
(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法可得:BM =CN ,DM =DN ,EM =FN .
∵DN =FN ,
∴DM =DN =FN =EM ,
∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,
BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,
在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,
∴DM 22=3BD BM BM -,
∴)3x y x y +=-,整理,得(23y x =.
【点睛】
本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.
22.(1)BF长为6;(2)CE长为3,详细过程见解析.
【分析】
(1)由矩形的性质及翻折可知,∠B=90°,AF=AD=10,且AB=8,在Rt△ABF中,可由勾股定理求出BF的长;
(2)设CE=x,根据翻折可知,EF=DE=8-x,由(1)可知BF=6,则CF=4,在Rt△CEF中,可由勾股定理求出CE的长.
【详解】
解:(1)∵四边形ABCD为矩形,
∴∠B=90°,且AD=BC=10,
又∵AFE是由ADE沿AE翻折得到的,
∴AF=AD=10,
又∵AB=8,
在Rt△ABF中,由勾股定理得:2222
BF=AF-AB=10-8=6,
故BF的长为6.
(2)设CE=x ,
∵四边形ABCD为矩形,
∴CD=AB=8,∠C=90°,DE=CD-CE=8-x,
又∵△AFE是由△ADE沿AE翻折得到的,
∴FE=DE=8-x,
由(1)知:BF=6,故CF=BC-BF=10-6=4,
CF+CE=EF,
在Rt△CEF中,由勾股定理得:222
∴222
4+x=(8-x),解得:x=3,
故CE的长为3.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,利用勾股定理求解是本题的关键.
23.(1)a=8,b=15,c=17;(2)能,60
【分析】
(1)根据算术平方根,绝对值,平方的非负性即可求出a 、b 、c 的值;
(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长
【详解】
解:(1)∵a ,b ,c |c ﹣17|+b 2﹣30b +225,
21||7(15)c b +-﹣,
∴a ﹣8=0,b ﹣15=0,c ﹣17=0,
∴a =8,b =15,c =17;
(2)能.
∵由(1)知a =8,b =15,c =17,
∴82+152=172.
∴a 2+c 2=b 2,
∴此三角形是直角三角形,
∴三角形的周长=8+15+17=40; 三角形的面积=
12×8×15=60. 【点睛】
此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状.
24.(1)3;(2)见解析.
【分析】
(1)根据勾股定理可得AC ,进而可得BC 与BD ,然后根据三角形的面积公式计算即可; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则根据余角的性质可得∠CBG =∠EBH ,由已知易得BE ∥AC ,于是∠E =∠EFC ,由于CG EF ⊥,90ACB ∠=︒,则根据余角的性质得∠EFC =∠BCG ,于是可得∠E =∠BCG ,然后根据ASA 可证△BCG ≌△BEH ,可得BG =BH ,CG =EH ,从而△BGH 是等腰直角三角形,进一步即可证得结论.
【详解】
解:(1)在△ACD 中,∵90ACB ∠=︒,1CD =,AD =
∴2AC ==,
∵2BC AC =,∴BC=4,BD =3,∴1132322ABD S BD AC ∆=
⋅=⨯⨯=; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则∠CBG +∠CBH =90°,
∵BE BC ⊥,∴∠EBH +∠CBH =90°,∴∠CBG =∠EBH ,
∵BE BC ⊥,90ACB ∠=︒,∴BE ∥AC ,∴∠E =∠EFC ,
∵CG EF ⊥,90ACB ∠=︒,∴∠EFC +∠FCG =90°,∠BCG +∠FCG =90°,
∴∠EFC =∠BCG ,∴∠E =∠BCG ,
在△BCG 和△BEH 中,∵∠CBG =∠EBH ,BC=BE ,∠BCG =∠E ,∴△BCG ≌△BEH (ASA ), ∴BG =BH ,CG =EH ,
∴GH ==,
∴2EG GH EH BG CG =+=+.
【点睛】
本题考查了直角三角形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、余角的性质和勾股定理等知识,属于常考题型,正确作出辅助线构造全等三角形是解题的关键.
25.(1)详见解析;(2)①线段AD 的长度是方程2220x mx n +-=的一个根,理由详见解析;②
512
m n = 【分析】
(1)根据题意,利用尺规作图画出图形即可;
(2)①根据勾股定理求出AD ,然后把AD 的值代入方程,即可得到答案;
②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.
【详解】
(1)解:作图,如图所示:
(2)解:①线段AD 的长度是方程2220x mx n +-=的一个根. 理由如下:依题意得, BD BC m ==,
在Rt ABC 中,90ACB ∠=︒
222BC AC AB ∴=+
22AB m n =+22AD AB BD m n m ∴=-=+
222AD m AD n ∴+-
)()
2222222m n m m m n m n =+++- 222222222222m n m m n m m m n m n =+-+++-
0=;
∴线段AD 的长度是方程22 20x mx n +-=的一个根
②依题意得:,,AD AE BD BC AB AD BD ====
2AD EC = 2233AD AE AC n ∴=== 在RT ABC 中,90ACB ∠=
222BC AC AB ∴+=
2
2223m n n m ⎛⎫+=+ ⎪⎝⎭
22224493m n n mn m +=++ 25493
n mn = 512
m n ∴= 【点睛】
本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.
26.(1)∠CBD=20°;(2)AD=16
4;(3) △BCD 的周长为m+2 【分析】
(1)根据折叠可得∠1=∠A=35°,根据三角形内角和定理可以计算出∠ABC=55°,进而得到∠CBD=20°;
(2)根据折叠可得AD=DB ,设CD=x ,则AD=BD=8-x ,再在Rt △CDB 中利用勾股定理可得x 2+62=(8-x )2,再解方程可得x 的值,进而得到AD 的长;
(3)根据三角形ACB 的面积可得112
AC CB m =+, 进而得到AC •BC=2m+2,再在Rt △CAB 中,CA 2+CB 2=BA 2,再把左边配成完全平方可得CA+CB 的长,进而得到△BCD 的周长.
【详解】
(1)
∵把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合,
∴∠1=∠A=35°,
∵∠C=90°,
∴∠ABC=180°-90°-35°=55°,
∴∠2=55°-35°=20°,
即∠CBD=20°;
(2)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴AD=DB,
设CD=x,则AD=BD=8-x,
在Rt△CDB中,CD2+CB2=BD2,
x2+62=(8-x)2,
解得:x= 7
4

AD=8-7
4
=
1
6
4

(3)∵△ABC 的面积为m+1,
∴1
2
AC•BC=m+1,
∴AC•BC=2m+2,
∵在Rt△CAB中,CA2+CB2=BA2,
∴CA2+CB2+2AC•BC=BA2+2AC•BC,
∴(CA+BC)2=m2+4m+4=(m+2)2,
∴CA+CB=m+2,
∵AD=DB,
∴CD+DB+BC=m+2.
即△BCD的周长为m+2.
【点睛】
此题主要考查了图形的翻折变换,以及勾股定理,完全平方公式,关键是掌握勾股定理,以及折叠后哪些是对应角和对应线段.
27.(1)CD=8;(2)t=4;(3)
12-
=
t
v
t
(26
t≤<)
【分析】
(1)作AE⊥BC于E,根据等腰三角形三线合一的性质可得BE=1
2
BC,然后利用勾股定理
求出AE,再用等面积法可求出CD的长;
(2)①过B作BF⊥AC于F,易得BF=CD,分别讨论Q点在AF和FC之间时,根据
△BQF≌△CPD,得到PD=QF,建立方程即可求出t的值;
(3)同(2)建立等式关系即可得出关系式,再根据Q在FC之间求出t的取值范围即可.【详解】
解:(1)如图,作AE⊥BC于E,
∵AB=AC,
∴BE=1
2
BC=25
在Rt△ABE中,
()2
222
AE=AB BE=1025=45
--
∵△ABC的面积=11
BC AE=AB CD 22
⋅⋅

BC AE4545 CD===8
AB10
⋅⨯
(2)过B作BQ⊥AC,当Q在AF之间时,如图所示,
∵△ABC的面积=11
AC BF=AB CD
22
⋅⋅,AB=AC
∴BF=CD
在Rt△CPD和Rt△BQF中
∵CP=BQ,CD=BF,
∴Rt△CPD≌Rt△BQF(HL)
∴PD=QF
在Rt△ACD中,CD=8,AC=AB=10∴22
AD=AC CD=6
-
同理可得AF=6
∴PD=AD=AP=6-t,QF=AF-AQ=6-2t 由PD=QF得6-t=6-2t,解得t=0,∵t>0,
∴此种情况不符合题意,舍去;
当Q 点在FC 之间时,如图所示,
此时PD=6-t ,QF=2t-6
由PD=QF 得6-t=2t-6,
解得t=4,
综上得t 的值为4.
(3)同(2)可知v >1时,Q 在AF 之间不存在CP=BQ ,Q 在FC 之间存在CP=BQ ,Q 在F 点时,显然CP ≠BQ ,
∵运动时间为t ,则AP=t ,AQ=vt ,
∴PD=6-t ,QF=vt-6,
由PD=QF 得6-t=vt-6, 整理得12-=t v t
, ∵Q 在FC 之间,即AF <AQ ≤AC
∴610<≤vt ,代入12-=t v t
得 61210<-≤t ,解得26t ≤< 所以答案为12-=
t v t (26t ≤<) 【点睛】
本题考查三角形中的动点问题,熟练掌握勾股定理求出等腰三角形的高,利用全等三角形对应边相等建立方程是解题的关键.
28.(1)6(2)(310)m 2
【分析】
(1)由已知△ABC 的三边a=4,b=5,c=7,可知这是一个一般的三角形,故选用海伦-奏九韶公式求解即可;(2)过点D 作DE ⊥AB ,垂足为E ,连接BD.将所求四边形的面积转化为三个三角形的面积的和进行计算.
【详解】
(1)解:△ABC 的面积为S ()()()()a b c a b c a c b b c a +++-+-+-
(457)(457)(475)(574)
+++-+-+-
=46
故答案是:46;
(2)解:如图:过点D作DE⊥AB,垂足为E,连接BD(如图所示)在Rt△ADE中,
∵∠A=60°,
∴∠ADE=30°,
∴AE=1
2
AD=6
∴BE=AB﹣AE=62﹣6=2
DE2222
(46)(26)62
AD AE
-=-=
∴BD2222
BE DE(42)(62)226
+=+=
∴S△BCD 1
(57226)(57226)(22675)(22657)510 4
+++-+-+-=
∵S△ABD=11
642)6212324 22
AB DE
⋅=⨯⨯=
∴S四边形ABCD=S△BCD+S△ABD=12324510
+
答:该块草地的面积为(12324510
+m2.
【点睛】
本题考查了勾股定理的应用和三角形面积的求解方法.此题难度不大,注意选择适当的求解方法是关键.
29.(1)AB=52)见解析;(3)CD+CF的最小值为7.
【分析】
(1)根据勾股定理可求AB的长;
(2)过点D作DF⊥AO,根据等腰三角形的性质可得OF=EF,根据轴对称的性质等腰直角三角形的性质可得AF=DF,设OF=EF=x,AE=4﹣2x,根据勾股定理用参数x表示DE,CE的长,即可证CE2DE;
(3)过点B作BM⊥OB,在BM上截取BM=AO,过点C作CN⊥BM,交MB的延长线于点N,根据锐角三角函数可得∠ABO=30°,根据轴对称的性质可得AC=AO=4,BO=BC =3ABO=∠ABC=30°,∠OAB=∠CAB=60°,根据“SAS”可证
△ACF≌△BMD,可得CF=DM,则当点D在CM上时,CF+CD的值最小,根据直角三角形的性质可求CN,BN的长,根据勾股定理可求CM的长,即可得CF+CD的最小值.
【详解】
(1)∵点A (0,4),B (m ,0),且m =8,
∴AO =4,BO =8,
在Rt △ABO 中,AB =2245AO BO +=
(2)如图,过点D 作DF ⊥AO ,
∵DE =DO ,DF ⊥AO ,
∴EF =FO ,
∵m =4,
∴AO =BO =4,
∴∠ABO =∠OAB =45°,
∵点C ,O 关于直线AB 对称,
∴∠CAB =∠CBA =45°,AO =AC =OB =BC =4,
∴∠CAO =∠CBO =90°,
∵DF ⊥AO ,∠BAO =45°,
∴∠DAF =∠ADF =45°,
∴AF =DF ,
设OF =EF =x ,AE =4﹣2x ,
∴AF =DF =4﹣x ,
在Rt △DEF 中,DE =()2222242816EF DF x x x x +=
+-=-+ 在Rt △ACE 中,CE =
()()
2222164222816AC AE x x x +=+-=-+ ∴CE =2DE ,
(3)如图,过点B 作BM ⊥OB ,在BM 上截取BM =AO ,过点C 作CN ⊥BM ,交MB 的延长线于点N ,
∵m =3,
∴OB =3
∴tan ∠ABO =
AO BO ==, ∴∠ABO =30°
∵点C ,O 关于直线AB 对称,
∴AC =AO =4,BO =BC =,∠ABO =∠ABC =30°,∠OAB =∠CAB =60°, ∴∠CAF =120°,∠CBO =60°
∵BM ⊥OB ,∠ABO =30°,
∴∠ABM =120°,
∴∠CAF =∠ABM ,且DB =AF ,BM =AO =AC =4,
∴△ACF ≌△BMD (SAS )
∴CF =DM ,
∵CF +CD =CD +DM ,
∴当点D 在CM 上时,CF +CD 的值最小,
即CF +CD 的最小值为CM 的长,
∵∠CBO =60°,BM ⊥OB ,
∴∠CBN =30°,且BM ⊥OB ,BC =
∴CN =BN CN =6,
∴MN =BM +BN =4+6=10,
在Rt △CMN 中,CM =,
∴CD +CF 的最小值为.
【点睛】
本题是三角形综合题,考查了等腰三角形的性质,勾股定理,轴对称的性质,全等三角形的判定和性质,最短路径问题等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.
30.(1)见解析(2) 见解析(3) 见解析(4)5
【解析】
【分析】
(1)由D 是AB 中点知AD =BD ,结合DG =DF ,∠ADG =∠BDF 即可得证;
(2)连接EG .根据垂直平分线的判定定理即可证明.
(3)由△ADG ≌△BDF ,推出∠GAB =∠B ,推出∠EAG =90°,可得EF 2=(8-x )2+y 2,EG 2=x 2+(6-y )2,根据EF =EG ,可得(8-x )2+y 2=x 2+(6-y )2,由此即可解决问题.
(4)由EF 知x =4时,取得最小值.
【详解】
解:(1)∵D 是边AB 的中点,
∴AD =BD ,。

相关文档
最新文档