东宝区实验中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东宝区实验中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知a 为常数,则使得成立的一个充分而不必要条件是( )
A .a >0
B .a <0
C .a >e
D .a <e
2. 已知等差数列{a n }的前n 项和为S n ,若m >1,且a m ﹣1+a m+1﹣a m 2=0,S 2m ﹣1=38,则m 等于( ) A .38
B .20
C .10
D .9
3. 阅读如右图所示的程序框图,若输入0.45a =,则输出的k 值是( ) (A ) 3 ( B ) 4 (C ) 5 (D ) 6
4. 设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( ) A .M=P B .P ⊊M C .M ⊊P D .M ∪P=R
5. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .
14 B .18 C .23 D .112
6. 已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足
的x 的范围为( )
A .(﹣∞,)∪(2,+∞)
B .(,1)∪(1,2)
C .(,1)∪(2,+∞)
D .(0,)∪(2,+∞)
7. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )
A .3y x =
B . 21y x =-+
C .||1y x =+
D .2x y -=
8. 复数的虚部为( )
A .﹣2
B .﹣2i
C .2
D .2i 9. (﹣6≤a ≤3)的最大值为( )
A .9
B .
C .3
D .
10.已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79),则以下结论正确的是( )
A .第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定
B .第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定
C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定
D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定
11.已知集合{}|5A x N x =∈<,则下列关系式错误的是( )
A .5A ∈
B .1.5A ∉
C .1A -∉
D .0A ∈ 12.ABC ∆中,“A B >”是“cos 2cos 2B A >”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件
【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.
二、填空题
13.定义在R 上的可导函数()f x ,已知()f x y e =′的图象如图所示,则()y f x =的增区间是 ▲ .
3+4i|的最大值为 .
BM 与ED 平行;②CN 与BE 是异面直线; BN 是异面直线. 以上四个命题中,正确命题的序号是 (写出所有你认为正确的命题).
16.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单
位:小时)间的关系为0
e kt
P P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了 消除27.1%的污染物,则需要___________小时.
【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用. 17.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .
18.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .
三、解答题
19.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题: (1)求出频率分布表中①、②、③、④、⑤的值;
(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?
(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S 合计
20.已知过点P(0,2)的直线l与抛物线C:y2=4x交于A、B两点,O为坐标原点.
(1)若以AB为直径的圆经过原点O,求直线l的方程;
(2)若线段AB的中垂线交x轴于点Q,求△POQ面积的取值范围.
21.已知函数f(x)=log a(x2+2),若f(5)=3;
(1)求a的值;
(2)求的值;
(3)解不等式f(x)<f(x+2).
22.在直角坐标系xOy中,已知一动圆经过点(2,0)且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.
(1)求曲线C的方程;111]
(2)过点(1,0)作互相垂直的两条直线,,与曲线C交于A,B两点与曲线C交于E,F两点,线段AB,EF的中点分别为M,N,求证:直线MN过定点P,并求出定点P的坐标.
23.如图,已知边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点
(Ⅰ)试在棱AD上找一点N,使得CN∥平面AMP,并证明你的结论.
(Ⅱ)证明:AM⊥PM.
24.设点P的坐标为(x﹣3,y﹣2).
(1)在一个盒子中,放有标号为1,2,3的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为x、y,求点P在第二象限的概率;
(2)若利用计算机随机在区间上先后取两个数分别记为x、y,求点P在第三象限的概率.
东宝区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】C
【解析】解:由积分运算法则,得
=lnx
=lne ﹣ln1=1
因此,不等式即
即a >1,对应的集合是(1,+∞)
将此范围与各个选项加以比较,只有C 项对应集合(e ,+∞)是(1,+∞)的子集
∴原不等式成立的一个充分而不必要条件是a >e
故选:C
【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题.
2. 【答案】C
【解析】解:根据等差数列的性质可得:a m ﹣1+a m+1=2a m ,
则a m ﹣1+a m+1﹣a m 2
=a m (2﹣a m )=0,
解得:a m =0或a m =2,
若a m 等于0,显然S 2m ﹣1=
=(2m ﹣1)a m =38不成立,故有a m =2, ∴S 2m ﹣1=(2m ﹣1)a m =4m ﹣2=38, 解得m=10. 故选C
3. 【答案】 D.
【解析】该程序框图计算的是数列前n 项和,其中数列通项为()()
1
2121n a n n =
-+
()()
111
1111335
2121221n S n n n ⎡⎤∴=
+++
=
-⎢⎥⨯⨯-++⎣⎦
9
0.452
n S n n >∴>∴最小值为5时满足
0.45n S >,由程序框图可得k 值是6. 故选D .
4. 【答案】B
【解析】解:P={x|x=3},M={x|x >1}; ∴P ⊊M .
故选B .
5. 【答案】C 【解析】
试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202
303
-=-.故本题答案选C. 考点:几何概型. 6. 【答案】D
【解析】解:当x >0时,由xf ′(x )<0,得f ′(x )<0,即此时函数单调递减, ∵函数f (x )是偶函数,
∴不等式等价为f (||)<,
即|
|>,即
>或
<﹣,
解得0<x <或x >2,
故x 的取值范围是(0,)∪(2,+∞) 故选:D
【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.
7. 【答案】C 【解析】
试题分析:函数3y x =为奇函数,不合题意;函数21y x =-+是偶函数,但是在区间()0,+∞上单调递减,不合题意;函数2x y -=为非奇非偶函数。

故选C 。

考点:1.函数的单调性;2.函数的奇偶性。

8. 【答案】C
【解析】解:复数=
=
=1+2i 的虚部为2.
故选;C .
【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.
9. 【答案】B
【解析】解:令f (a )=(3﹣a )(a+6)=﹣+
,而且﹣6≤a ≤3,由此可得函数f
(a )的最大值为

故(﹣6≤a ≤3)的最大值为=,
故选B .
【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.
10.【答案】C
【解析】解:∵某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79), ∴μ1=90,▱1=86,μ2=93,▱2=79,
∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定, 故选:C .
【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础.
11.【答案】A 【解析】
试题分析:因为{}|5A x N x =∈< ,而1.5,1,.5,1N N A A ∉-∉∴∉-∉,即B 、C 正确,又因为0N ∈且
05<,所以0A ∈,即D 正确,故选A. 1
考点:集合与元素的关系. 12.【答案】A.
【解析】在ABC ∆中2
2
2
2
cos 2cos 212sin 12sin sin sin sin sin B A B A A B A B >⇒->-⇔>⇔>
A B ⇔>,故是充分必要条件,故选A.
二、填空题
13.【答案】(﹣∞,2) 【解析】 试题分析:由()
21()0f x x e
f x '≤
≥⇒≥′时,()
21()0f x x e
f x '><⇒<′时,所以()y f x =的
增区间是(﹣∞,2) 考点:函数单调区间 14.【答案】 6 .
【解析】解:∵|z|=1,
|z ﹣3+4i|=|z ﹣(3﹣4i )|≤|z|+|3﹣4i|=1+=1+5=6,
∴|z ﹣3+4i|的最大值为6,
故答案为:6.
【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题.
15.【答案】③④ 【解析】
试题分析:把展开图复原成正方体,如图,由正方体的性质,可知:①BM 与ED 是异面直线,所以是错误的;②DN 与BE 是平行直线,所以是错误的;③从图中连接,AN AC ,由于几何体是正方体,所以三角形ANC 为等边三角形,所以,AN AC 所成的角为60︒,所以是正确的;④DM 与BN 是异面直线,所以是正确的.
考点:空间中直线与直线的位置关系. 16.【答案】15
【解析】由条件知5000.9e k
P P -=,所以5e 0.9k
-=.消除了27.1%的污染物后,废气中的污染物数量为00.729P ,
于是000.729e
kt P P -=,∴315e 0.7290.9e kt
k --===,所以15t =小时.
17.【答案】 2016 .
【解析】解:由a n+1=e+a n ,得a n+1﹣a n =e , ∴数列{a n }是以e 为公差的等差数列, 则a 1=a 3﹣2e=4e ﹣2e=2e ,
∴a 2015=a 1+2014e=2e+2014e=2016e . 故答案为:2016e .
【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.
18.【答案】1
【解析】 【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a 的值. 【解答】解:直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,

,解得 a=1.
故答案为 1.
三、解答题
19.【答案】
【解析】解:(1)由分布表可得频数为50,故①的数值为50×0.1=5,
②中的值为
=0.40,③中的值为50×0.2=10,
④中的值为50﹣(5+20+10)=15,⑤中的值为=0.30;
(2)不低于85的概率P=×0.20+0.30=0.40,
∴获奖的人数大约为800×0.40=320;
(3)该程序的功能是求平均数,
S=65×0.10+75×0.40+85×0.20+95×0.30=82,
∴800名学生的平均分为82分
20.【答案】
【解析】解:(1)设直线AB的方程为y=kx+2(k≠0),设A(x1,y1),B(x2,y2),
由,得k2x2+(4k﹣4)x+4=0,
则由△=(4k﹣4)2﹣16k2=﹣32k+16>0,得k<,
=,,
所以y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=,
因为以AB为直径的圆经过原点O,
所以∠AOB=90°,
即,
所以,
解得k=﹣,
即所求直线l的方程为y=﹣.
(2)设线段AB的中点坐标为(x0,y0),
则由(1)得,,
所以线段AB的中垂线方程为,
令y=0,得==,又由(1)知k<,且k≠0,得或,
所以
, 所以=,
所以△POQ 面积的取值范围为(2,+∞).
【点评】本题考查直线l 的方程的求法和求△POQ 面积的取值范围.考查抛物线标准方程,简单几何性质,直线与抛物线的位置关系等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
21.【答案】
【解析】解:(1)∵f (5)=3,

, 即log a 27=3
解锝:a=3…
(2)由(1)得函数

则=… (3)不等式f (x )<f (x+2),
即为
化简不等式得

∵函数y=log 3x 在(0,+∞)上为增函数,且
的定义域为R . ∴x 2+2<x 2+4x+6… 即4x >﹣4,
解得x >﹣1,
所以不等式的解集为:(﹣1,+∞)…
22.【答案】(1) 24y x ;(2)证明见解析;(3,0).
【解析】
(2)易知直线,的斜率存在且不为0,设直线的斜率为,11(,)A x y ,22(,)B x y ,
则直线:(1)y k x =-,1212(,)22
x x y y M ++, 由24,(1),
y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=,
2242(24)416160k k k ∆=+-=+>,
考点:曲线的轨迹方程;直线与抛物线的位置关系. 【易错点睛】导数法解决函数的单调性问题:(1)当)(x f 不含参数时,可通过解不等式)
0)((0)(''<>x f x f 直接得到单调递增(或递减)区间.(2)已知函数的单调性,求参数的取值范围,应用条件),(),0)((0)(''b a x x f x f ∈≤≥恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意
参数的取值是)('x
f不恒等于的参数的范围.
23.【答案】
【解析】(Ⅰ)解:在棱AD上找中点N,连接CN,则CN∥平面AMP;
证明:因为M为BC的中点,四边形ABCD是矩形,
所以CM平行且相等于DN,
所以四边形MCNA为矩形,
所以CN∥AM,又CN⊄平面AMP,AM⊂平面AMP,
所以CN∥平面AMP.
(Ⅱ)证明:过P作PE⊥CD,连接AE,ME,
因为边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点
所以PE⊥平面ABCD,CM=,
所以PE⊥AM,
在△AME中,AE==3,ME==,AM==,
所以AE2=AM2+ME2,
所以AM⊥ME,
所以AM⊥平面PME
所以AM⊥PM.
【点评】本题考查了线面平行的判定定理和线面垂直的判定定理的运用;正确利用已知条件得到线线关系是关键,体现了转化的思想.
24.【答案】
【解析】解:(1)由已知得,基本事件(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣1,﹣1),(﹣1,0),(﹣1,1),(0,﹣1),(0,0)(0,1)共9种…4(分)
设“点P在第二象限”为事件A,事件A有(﹣2,1),(﹣1,1)共2种
则P(A)=…6(分)
(2)设“点P在第三象限”为事件B,则事件B满足…8(分)
∴,作出不等式组对应的平面区域如图:
则P(B)==…12(分)。

相关文档
最新文档