7.总复习 第一部分 数与代数 探索规律 课件 2021-2022学年北师大版数学六年级下册
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
每一列的数都是这列 最下方的数的倍数。
二、知识应用
观察得数相同的数,你发现了什么规律? 9 9 18 27 36 45 54 63 72 81 8 8 16 24 32 40 48 56 64 72 7 7 14 21 28 35 42 49 56 63 6 6 12 18 24 30 36 42 48 54 5 5 10 15 20 25 30 35 40 45 4 4 8 12 16 20 24 28 32 36 3 3 6 9 12 15 18 21 24 27 2 2 4 6 8 10 12 14 16 18 11 23456789 ×1 2 3 4 5 6 7 8 9
2×9=18
3×6=18
(1)18是2,3,6,9
的倍数,2,3,6,9是
18的因数。
(2)积不变的规律: 一个因数除以3,另一 个因数乘3,积不变。
二、知识应用
观察斜线上的一组数,你发现了什么规律? 9 9 18 27 36 45 54 63 72 81 8 8 16 24 32 40 48 56 64 72 7 7 14 21 28 35 42 49 56 63 6 6 12 18 24 30 36 42 48 54 5 5 10 15 20 25 30 35 40 45 4 4 8 12 16 20 24 28 32 36 3 3 6 9 12 15 18 21 24 27 2 2 4 6 8 10 12 14 16 18 11 23456789 ×1 2 3 4 5 6 7 8 9
斜线上的一组数对称。 乘法交换律:a×b=b×a。
二、知识应用
1. 找规律,填一填。
(1)8,11,14,17,( 20 ),23,( 26 );
+3 +3 +3 +3
+3 +3
(2)4,9,16,25,( 36 ),49,64;
23 4 5
6
78
×× × ×
×
××
23 4 5
6
78
二、知识应用
每一行的数都是这一 行第一个数的倍数。
二、知识应用
竖着看表格中的每一列数,你发现了什么规律? 9 9 18 27 36 45 54 63 72 81 8 8 16 24 32 40 48 56 64 72 7 7 14 21 28 35 42 49 56 63 6 6 12 18 24 30 36 42 48 54 5 5 10 15 20 25 30 35 40 45 4 4 8 12 16 20 24 28 32 36 3 3 6 9 12 15 18 21 24 27 2 2 4 6 8 10 12 14 16 18 11 23456789 ×1 2 3 4 5 6 7 8 9
1. 找规律,填一填。
64
216
3
5
6
6
10 12
二、知识应用
2. 六(2)班同学按下面的规律为教室挂上气球。
第20个气球是什么颜色的?第27个呢? 按照1红,1黄,2红,1黄,5个一组的顺序排列。 20÷5=4(组) 第20个气球是黄色。 27÷5=5(组)……2(个) 第27个气球是黄色。
二、知识应用
三、巩固练习
5. 下面是某月的日历。
(3)用含有字母的式子表示这个关系。
假设方框正中间的数是n,则其他9个数可分别表示为
n-8,n-7,n-6,n-1,n+1,n+6,n+7,n+8 n-8+n-7+n-6+n-1+n+n+1+n+6+n+7+n+8=9n
四、课堂小结
数字排列规律的常见类型: (1)一列数中,相邻两项的差是一个定值。 (2)一列数中,相邻两项的比是一个定值。 (3)一列数中,前n(n≥2)项的和等于后一项。 (4)一列数中,每一项中的数分别是它所在位置
分子是连续ቤተ መጻሕፍቲ ባይዱ奇数, 分母是连续的偶数
三、巩固练习
4. 一些小球按下面的方式堆放。
第n堆比前一堆多n个小球
你知道第5堆有多少个小球吗?第8堆呢? 第1堆有1个 第2堆有1+2=3(个) 第3堆有1+2+3=6(个) 第4堆有1+2+3+4=10(个)
第5堆有1+2+3+4+5=15(个) 第8堆有1+2+3+4+5+6+7+8=36(个)
二、知识应用
1. 将乘法表填写完整,你发现了什么规律?与同伴交流。
9 9 18 27 36 45 54 63 72 81
88
7
14
6
18
5
25
4
16
3
9
2
4
8
14
1
3
×1 2 3 4 5 6 7 8 9
二、知识应用
1. 将乘法表填写完整,你发现了什么规律?与同伴交流。 9 9 18 27 36 45 54 63 72 81 8 8 16 24 32 40 48 56 64 72 7 7 14 21 28 35 42 49 56 63 6 6 12 18 24 30 36 42 48 54 5 5 10 15 20 25 30 35 40 45 4 4 8 12 16 20 24 28 32 36 3 3 6 9 12 15 18 21 24 27 2 2 4 6 8 10 12 14 16 18 11 23456789 ×1 2 3 4 5 6 7 8 9
二、知识应用
横着看表格中的每一行数,你发现了什么规律? 9 9 18 27 36 45 54 63 72 81 8 8 16 24 32 40 48 56 64 72 7 7 14 21 28 35 42 49 56 63 6 6 12 18 24 30 36 42 48 54 5 5 10 15 20 25 30 35 40 45 4 4 8 12 16 20 24 28 32 36 3 3 6 9 12 15 18 21 24 27 2 2 4 6 8 10 12 14 16 18 11 23456789 ×1 2 3 4 5 6 7 8 9
3. 按下图方式摆放桌子和椅子。
(1)一张桌子可坐6人,2张桌子可坐___1_0__人。 (2)按照上图方式继续摆桌子,完成下表。
6+3×4 6+4×4
6+(n-1)×4
三、巩固练习
找规律,填一填。 (1)9,13,17,( 21 ),25,29;
后一个数比前一个数多4
(2)3,8,15,( 24),35,( 48 ),63; 每一个数加1就成为平方数
总复习
第16课时 探索规律
一、回顾整理
【回顾1】数的排列规律 自然数的排列规律 0,1,2,3,4…… 后面的数总比前面的数多1。 单(双)数的排列规律 1,3,5,7,9…… 0,2,4,6,8…… 后一个单(双)数总比前面的单(双)数多2。
一、回顾整理
【回顾2】图形的排列规律 (1)不同种类、形状的图形进行排列的规律。 (2)相同种类不同颜色的图形进行排列的规律。
序号的平方或立方。 (5)一列数中,奇数项和偶数项或分数的分子和
分母分别满足上面的规律。
三、巩固练习
5. 下面是某月的日历。
(1)蓝色方框中的9个数之和与该方框正中间的数有什么关系? 2+18=10×2 3+17=10×2 4+16=10×2 9+11=10×2 9个数之和是方框正中间的数的9倍。
三、巩固练习
5. 下面是某月的日历。
(2)这个关系对其他这样的方框成立吗?再找2组试一试。 成立。