高考物理动能定理的综合应用易错剖析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理动能定理的综合应用易错剖析
一、高中物理精讲专题测试动能定理的综合应用
1.为了备战2022年北京冬奥会,一名滑雪运动员在倾角θ=30°的山坡滑道上进行训练,运动员及装备的总质量m=70 kg .滑道与水平地面平滑连接,如图所示.他从滑道上由静止开始匀加速下滑,经过t=5s 到达坡底,滑下的路程 x=50 m .滑雪运动员到达坡底后又在水平面上滑行了一段距离后静止.运动员视为质点,重力加速度g=10m/s2,求:
(1)滑雪运动员沿山坡下滑时的加速度大小a ; (2)滑雪运动员沿山坡下滑过程中受到的阻力大小f ; (3)滑雪运动员在全过程中克服阻力做的功W f . 【答案】(1)4m/s 2(2)f = 70N (3)1.75×104J 【解析】 【分析】
(1)运动员沿山坡下滑时做初速度为零的匀加速直线运动,已知时间和位移,根据匀变速直线运动的位移时间公式求出下滑的加速度.
(2)对运动员进行受力分析,根据牛顿第二定律求出下滑过程中受到的阻力大小. (3)对全过程,根据动能定理求滑雪运动员克服阻力做的功. 【详解】
(1)根据匀变速直线运动规律得:x=12
at 2 解得:a=4m/s 2
(2)运动员受力如图,根据牛顿第二定律得:mgsinθ-f=ma
解得:f=70N
(3)全程应用动能定理,得:mgxsinθ-W f =0 解得:W f =1.75×104J 【点睛】
解决本题的关键要掌握两种求功的方法,对于恒力可运用功的计算公式求.对于变力可根据动能定理求功.
2.质量 1.5m kg =的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行 2.0t s =停在B 点,已知A 、B 两点间的距
离 5.0s m =,物块与水平面间的动摩擦因数0.20μ=,求恒力F 多大.(2
10/g m s =)
【答案】15N 【解析】 设撤去力
前物块的位移为
,撤去力
时物块的速度为,物块受到的滑动摩擦力
对撤去力后物块滑动过程应用动量定理得
由运动学公式得
对物块运动的全过程应用动能定理
由以上各式得 代入数据解得
思路分析:撤去F 后物体只受摩擦力作用,做减速运动,根据动量定理分析,然后结合动能定律解题
试题点评:本题结合力的作用综合考查了运动学规律,是一道综合性题目.
3.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为
=0.4m R 的圆轨道;
(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;
(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.
【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】
(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:
2
v mg m R
=
从A 到C 过程机械能守恒,由机械能守恒定律得:
()2122
mg h R mv -=
, 解得:
2.5 2.50.4m 1m h R ==⨯=;
(2)在C 点,由牛顿第二定律得:
2C
v mg mg m R
+=,
从A 到C 过程,由动能定理得:
()2
1202
f C m
g
h R W mv -+=
-, 解得:
0.8J f W =-;
4.如图,I 、II 为极限运动中的两部分赛道,其中I 的AB 部分为竖直平面内半径为R 的
14
光滑圆弧赛道,最低点B 的切线水平; II 上CD 为倾角为30°的斜面,最低点C 处于B 点的正下方,B 、C 两点距离也等于R.质量为m 的极限运动员(可视为质点)从AB 上P 点处由静止开始滑下,恰好垂直CD 落到斜面上.求:
(1) 极限运动员落到CD 上的位置与C 的距离; (2)极限运动员通过B 点时对圆弧轨道的压力; (3)P 点与B 点的高度差.
【答案】(1)4
5R (2)75mg ,竖直向下(3)15
R
【解析】 【详解】
(1)设极限运动员在B 点的速度为v 0,落在CD 上的位置与C 的距离为x ,速度大小为v ,在空中运动的时间为t ,则xcos300=v 0t R-xsin300=
12
gt 2 0
tan 30
v gt = 解得x=0.8R
(2)由(1)可得:02
5
v gR =
通过B 点时轨道对极限运动员的支持力大小为F N
20
N v F mg m R
-=
极限运动员对轨道的压力大小为F N ′,则F N ′=F N , 解得'
7
5
N F mg =
,方向竖直向下; (3) P 点与B 点的高度差为h,则mgh=1
2
mv 02 解得h=R/5
5.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径
R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求:
(1)参赛者运动到圆弧轨道B 处对轨道的压力;
(2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能.
【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】
(1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12
m 2B v 解得v B =4m /s
在B 处,由牛顿第二定律
N B -mg =m 2B
v R
解得N B =2mg =1 200N
根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理
-μ2mgL 2=0-
12
m 2C v 解得v C =6m /s
B 到
C 过程,由牛顿第二定律μ1mg =ma 解得a =4m /s 2
(2分) 参赛者加速至v C 历时t =C B
v v a
-=0.5s 位移x 1=
2
B C
v v +t =2.5m <L 1 参赛者从B 到C 先匀加速后匀速,传送带顺时针运转,速率v =6m /s . (3) 0.5s 内传送带位移x 2=vt =3m 参赛者与传送带的相对位移Δx =x 2-x 1=0.5m 传送带由于传送参赛者多消耗的电能 E =μ1mg Δx +
12m 2C v -12
m 2
B v =720J .
6.如图所示,倾斜轨道AB 的倾角为37°,CD 、EF 轨道水平,AB 与CD 通过光滑圆弧管道BC 连接,CD 右端与竖直光滑圆周轨道相连.小球可以从D 进入该轨道,沿轨道内侧运动,从E 滑出该轨道进入EF 水平轨道.小球由静止从A 点释放,已知AB 长为5R ,CD 长为R ,重力加速度为g ,小球与斜轨AB 及水平轨道CD 、EF 的动摩擦因数均为
0.5,sin37°=0.6,cos37°=0.8,圆弧管道BC 入口B 与出口C 的高度差为l.8R .求:(在运算中,根号中的数值无需算出)
(1)小球滑到斜面底端C 时速度的大小. (2)小球刚到C 时对轨道的作用力.
(3)要使小球在运动过程中不脱离轨道,竖直圆周轨道的半径R /应该满足什么条件? 【答案】(1285
gR
(2)6.6mg ,竖直向下(3)0.92R R '≤ 【解析】
试题分析:(1)设小球到达C 点时速度为v ,a 球从A 运动至C 过程,由动能定理有
002
1(5sin 37 1.8)cos3752
c mg R R mg R mv μ+-⋅=
(2分) 可得 5.6c v gR 1分)
(2)小球沿BC 轨道做圆周运动,设在C 点时轨道对球的作用力为N ,由牛顿第二定律
2
c v N mg m r
-=, (2分) 其中r 满足 r+r·
sin530=1.8R (1分)
联立上式可得:N=6.6mg (1分)
由牛顿第三定律可得,球对轨道的作用力为6.6mg ,方向竖直向下. (1分) (3)要使小球不脱离轨道,有两种情况:
情况一:小球能滑过圆周轨道最高点,进入EF 轨道.则小球b 在最高点P 应满足
2P v m mg R '
≥(1分) 小球从C 直到P 点过程,由动能定理,有2211
222
P c mgR mg R mv mv μ--'⋅=-(1分) 可得23
0.9225
R R R ='≤
(1分) 情况二:小球上滑至四分之一圆轨道的Q 点时,速度减为零,然后滑回D .则由动能定理有
21
02
c mgR mg R mv μ--⋅='-(1分)
2.3R R '≥(1分)
若 2.5R R '=,由上面分析可知,小球必定滑回D ,设其能向左滑过DC 轨道,并沿CB 运动到达B 点,在B 点的速度为v B ,,则由能量守恒定律有
2211
1.8222
c B mv mv mg R mgR μ=+⋅+(1分) 由⑤⑨式,可得0B v =(1分)
故知,小球不能滑回倾斜轨道AB ,小球将在两圆轨道之间做往返运动,小球将停在CD 轨道上的某处.设小球在CD 轨道上运动的总路程为S ,则由能量守恒定律,有
2
12
c mv mgS μ=(1分) 由⑤⑩两式,可得 S=5.6R (1分)
所以知,b 球将停在D 点左侧,距D 点0.6R 处. (1分)
考点:本题考查圆周运动、动能定理的应用,意在考查学生的综合能力.
7.为了研究过山车的原理,某同学设计了如下模型:取一个与水平方向夹角为37°、长为L =2.5 m 的粗糙倾斜轨道AB ,通过水平轨道BC 与半径为R =0.2 m 的竖直圆轨道相连,出口为水平轨道DE ,整个轨道除AB 段以外都是光滑的。
其中AB 与BC 轨道以微小圆弧相接,如图所示。
一个质量m =2 kg 小物块,当从A 点以初速度v 0=6 m/s 沿倾斜轨道滑下,到达C 点时速度v C =4 m/s 。
取g =10 m/s 2,sin37°=0.60,cos37°=0.80。
(1)小物块到达C 点时,求圆轨道对小物块支持力的大小; (2)求小物块从A 到B 运动过程中,摩擦力对小物块所做的功;
(3)小物块要能够到达竖直圆弧轨道的最高点,求沿倾斜轨道滑下时在A 点的最小初速度v A 。
【答案】(1) N =180 N (2) W f =−50 J (3) 30A v = m/s 【解析】 【详解】
(1)在C 点时,设圆轨道对小物块支持力的大小为N ,则:
2
c mv N mg R
-= 解得 N =180 N
(2)设A →B 过程中摩擦力对小物块所做的功为W f ,小物块A →B →C 的过程,有
22011sin 3722
f c mgL W mv mv ︒+=
- 解得 W f =−50 J 。
(3)小物块要能够到达竖直圆弧轨道的最高点,设在最高点的速度最小为v m ,则:
2
m
mv mg R
= 小物块从A 到竖直圆弧轨道最高点的过程中,有
22m A 11sin 37222
f mgL W mgR mv mv ︒+-=
- 解得
A 30v = m/s
8.如图的竖直平面内,一小物块(视为质点)从H =10m 高处,由静止开始沿光滑弯曲轨道AB 进入半径R =4m 的光滑竖直圆环内侧,弯曲轨道AB 在B 点与圆环轨道平滑相接。
之后物块沿CB 圆弧滑下,在B 点(无动量损失)进入右侧的粗糙水平面上压缩弹簧。
已知物块的质量m =2kg ,与水平面间的动摩擦因数为0.2,弹簧自然状态下最左端D 点与B 点距离L =15m ,求:(g =10m/s 2)
(1)物块从A 滑到B 时的速度大小; (2)物块到达圆环顶点C 时对轨道的压力;
(3)若弹簧最短时的弹性势能,求此时弹簧的压缩量。
【答案】(1)m/s;(2)0N;(3)10m。
【解析】
【分析】
【详解】
(1)对小物块从A点到B点的过程中由动能定理
解得:
;
(2)小物块从B点到C由动能定理:
在C点,对小物块受力分析:
代入数据解得C点时对轨道压力大小为0N;
(3)当弹簧压缩到最短时设此时弹簧的压缩量为x,对小物块从B点到压缩到最短的过程中由动能定理:
由上式联立解得:
x=10m
【点睛】
动能定理的优点在于适用任何运动包括曲线运动,了解研究对象的运动过程是解决问题的前提,根据题目已知条件和求解的物理量选择物理规律解决问题。
动能定理的应用范围很广,可以求速度、力、功等物理量,特别是可以去求变力功。
9.如图所示,BC 2
2
5
竖直放置的光滑细圆管,O为细圆管的圆心,在圆
管的末端C连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m=0.5kg的小球从O点正上方某处A点以v0水平抛出,恰好能垂直OB从B点进入细圆管,小球从进入圆管开始受到始终竖直向上的力F=5N的作用,当小球运动到圆管的末端C时作用力F立即消失,小球能平滑地冲上粗糙斜面.(g=10m/s2)求:
(1)小球从O点的正上方某处A点水平抛出的初速度v0为多少?
(2)小球在圆管中运动时对圆管的压力是多少?
(3)小球在CD斜面上运动的最大位移是多少?
【答案】(1)2m/s ;(2)7.1N ;(3)0.35m. 【解析】 【详解】
(1)小球从A 运动到B 为平抛运动, 水平方向:
r sin45°=v 0t ,
在B 点:
tan45°=
y v gt v v =
, 解得:
v 0=2m/s ;
(2)小球到达在B 点的速度:
22m/s cos 45v v ︒
=
=,
由题意可知:
mg =0.5×10=5N=F ,
重力与F 的合力为零,
小球所受合力为圆管的外壁对它的弹力,该力不做功, 小球在管中做匀速圆周运动,管壁的弹力提供向心力,
22
(22)0.5N 7.1N
22
5
v F m r ==⨯= 由牛顿第三定律可知,小球对圆管的压力大小:7.1N F '=; (3)小球在CD 上滑行到最高点过程,由动能定理得:
21
sin 45?cos 45?02
mg s mg s mv μ︒︒--=-
解得:
s ≈0.35m ;
10.滑板运动是深受青少年喜爱的一项极限运动。
如图所示为某一滑道的示意图,轨道 AB 可视为竖直平面内半径为R 的
1
4
光滑圆弧,圆心为O ,OA 水平。
轨道最低点B 距水平面
CD 高度为14
R ,C 点位于B 点正下方。
滑板和运动员(可看作质点)总质量为m ,由A 点静止下滑,从轨道中B 点飞出,落在水平面上的E 点。
重力加速度为g 。
求: (1)运动员运动到B 点时速度的大小; (2)运动员运动到B 点时对轨道压力的大小; (3)C 、E 两点间的距离。
【答案】(1) 2B v gR =mg (3)R 【解析】 【详解】
(1) 运动员从A 到B ,根据动能定理
2
B 102
mgR mv =-
解得:
B 2v gR (2) 运动员到达B 点时
2B
B v N mg m R
-=
运动员对轨道的压力为
'B 3N N mg ==
(3)运动员空中飞行时间
212
h gt =
解得:
2R t g
=
C 、E 间距离为
B x v t R ==
11.如图所示,整个轨道在同一竖直平面内,直轨道AB 在底端通过一段光滑的曲线轨道与一个光滑的四分之一圆弧轨道CD 平滑连接,圆弧轨道的最高点C 与B 点位于同一高度.圆弧半径为R ,圆心O 点恰在水平地面.一质量为m 的滑块(视为质点)从A 点由静
止开始滑下,运动至C 点时沿水平切线方向离开轨道,最后落在地面上的E 点.已知A 点距离水平地面的高度为H ,OE=2R ,重力加速度取g ,不计空气阻力.求:
(1)滑块运动到C 点时的速度大小V C ;
(2)滑块运动过程中克服轨道摩擦力所做的功W f ;
(3)若滑块从直轨道上A′点由静止开始下滑,运动至C 点时对轨道恰好无压力,则A′点距离水平地面的高度为多少?
【答案】(1)滑块运动到C 点时的速度大小v C 是.
(2)滑块运动过程中克服轨道摩擦力所做的功W f 是mg (H ﹣2R ).
(3)A′点距离水平地面的高度为
. 【解析】
试题分析:(1)滑块从C 到E 做平抛运动,水平位移为2R ,竖直位移为R
则有:2C R v t =、212R gt =,可解得2C v gR =(2)对于从A 到C 的过程,运用动能定理得()2102f C mg H
R W mv -=-﹣ 解得,滑块运动过程中克服轨道摩擦力所做的功()2f W mg H R =-
(3)设A '点的距离水平地面的高度为h .
在C 点有'2C v mg m R
=① 从A′到C ,由动能定理得21()02
f C m
g
h R W mv --'='-② 滑块在直轨道上下滑时重力做功与克服摩擦力做功的比值是定值, 所以有:'()()(2)f mg H R h R mg H R W --=-解得(2)()()
f H R h R W m
g H R --'=-,代入②式 联立①、②两式,可解得2
H R h +=
考点:考查了动能定理;向心力. 【名师点睛】本题要分析清楚物体的运动情况,正确选择研究过程,寻找每个过程和状态所遵守的物理规律是关系,要掌握平抛运动的研究方法:运动的分解法
12.如图所示,半圆轨道的半径为R=10m ,AB 的距离为S=40m ,滑块质量m=1kg ,滑块在恒定外力F 的作用下从光滑水平轨道上的A 点由静止开始运动到B 点,然后撤去外力,又沿竖直面内的光滑半圆形轨道运动,且滑块通过最高点C 后又刚好落到原出发点A ;
g=10m/s 2
求:(1)滑块在C 点的速度大小v c
(2) 在C 点时,轨道对滑块的作用力N C
(3)恒定外力F 的大小
【答案】(1)v c =20m/s (2)Nc=30N ,方向竖直向下(3)F="10N"
【解析】
试题分析:(1) C 点飞出后正好做平抛运动,则2
12{2R gt x vt
==
联立上述方程则v c =20m/s
(2)根据向心力知识则2
N v mg F m r
+= FN=30N ,方向竖直向下。
(3)根据动能定理2102
B Fs mv =- 2211222
C B mgR mv mv -=- 联立上述方程则F=10N
考点:平抛运动、圆周运动、动能定理
点评:本题考查了常见的平抛运动、圆周运动、动能定理的理解和应用,属于简单题型,并通过三者的有机结合考察了综合运用知识能力。