泊头市实验中学2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泊头市实验中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知全集{}1,2,3,4,5,6,7U =,{}2,4,6A =,{}1,3,5,7B =,则()U A
B =ð( )
A .{}2,4,6
B .{}1,3,5
C .{}2,4,5
D .{}2,5 2. 在三棱柱111ABC A B C -中,已知1AA ⊥
平面1=22
ABC AA BC BAC π
=∠=,,,此三棱
柱各个顶点都在一个球面上,则球的体积为( ) A .
323π B .16π C.253π D .312
π
3. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1
的中心,若
+
,则x 、y 的值分
别为( )
A .x=1,y=1
B .x=1,
y= C .
x=,
y=
D .
x=,y=1
4. 若()()()()2,106,10x x f x f f x x -≥⎧⎪=⎨+<⎡
⎤⎪⎣⎦⎩,则()5f 的值为( )
A .10
B .11 C.12 D .13
5. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=
C .1x =或1y =
D .20x y +-=或0x y -= 6. 若某算法框图如图所示,则输出的结果为( )
A .7
B .15
C .31
D .63
7. 不等式≤0的解集是( )
A .(﹣∞,﹣1)∪(﹣1,2)
B .[﹣1,2]
C .(﹣∞,﹣1)∪[2,+∞)
D .(﹣
1,2]
8. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5)
C .(4,﹣3,1)
D .(﹣5,3,4)
9. 已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则
=( )
A .﹣1
B .2
C .﹣5
D .﹣3
10.以椭圆
+
=1的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别是F 1,F 2,已知点M 坐标为
(2,1),双曲线C 上点P (x 0,y 0)(x 0>0,y 0>0)满足=
,则
﹣S
( ) A .2
B .4
C .1
D .﹣1
二、填空题
11.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 . 12.在正方体ABCD ﹣A 1B 1C 1D 1中,异面直线A 1B 与AC 所成的角是 °.
13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1
e e x
x
f x =-,其中e 为自然对数的底数,则不等式()()
2
240f x f x -+-<的解集为________.
14.已知函数2
1()sin cos sin 2f x a x x x =-+的一条对称轴方程为6
x π
=,则函数()f x 的最大值为___________.
【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.
15.已知tan β=,tan (α﹣β)=,其中α,β均为锐角,则α= .
16
在这段时间内,该车每100千米平均耗油量为升.
三、解答题
17.已知函数f(x)=alnx﹣x(a>0).
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)若x∈(0,a),证明:f(a+x)>f(a﹣x);
(Ⅲ)若α,β∈(0,+∞),f(α)=f(β),且α<β,证明:α+β>2α
18.(本小题满分12分)
一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号.
(Ⅰ)求第一次或第二次取到3号球的概率;
(Ⅱ)设ξ为两次取球时取到相同编号的小球的个数,求ξ的分布列与数学期望.
19.如图,四面体ABCD中,平面ABC⊥平面BCD,AC=AB,CB=CD,∠DCB=120°,点E在BD上,且CE=DE.
(Ⅰ)求证:AB⊥CE;
(Ⅱ)若AC=CE,求二面角A﹣CD﹣B的余弦值.
20.(本小题满分10分)选修4-4:坐标系与参数方程.
在直角坐标系中,曲线C 1:⎩
⎪⎨⎪⎧x =1+3cos α
y =2+3sin α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐
标系,C 2的极坐标方程为ρ=
2sin (θ+π4
)
.
(1)求C 1,C 2的普通方程;
(2)若直线C 3的极坐标方程为θ=3π
4(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面
积.
21.(本小题满分12分)
如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F . (1)求证://AB EF ;
(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余 弦值.
【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.
22.(本题满分14分)已知函数x a x x f ln )(2
-=.
(1)若)(x f 在]5,3[上是单调递减函数,求实数a 的取值范围;
(2)记x b x a x f x g )1(2ln )2()()(--++=,并设)(,2121x x x x <是函数)(x g 的两个极值点,若2
7≥b , 求)()(21x g x g -的最小值.
泊头市实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题
1.【答案】A
考点:集合交集,并集和补集.
【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.
2.【答案】A
【解析】
考点:组合体的结构特征;球的体积公式.
【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.
3.【答案】C
【解析】解:如图,
++().
故选C.
4.【答案】B
【解析】
考点:函数值的求解.
5.【答案】D
【解析】
考点:直线的方程.
6.【答案】D
【解析】解:模拟执行算法框图,可得
A=1,B=1
满足条件A≤5,B=3,A=2
满足条件A≤5,B=7,A=3
满足条件A≤5,B=15,A=4
满足条件A≤5,B=31,A=5
满足条件A≤5,B=63,A=6
不满足条件A≤5,退出循环,输出B的值为63.
故选:D.
【点评】本题主要考查了程序框图和算法,正确得到每次循环A,B的值是解题的关键,属于基础题.7.【答案】D
【解析】解:依题意,不等式化为,
解得﹣1<x≤2,
故选D
【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.
8.【答案】C
【解析】解:设C(x,y,z),
∵点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C,
∴,解得x=4,y=﹣3,z=1,
∴C(4,﹣3,1).
故选:C.
9.【答案】C
【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,
即2,﹣1是f′(x)=0的两个根,
∵f(x)=ax3+bx2+cx+d,
∴f′(x)=3ax2+2bx+c,
由f′(x)=3ax2+2bx+c=0,
得2+(﹣1)==1,
﹣1×2==﹣2,
即c=﹣6a,2b=﹣3a,
即f′(x)=3ax2+2bx+c=3ax2﹣3ax﹣6a=3a(x﹣2)(x+1),
则===﹣5,
故选:C
【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.10.【答案】A
【解析】解:∵椭圆方程为+=1,
∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0),
∴双曲线方程为,
设点P(x,y),记F1(﹣3,0),F2(3,0),
∵=,
∴
=
,
整理得:=5,
化简得:5x=12y﹣15,
又∵,
∴5﹣4y2=20,
解得:y=或y=(舍),
∴P(3,),
∴直线PF1方程为:5x﹣12y+15=0,
∴点M到直线PF1的距离d==1,
易知点M到x轴、直线PF2的距离都为1,
结合平面几何知识可知点M(2,1)就是△F1PF2的内心.
故﹣===2,
故选:A.
【点评】本题考查椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的积累,属于中档题.
二、填空题
11.【答案】(0,1)
【解析】
考点:本题考查函数的单调性与导数的关系
12.【答案】60°°.
【解析】解:连结BC1、A1C1,
∵在正方体ABCD﹣A1B1C1D1中,A1A平行且等于C1C,
∴四边形AA1C1C为平行四边形,可得A1C1∥AC,
因此∠BA1C1(或其补角)是异面直线A1B与AC所成的角,
设正方体的棱长为a,则△A
B1C中A1B=BC1=C1A1=a,
1
∴△A1B1C是等边三角形,可得∠BA1C1=60°,
即异面直线A1B与AC所成的角等于60°.
故答案为:60°.
【点评】本题在正方体中求异面直线所成角和直线与平面所成角的大小,着重考查了正方体的性质、空间角的定义及其求法等知识,属于中档题.
13.【答案】()32-,
【解析】∵()1e ,e x x f x x R =-
∈,∴()()11x
x x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝
⎭,即函数()f x 为奇函数,又∵()0x
x
f x e e
-=+>'恒成立,故函数()f x 在R 上单调递增,不等式()()2240f x f x -+-<可转化为
()()224f x f x -<-,即224x x -<-,解得:32x -<<,即不等式()()
2240f x f x -+-<的解集为
()32-,
,故答案为()32-,. 14.【答案】1 【
解
析
】
15.【答案】 .
【解析】解:∵tan β=,α,β均为锐角,
∴tan (α﹣β)==
=,解得:tan α=1,
∴α=
.
故答案为:
.
【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题.
16.【答案】 8 升.
【解析】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8. 故答案是:8.
三、解答题
17.【答案】 【解析】解:(Ⅰ
)令
,所以x=a .
易知,x ∈(0,a )时,f ′(x )>0,x ∈(a ,+∞)时,f ′(x )<0. 故函数f (x )在(0,a )上递增,在(a ,+∞)递减. 故f (x )max =f (a )=alna ﹣a .
(Ⅱ)令g (x )=f (a ﹣x )﹣f (a+x ),即g (x )=aln (a ﹣x )﹣aln (a+x )+2x .
所以
,当x ∈(0,a )时,g ′(x )<0.
所以g (x )<g (0)=0,即f (a+x )>f (a ﹣x ). (Ⅲ)依题意得:a <α<β,从而a ﹣α∈(0,a ).
由(Ⅱ)知,f (2a ﹣α)=f[a+(a ﹣α)]>f[a ﹣(a ﹣α)]=f (α)=f (β). 又2a ﹣α>a ,β>a .所以2a ﹣α<β,即α+β>2a .
【点评】本题考查了利用导数证明不等式的问题,一般是转化为函数的最值问题来解,注意导数的应用.
18.【答案】
【解析】解:(Ⅰ)事件“第一次或第二次取到3号球的概率”的对立事件为“二次取球都没有取到3号球”,
∴所求概率为22
44225516
125
C C P C C =-⋅=(6分)
(Ⅱ)0,1,2,ξ= 23253(0)10C P C ξ===,1123253(1)5C C P C ξ⋅===,2
22
51
(2)10
C P C ξ===,(9分)
(10分)
∴3314
012105105
E ξ=⨯
+⨯+⨯= (12分)
19.【答案】
【解析】解:(Ⅰ)证明:△BCD中,CB=CD,∠BCD=120°,
∴∠CDB=30°,
∵EC=DE,∴∠DCE=30°,∠BCE=90°,
∴EC⊥BC,
又∵平面ABC⊥平面BCD,平面ABC与平面BCD的交线为BC,
∴EC⊥平面ABC,∴EC⊥AB.
(Ⅱ)解:取BC的中点O,BE中点F,连结OA,OF,
∵AC=AB,∴AO⊥BC,
∵平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,
∴AO⊥平面BCD,∵O是BC中点,F是BE中点,∴OF⊥BC,
以O为原点,OB为y轴,OA为z轴,建立空间直角坐标系,
设DE=2,则A(0,0,1),B(0,,0),
C(0,﹣,0),D(3,﹣2,0),
∴=(0,﹣,﹣1),=(3,﹣,0),
设平面ACD的法向量为=(x,y,z),
则,取x=1,得=(1,,﹣3),
又平面BCD的法向量=(0,0,1),
∴cos<>==﹣,
∴二面角A﹣CD﹣B的余弦值为.
【点评】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用.本小题对考生的空间想象能力与运算求解能力有较高要求.
20.【答案】
【解析】解:(1)由C 1:⎩⎪⎨⎪⎧x =1+3cos α
y =2+3sin α
(α为参数)
得(x -1)2+(y -2)2=9(cos 2α+sin 2α)=9. 即C 1的普通方程为(x -1)2+(y -2)2=9, 由C 2:ρ=
2sin (θ+π
4
)
得
ρ(sin θ+cos θ)=2, 即x +y -2=0,
即C 2的普通方程为x +y -2=0.
(2)由C 1:(x -1)2+(y -2)2=9得 x 2+y 2-2x -4y -4=0,
其极坐标方程为ρ2-2ρcos θ-4ρsin θ-4=0, 将θ=3π
4代入上式得
ρ2-2ρ-4=0, ρ1+ρ2=2,ρ1ρ2=-4,
∴|MN |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=3 2.
C 3:θ=3
4
π(ρ∈R )的直角坐标方程为x +y =0,
∴C 2与C 3是两平行直线,其距离d =2
2
= 2.
∴△PMN 的面积为S =12|MN |×d =1
2×32×2=3.
即△PMN 的面积为3. 21.【答案】 【
解
析
】
∵BG ⊥平面PAD ,∴)0,3,0(=GB 是平面PAF 的一个法向量,
22.【答案】
【解析】【命题意图】本题综合考查了利用导数研究函数的单调问题,利用导数研究函数的最值,但本题对函数的构造能力及运算能力都有很高的要求,判别式的技巧性运用及换元方法也是本题的一大亮点,本题综合性很强,难度大,但有梯次感.
(2)∵x b x x x b x a x a x x g )1(2ln 2)1(2ln )2(ln )(2
2
--+=--++-=,。