宜黄县第一中学校2018-2019学年高二上学期第一次月考试卷化学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宜黄县第一中学校2018-2019学年高二上学期第一次月考试卷化学
一、选择题
1. 若a=ln2,
b=5
,
c=
xdx ,则a ,b ,c 的大小关系( )
A .a <b <c
B B .b <a <c
C C .b <c <a
D .c <b <a
2. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( )
A .8
B .1
C .5
D .﹣1
3. 已知函数f (x )=xe x ﹣mx+m ,若f (x )<0的解集为(a ,b ),其中b <0;不等式在(a ,b )中有且只有一个整数解,则实数m 的取值范围是( ) A .
B .
C .
D .
4. 下列命题中正确的是( )
A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题
B .命题“若xy=0,则x=0”的否命题为:“若xy=0,则x ≠0”
C .
“
”是
“
”的充分不必要条件
D .命题“∀x ∈R ,2x >0”的否定是
“
”
5. 抛物线x=﹣4y 2的准线方程为( ) A .y=1 B .
y=
C .x=1
D .
x=
6. 已知命题p :“∀x ∈R ,e x >0”,命题q :“∃x 0∈R ,x 0﹣2>x 02”,则( )
A .命题p ∨q 是假命题
B .命题p ∧q 是真命题
C .命题p ∧(¬q )是真命题
D .命题p ∨(¬q )是假命题
7. 如果执行如图所示的程序框图,那么输出的a=( )
A .2 B
. C .﹣1 D .以上都不正确
8. “x ≠0”是“x >0”是的( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
9. 若变量x ,y 满足:,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )
A .﹣2<t <﹣
B .﹣2<t ≤﹣
C .﹣2≤t ≤﹣
D .﹣2≤t <﹣
10.某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )
A .20,2
B .24,4
C .25,2
D .25,4 11.特称命题“∃x ∈R ,使x 2+1<0”的否定可以写成( ) A .若x ∉R ,则x 2+1≥0
B .∃x ∉R ,x 2+1≥0
C .∀x ∈R ,x 2+1<0
D .∀x ∈R ,x 2+1≥0
12.已知d 为常数,p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p 是¬q 的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
二、填空题
13.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)
14.已知z ,ω为复数,i 为虚数单位,(1+3i )z 为纯虚数,ω=,且|ω|=5,则复数ω= .
15.抛物线y=x 2的焦点坐标为( )
A .(0,)
B .(
,0)
C .(0,4)
D .(0,2)
16.设x ,y 满足约束条件,则目标函数z=2x ﹣3y 的最小值是 .
17.已知点G 是△ABC 的重心,若∠A=120°,
•
=﹣2,则|
|的最小值是 .
18.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.
三、解答题
19.已知椭圆C :
+
=1(a >b >0)的短轴长为2
,且离心率e=,设F 1,F 2是椭圆的左、右焦点,
过F 2的直线与椭圆右侧(如图)相交于M ,N 两点,直线F 1M ,F 1N 分别与直线x=4相交于P ,Q 两点. (Ⅰ)求椭圆C 的方程; (Ⅱ)求△F 2PQ 面积的最小值.
20.数列{}n a 中,18a =,42a =,且满足*2120()n n n a a a n N ++-+=∈. (1)求数列{}n a 的通项公式; (2)设12||||||n n S a a a =++,求n S .
21.已知二次函数f (x )=x 2+bx+c ,其中常数b ,c ∈R .
(Ⅰ)若任意的x ∈[﹣1,1],f (x )≥0,f (2+x )≤0,试求实数c 的取值范围;
(Ⅱ)若对任意的x 1,x 2∈[﹣1,1],有|f (x 1)﹣f (x 2)|≤4,试求实数b 的取值范围.
22.某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x 米. (Ⅰ)求底面积并用含x 的表达式表示池壁面积; (Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?
23.(本题满分14分)已知两点)1,0(-P 与)1,0(Q 是直角坐标平面内两定点,过曲线C 上一点),(y x M 作y 轴的垂线,垂足为N ,点E 满足MN ME 3
2
=,且0=⋅. (1)求曲线C 的方程;
(2)设直线l 与曲线C 交于B A ,两点,坐标原点O 到直线l 的距离为
2
3
,求AOB ∆面积的最大值. 【命题意图】本题考查向量的基本运算、轨迹的求法、直线与椭圆的位置关系,本题知识交汇性强,最值的求解有一定技巧性,同时还要注意特殊情形时三角形的面积.总之该题综合性强,难度大.
24.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.
(1)求椭圆C 的方程;
(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,
求出直线l 的方程;若不存在,说明理由.
宜黄县第一中学校2018-2019学年高二上学期第一次月考试卷化学(参考答案)一、选择题
1.【答案】C
【解析】解:∵a=ln2<lne即,
b=5=,
c=xdx=,
∴a,b,c的大小关系为:b<c<a.
故选:C.
【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题.
2.【答案】B
【解析】解:∵函数f(2x+1)=3x+2,且f(a)=2,令3x+2=2,解得x=0,
∴a=2×0+1=1.
故选:B.
3.【答案】C
【解析】解:设g(x)=xe x,y=mx﹣m,
由题设原不等式有唯一整数解,
即g(x)=xe x在直线y=mx﹣m下方,
g′(x)=(x+1)e x,
g(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,
故g(x)min=g(﹣1)=﹣,y=mx﹣m恒过定点P(1,0),
结合函数图象得K PA≤m<K PB,
即≤m<,
,
故选:C.
【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题.
4.【答案】D
【解析】解:若命题p为真命题,命题q为假命题,则命题“p∧q”为假命题,故A不正确;
命题“若xy=0,则x=0”的否命题为:“若xy≠0,则x≠0”,故B不正确;
“”⇒“+2kπ,或,k∈Z”,
“”⇒“”,
故“”是“”的必要不充分条件,故C不正确;
命题“∀x∈R,2x>0”的否定是“”,故D正确.
故选D.
【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答.
5.【答案】D
【解析】解:抛物线x=﹣4y2即为
y2=﹣x,
可得准线方程为x=.
故选:D.
6.【答案】C
【解析】解:命题p:“∀x∈R,e x>0”,是真命题,
命题q:“∃x0∈R,x0﹣2>x02”,即﹣x0+2<0,
即:+<0,显然是假命题,
∴p∨q真,p∧q假,p∧(¬q)真,p∨(¬q)假,
故选:C.
【点评】本题考查了指数函数的性质,解不等式问题,考查复合命题的判断,是一道基础题.7.【答案】B
【解析】解:模拟执行程序,可得
a=2,n=1
执行循环体,a=,n=3
满足条件n≤2016,执行循环体,a=﹣1,n=5
满足条件n≤2016,执行循环体,a=2,n=7
满足条件n≤2016,执行循环体,a=,n=9
…
由于2015=3×671+2,可得:
n=2015,满足条件n≤2016,执行循环体,a=,n=2017
不满足条件n≤2016,退出循环,输出a的值为.
故选:B.
8.【答案】B
【解析】解:当x=﹣1时,满足x≠0,但x>0不成立.
当x>0时,一定有x≠0成立,
∴“x≠0”是“x>0”是的必要不充分条件.
故选:B.
9.【答案】C
【解析】解:作出不等式组对应的平面区域如图:(阴影部分).
由(t+1)x+(t+2)y+t=0得t(x+y+1)+x+2y=0,
由,得,即(t+1)x+(t+2)y+t=0过定点M(﹣2,1),
则由图象知A,B两点在直线两侧和在直线上即可,
即[2(t+2)+t][﹣2(t+1)+3(t+2)+t]≤0,
即(3t+4)(2t+4)≤0,
解得﹣2≤t≤﹣,
即实数t的取值范围为是[﹣2,﹣],
故选:C.
【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,属于中档题.
10.【答案】C
【解析】
考
点:茎叶图,频率分布直方图.
11.【答案】D
【解析】解:∵命题“∃x∈R,使x2+1<0”是特称命题
∴否定命题为:∀x∈R,都有x2+1≥0.
故选D.
12.【答案】A
【解析】解:p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,
则¬p:∃n∈N*,a n+2﹣a n+1≠d;¬q:数列{a n}不是公差为d的等差数列,
由¬p⇒¬q,即a n+2﹣a n+1不是常数,则数列{a n}就不是等差数列,
若数列{a n}不是公差为d的等差数列,则不存在n∈N*,使得a n+2﹣a n+1≠d,
即前者可以推出后者,前者是后者的充分条件,
即后者可以推不出前者,
故选:A.
【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立.
二、填空题
13.【答案】充分不必要
【解析】解:∵复数z=(a﹣2i)(1+i)=a+2+(a﹣2)i,
∴在复平面内对应的点M的坐标是(a+2,a﹣2),
若点在第四象限则a+2>0,a﹣2<0,
∴﹣2<a<2,
∴“a=1”是“点M在第四象限”的充分不必要条件,
故答案为:充分不必要.
【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题.
14.【答案】±(7﹣i).
【解析】解:设z=a+bi(a,b∈R),∵(1+3i)z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.
又ω===,|ω|=,∴
.
把a=3b代入化为b2=25,解得b=±5,∴a=±15.
∴ω=±=±(7﹣i).
故答案为±(7﹣i).
【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出.
15.【答案】D
【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,
∴焦点坐标为(0,2).
故选:D.
【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.
16.【答案】﹣6.
【解析】解:由约束条件,得可行域如图,
使目标函数z=2x﹣3y取得最小值的最优解为A(3,4),
∴目标函数z=2x﹣3y的最小值为z=2×3﹣3×4=﹣6.
故答案为:﹣6.
17.【答案】.
【解析】解:∵∠A=120°,•=﹣2,
∴||•||=4,
又∵点G是△ABC的重心,
∴||=|+|==≥=
故答案为:
【点评】本题考查的知识点是向量的模,三角形的重心,基本不等式,其中利用基本不等式求出|+|的取
值范围是解答本题的关键,另外根据点G是△ABC的重心,得到=(+),也是解答本题的关键.18.【答案】4
【解析】解:由PA ⊥平面ABC ,则△PAC ,△PAB 是直角三角形,又由已知△ABC 是直角三角形,∠ACB=90°所以BC ⊥AC ,从而易得BC ⊥平面PAC ,所以BC ⊥PC ,所以△PCB 也是直角三角形,
所以图中共有四个直角三角形,即:△PAC ,△PAB ,△ABC ,△PCB .
故答案为:4
【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.
三、解答题
19.【答案】
【解析】解:(Ⅰ)∵椭圆C :
+
=1(a >b >0)的短轴长为2
,且离心率e=,
∴
,解得a 2=4,b 2
=3,
∴椭圆C 的方程为=1.
(Ⅱ)设直线MN 的方程为x=ty+1,(﹣),
代入椭圆,化简,得(3t 2+4)y 2
+6ty ﹣9=0,
∴
,,
设M (x 1,y 1),N (x 2,y 2),又F 1(﹣1,0),F 2(1,0),
则直线F 1M :,令x=4,得P (4,),同理,Q (4,
),
∴=
||=15×|
|=180×|
|,
令μ=∈[1,),则=180×,
∵y=
=
在[1,
)上是增函数,
∴当μ=1时,即t=0时,(
)min =
.
【点评】本题考查椭圆方程的求法,考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意韦达定理、直线方程、弦长公式、函数单调性、椭圆性质的合理运用.
20.【答案】(1)102n a n =-;(2)2
29(5)
940(5)n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩
.
【解析】
试题分析:(1)由2120n n n a a a ++-+=,所以{}n a 是等差数列且18a =,42a =,即可求解数列{}n a 的通项公式;(2)由(1)令0n a =,得5n =,当5n >时,0n a <;当5n =时,0n a =;当5n <时,0n a >,即可分类讨论求解数列n S .
当5n ≤时,12||||||n n S a a a =++
2
129n a a a n n =+++=-
∴2
29(5)940(5)
n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩.1
考点:等差数列的通项公式;数列的求和.
21.【答案】
【解析】解:(Ⅰ)因为x ∈[﹣1,1],则2+x ∈[1,3], 由已知,有对任意的x ∈[﹣1,1],f (x )≥0恒成立, 任意的x ∈[1,3],f (x )≤0恒成立,
故f (1)=0,即1为函数函数f (x )的一个零点.
由韦达定理,可得函数f (x )的另一个零点, 又由任意的x ∈[1,3],f (x )≤0恒成立,
∴[1,3]⊆[1,c], 即c ≥3
(Ⅱ)函数f (x )=x 2
+bx+c 对任意的x 1,x 2∈[﹣1,1],有|f (x 1)﹣f (x 2)|≤4恒成立,
即f (x )max ﹣f (x )min ≤4,
记f (x )max ﹣f (x )min =M ,则M ≤4.
当|
|>1,即|b|>2时,M=|f (1)﹣f (﹣1)|=|2b|>4,与M ≤4矛盾;
当||≤1,即|b|≤2时,M=max{f (1),f (﹣1)}﹣f ()=
﹣f (
)=(1+
)2
≤4,
解得:|b|≤2, 即﹣2≤b ≤2,
综上,b 的取值范围为﹣2≤b ≤2.
【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.
22.【答案】
【解析】解:(Ⅰ)设水池的底面积为S 1,池壁面积为S 2,
则有
(平方米),
可知,池底长方形宽为米,则
(Ⅱ)设总造价为y ,则
当且仅当
,即x=40时取等号,
所以x=40时,总造价最低为297600元. 答:x=40时,总造价最低为297600元.
23.【答案】
【解析】(1)依题意知),0(y N ,∵)0,32()0,(3232x x MN ME -=-==
,∴),3
1
(y x E 则)1,(-=y x QM ,)1,3
1
(+=y x …………2分
∵0=⋅PE QM ,∴0)1)(1(31=+-+⋅y y x x ,即
1322
=+y x ∴曲线C 的方程为13
22
=+y x …………4分
24.【答案】
【解析】解:(1)依题意,可设椭圆C的方程为(a>0,b>0),且可知左焦点为
F(﹣2,0),从而有,解得c=2,a=4,
又a2=b2+c2,所以b2=12,故椭圆C的方程为.
(2)假设存在符合题意的直线l,其方程为y=x+t,
由得3x2+3tx+t2﹣12=0,
因为直线l与椭圆有公共点,所以有△=(3t)2﹣4×3(t2﹣12)≥0,解得﹣4≤t≤4,
另一方面,由直线OA与l的距离4=,从而t=±2,
由于±2∉[﹣4,4],所以符合题意的直线l不存在.
【点评】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.。