高中物理生活中的圆周运动专项训练100(附答案)及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理生活中的圆周运动专项训练100(附答案)及解析
一、高中物理精讲专题测试生活中的圆周运动
1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求
(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;
(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).
【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3
时,
22111
()22A A m v m M v -+ 【解析】 【分析】
(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;
(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】
(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:
0=A A B B m v m v - 由能量关系:22
11=22
P A A B B E m v m v -
解得v A =2m/s ;v B =4m/s
(2)设B 经过d 点时速度为v d ,在d 点:2d
B B v m g m R
=
由机械能守恒定律:22d 11=222
B B B B m v m v m g R +⋅ 解得R=0.32m
(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:
=()A A A m v m M v +由能量关系:()2
211122
A A A A m gL m v m M v μ=
-+ 解得μ1=0.2
讨论:
(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为
110A Q m gL μμ== (J )
(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为
()221111
22
A A Q m v m M v =
-+,解得Q 2=2J
2.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离
【答案】(1)160N (2)2 【解析】 【详解】
(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =
1
2
mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:
2B
v N mg m R
-=
联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N
由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:
2D
v mg m R
=
可得:v D =2m/s
设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,
2R =
12
gt 2
解得:x =0.8m
则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==
3.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑1
4
竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑
1
4
竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .
【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】
(1)小球恰好过最高点D ,有:
2D
v mg m r
=
解得:2m/s D v = (2)从B 到D ,由动能定理:
22
11()22
D B mg R r mv mv -+=
- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:
2B
v N mg m R
-=
N B =N 联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:
2122
B x F
mgx mv μ-= 解得:2m x =
故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】
利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,
4.光滑水平面AB与一光滑半圆形轨道在B点相连,轨道位于竖直面内,其半径为R,一个质量为m的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C点再落回到水平面,重力加速度为g.求:
(1)弹簧弹力对物块做的功;
(2)物块离开C点后,再落回到水平面上时距B点的距离;
(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?
【答案】(1)(2)4R(3)或
【解析】
【详解】
(1)由动能定理得W=
在B点由牛顿第二定律得:9mg-mg=m
解得W=4mgR
(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知
S=v c t
2R=gt2
从B到C由动能定理得
联立知,S= 4 R
(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知
EP≤mgR
若物块刚好通过C点,则物块从B到C由动能定理得
物块在C 点时mg =m 则
联立知:EP≥mgR .
综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为 EP≤mgR 或 EP≥mgR .
5.如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD 光滑,内圆的上半部分B′C′D′粗糙,下半部分B′A′D′光滑.一质量m=0.2kg 的小球从轨道的最低点A 处以初速度v 0向右运动,球的直径略小于两圆间距,球运动的轨道半径R=0.2m ,取g=10m/s 2.
(1)若要使小球始终紧贴着外圆做完整的圆周运动,初速度v 0至少为多少? (2)若v 0=3m/s ,经过一段时间小球到达最高点,内轨道对小球的支持力F C =2N ,则小球在这段时间内克服摩擦力做的功是多少?
(3)若v 0=3.1m/s ,经过足够长的时间后,小球经过最低点A 时受到的支持力为多少?小球在整个运动过程中减少的机械能是多少?(保留三位有效数字) 【答案】(1)0v 10m/s (2)0.1J (3)6N ;0.56J 【解析】 【详解】
(1)在最高点重力恰好充当向心力
2C
mv mg R
= 从到机械能守恒
220112-22
C mgR mv mv =
解得
010m/s v =
(2)最高点
'2-C
C mv mg F R
= 从A 到C 用动能定理
'22011-2--22
f C mgR W mv mv =
得=0.1J f W
(3)由0=3.1m/s<10m/s v 于,在上半圆周运动过程的某阶段,小球将对内圆轨道间有弹力,由于摩擦作用,机械能将减小.经足够长时间后,小球将仅在半圆轨道内做往复运动.设此时小球经过最低点的速度为A v ,受到的支持力为A F
2
12
A mgR mv =
2-A
A mv F mg R
= 得=6N A F
整个运动过程中小球减小的机械能
2
01-2
E mv mgR ∆=
得=0.56J E ∆
6.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
(1)求小物块经过B 点时对轨道的压力大小;
(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】
【详解】
(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04
m /5m /cos370.8
A v v s s =
==︒
小物块经过A 点运动到B 点,根据机械能守恒定律有:
()2211cos3722
A B mv mg R R mv +-︒= 小物块经过B 点时,有:2
B
NB v F mg m R
-= 解得:()232cos3762N B
NB
v F mg m R
=-︒+=
根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:
22011222
C B mgL mg r mv mv μ--⋅=
- 在C 点,由牛顿第二定律得:2
C
NC v F mg m r
+=
代入数据解得:60N NC F =
根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N
(3)小物块刚好能通过C 点时,根据22C
v mg m r
=
解得:2/2m /C v s s =
==
小物块从B 点运动到C 点的过程,根据动能定理有:
22211222
C B mgL mg r mv mv μ--⋅=
- 代入数据解得:L =10m
7.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。
(1)求小球在最低点时的速度大小;
(2)如果在小球通过最低点时,突然在空间产生竖直向下的匀强电场,若使小球在后面的运动中,绳出现松软状态,求电场强度可能的大小。
【答案】(1)18v gL =2)335mg mg
E q q
≤≤ 【解析】 【详解】
(1)在最低点,由向心力公式得:
2
1mv F mg L
-= 解得:18v gL =(2)果在小球通过最低点时,突然在空间产生竖直向下的匀强电场,若使小球在后面的运动中,绳出现松软状态,说明小球能通过与圆心等的水平面,但不能通过最高点。
则小球不能通过最高点, 由动能定理得:
2212112222
mg L Eq L mv mv ⋅+=
- 且
2
2
v Eq mg m L
+=
则35mg
E q
=
也不可以低于O 水平面
2
12
mv mgL EqL += 则3mg
E q
=
所以电场强度可能的大小范围为
335mg mg
E q q
≤≤
8.如图所示,一质量为m 的小球C 用轻绳悬挂在O 点,小球下方有一质量为2m 的平板车B 静止在光滑水平地面上,小球的位置比车板略高,一质量为m 的物块A 以大小为v 0的初速度向左滑上平板车,此时A 、C 间的距离为d ,一段时间后,物块A 与小球C 发生碰撞,碰撞时两者的速度互换,且碰撞时间极短,已知物块与平板车间的动摩擦因数为μ ,
重力加速度为g,若A碰C之前物块与平板车已达共同速度,求:
(1)A、C间的距离d与v0之间满足的关系式;
(2)要使碰后小球C能绕O点做完整的圆周运动,轻绳的长度l应满足什么条件?
【答案】(1);(2)
【解析】(1)A碰C前与平板车速度达到相等,设整个过程A的位移是x,由动量守恒定律得
由动能定理得:
解得
满足的条件是
(2)物块A与小球C发生碰撞,碰撞时两者的速度互换,C以速度v开始做完整的圆周运动,由机械能守恒定律得
小球经过最高点时,有
解得
【名师点睛】
A碰C前与平板车速度达到相等,由动量守恒定律列出等式;A减速的最大距离为d,由动能定理列出等式,联立求解。
A碰C后交换速度,C开始做完整的圆周运动,由机械能守恒定律和C通过最高点时的最小向心力为mg,联立求解。
9.某同学设计出如图所示实验装置,将一质量为0.2kg的小球(可视为质点)放置于水平弹射器内,压缩弹簧并锁定,此时小球恰好在弹射口,弹射口与水平面AB相切于A 点.AB为粗糙水平面,小球与水平面间动摩擦因数μ=0.5,弹射器可沿水平方向左右移动;BC为一段光滑圆弧轨道.O/为圆心,半径R=0.5m,O/C与O/B之间夹角为
θ=37°.以C为原点,在C的右侧空间建立竖直平面内的直角坐标系xOy,在该平面内有一水平放置开口向左且直径稍大于小球的接收器D.(sin37°=0.6,cos37°=0.8,g取
10m/s2)
(1)某次实验中该同学使弹射口距离B处L1=1.6m处固定,解开锁定释放小球,小球刚
好到达C 处,求弹射器释放的弹性势能?
(2)求上一问中,小球到达圆弧轨道的B 点时对轨道的压力?
(3)把小球放回弹射器原处并锁定,将弹射器水平向右移动至离B 处L 2=0.8m 处固定弹射器并解开锁定释放小球,小球将从C 处射出,恰好水平进入接收器D ,求D 处坐标?
【答案】(1)1.8J(2)2.8N(3) (0.144,0.384) 【解析】 【详解】
(1)从A 到C 的过程中,由定能定理得:
W 弹-μmgL 1-mgR (1-cosθ)=0
解得:
W 弹=1.8J .
根据能量守恒定律得:
E P =W 弹=1.8J ;
(2)从B 到C 由动能定理:
021(1cos37)2
B mgR mv -=
在B 点由牛顿第二定律:
2B
NB v F mg m R
-=
带入数据联立解得:
F NB =2.8N
(3)小球从C 处飞出后,由动能定理得:
W 弹-μmgL 2-mgR (1-cosθ)=
1
2
mv C 2-0, 解得:
v C 2m/s
方向与水平方向成37°角,
由于小球刚好被D 接收,其在空中的运动可看成从D 点平抛运动的逆过程,
v Cx =v C cos37°=
82
5
m/s
v Cy =v C sin37°=
62m/s , 由v Cy =gt 解得 t =0.122s
则D 点的坐标:
x =v Cx t
y =
12v Cy t , 解得:
x =0.144m ,y =0.384m
即D 处坐标为:(0.144m ,0.384m ).
【点睛】
本题考查了动能定理的应用,小球的运动过程较复杂,分析清楚小球的运动过程是解题的前提与关键,分析清楚小球的运动过程后,应用动能定理、平抛运动规律可以解题.
10.如图所示,一个可视为质点,质量2m kg =的木块从P 点以初速度05/v m s =向右运动,木块与水平面间的动摩擦因数为0.2,木块运动到M 点后水平抛出,恰好沿竖直的粗糙圆弧AB 的A 点的切线方向进入圆弧(不计空气阻力)。
已知圆弧的半径0.5R m =,半径OA 与竖直半径OB 间的夹角53θ︒=,木块到达A 点时的速度大小5/A v m s =。
已知
sin 530.8cos530.6︒︒==
,210/.g m s =求:
(1)P 到M 的距离L ;
(2)M 、A 间的距离s ;
(3)若木块到达圆弧底端B 点时速度大小5/B v m s =,求此时木块对轨道的压力。
【答案】(1)4m ;(2)
213m 5
;(3)120N 、方向竖直向下; 【解析】
【详解】 (1)平抛的初速度,即为木块在M 点的速度为:
v x =v A cosθ=5×0.6=3m/s
P 到M 由牛顿第二定律:
μmg=ma ,
a=μg =2m/s 2
由运动学公式知:
2203355m 4m 22
2x v v L a -⨯-⨯==-⨯-= (2)物体到达A 点时竖直方向上的速度为
v y =v •sinθ=5×0.8=4m/s
则下落时间为
40.4s 10
y v t g =
== 则水平位移为 x =v x t =3×0.4=1.2m
竖直方向上的距离为
244 0.8m 220
m y v y g ⨯=
== M 、A 间的距离
5
s (3)由牛顿第二定律: 2B v N mg m
R -=
得 2252102N=120N 0.5
B v N mg m R =+=⨯+⨯ 根据牛顿第三定律可知,此时木块对轨道的压力为120N 、方向竖直向下;。