清华大学有限元大作业

合集下载

有限元大作业

有限元大作业

攀枝花学院机械工程学院实验报告科目:有限元技术教师:班级:姓名:学号:摘要薄板类零件在生活中应用非常广泛,如车辆工程中的车体地板、高速车辆的顶板及墙板,发动机缸体、齿轮箱箱体,建筑结构的楼板、桥梁桥面等都属于薄板弯曲结构。

本文通过运用有限元技术,结合受力模型,对薄板零件在不同节点,不同单元的情况下进行受力变形分析,如:应力,变形,应变。

关键字:薄板有限元变形分析Sheet parts is widely applied in life, such as vehicle engineering in the bodywork floor, high speed vehicle roof and wall panels, engine cylinder block and the gearbox housing, construction of floor slab and bridge deck are bending plate structure. In this paper, by using the finite element technology, combined with the mechanical model, the sheet parts in different nodes of different unit under the situation of stress deformation analysis, such as stress, deformation and strain.Key words: sheet deformation finite element analysis图示薄板左边固定,右边受均布压力P=100Kn/m作用,板厚度为;试采用如下方案,对其进行有限元分析,并对结果进行比较。

(1)三节点常应变单元;(2个和200个单元)(2)(3)四节点矩形单元;(1个和50个单元)(4)(3)八节点等参单元。

有限元大作业

有限元大作业

250250试题 5:图示为带方孔(边长为 80mm )的悬臂梁,其上受部分均布载荷(P=10KN/m )作用,试采用一种平面单元,对图示两种结构进行有限元分析,并就方孔的布置(即方位)进行分析比较,如将方孔设计为圆孔,结果有何变化?(板厚为 1mm ,材料为钢)。

3001KN9003001KN图6-1一、几何建模与分析由图6-1及问题描述可知,板的长宽尺寸远远大于厚度,研究结构为一很薄的等厚度薄板,满足平面应力的几何条件;作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面上无外力作用,满足平面应力的载荷条件。

故该问题属于平面应力问题,薄板所受的载荷为面载荷,分布情况及方向如图6-1所示,建立几何模型,进行求解。

薄板的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3。

二、有限元分析及其计算结果选取PLANE182作为分析的单元,来分析薄板的位移和应力,由于此问题是平面应力问题,并在K3选择str w/thk ,设置THK 为1。

1)方孔竖直制,划分方式采用自由方式,划分后网格的模型如图6-2所示。

计算得到的位移和应力分布如图6-3所示。

图6-2 方孔竖直的网格划分图6-3 位移及应力分布云图2)方孔正直制,划分方式采用自由方式,划分后网格的模型如图6-4所示。

计算得到的位移和应力分布如图6-5所示。

图6-4 方孔正直的网格划分图6-5 位移及应力分布云图3)圆孔按图6-1所示模型进行建模。

并用PLANE182单元进行划分网格,网格大小采用全局网格控制,划分方式采用自由方式,划分后网格的模型如图6-6所示。

计算得到的位移和应力分布如图6-7所示。

图6-4 方孔正直的网格划分图6-5 位移及应力分布云图根据以上的模型分析的位移和应力图,可以得出方孔竖直、方孔正直、圆孔的最大最小位移应力的分布如表6-1所示。

三、比较与分析1)方孔竖直与方孔正直的比较,发现方孔正直的位移变形较小,应力相差不大2)圆孔与方孔比较,发现圆孔的位移变性最小,应力也最小,故可以得出圆孔的布置结构对整体布置的效果最好。

有限元程序设计大作业

有限元程序设计大作业

有限元程序设计大作业1.不同板宽的孔边应力集中问题姓名:胡宇学号:21201201282.摘要本文采用MATLAB和FOTRAN四节点平面单元,利用有限元数值解法对不同板宽的孔边应力集中问题进行了数值模拟研究。

对于不同的板宽,并且与解析系数(半板宽b/孔半径r),得到了不同的应力集中系数1解进行了比较,验证了有限元解的正确性,并且得出了解析解的适用范围。

3.引言通常情况下的有限元分析过程是运用可视化分析软件(如ANSYS、ABAQUS、SAP等)进行前处理和后处理,而中间的计算部分一般采用自己编制的程序来运算。

具有较强数值计算和处理能力的Fortran语言是传统有限元计算的首选语言。

随着有限元技术的逐步成熟,它被应用在越来越复杂的问题处理中。

MATLAB是由美国MATHWORKS公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。

它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

4.MATLAB部分1,计算模型本程序采用MATLAB编程,编制平面四边形四节点等参元程序,用以求解近似平面结构问题。

本程序的研究对象为中央开有小孔的长方形板,选取的材料参数为:板厚h=1、材料强度E=1.0e11 Pa、泊松比mu=0.3。

此外,为方便网格的划分和计算,本文所取板的长度与宽度相等。

其孔半径为r=1,板宽为2b待定。

由于本程序的目的在于验证有限元解的正确性和确定解析解的适用范围,因此要求网格足够细密,以满足程序的精度要求。

同时为了减小计算量,我采取网格径向长度递增的网格划分方法。

此种方法特点是,靠近小孔部分的网格细密,在远离小孔的过程中,网格逐渐变得稀疏。

有限元分析大作业

有限元分析大作业

有限元大作业一题目要求:图1所示为一悬臂梁,在端部承受载荷,材料弹性模量为E,泊松比为1/3,悬臂梁的厚度(板厚)为t,若该粱被划分为两个单元,单元和节点编号如图所示,试按平面应力问题计算各个节点位移计支反力。

一、单元划分1.计算简图及单元划分如下所示:2.进行节点及单元编号节点i j m单元① 2 3 4② 3 2 13.节点坐标值节点号1 2 3 4坐标值X 2 2 0 0Y 1 0 1 0二、计算单元刚度矩阵1、计算每个单元面积△以及i b ,i c (m j i i ,,=) ①②单元的面积相等,即12121=⨯⨯=∆ 单元①的i b ,i c⎩⎨⎧=--==-=0)(1m j i m j i y x c y y b ⎩⎨⎧=--==-=2)(0i m ji m j x x c y y b ⎩⎨⎧-=--=-=-=2)(1j i mj i m y x c y y b 对平面应力问题,其表达式为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+-+-+∆-=s r s r sr s r s r s r s r s r b b uc c cb u b uc b c u c ub c c u b b u Et Krs 21212121)1(42 然后对单元①求解单元刚度子矩阵2==i r 2==i s []⎥⎦⎤⎢⎣⎡=3/1001329)1(22Et K 2==i r 3==j s []⎥⎦⎤⎢⎣⎡=03/23/20329)1(23Et K2==i r 4==m s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)1(24Et K 3==j r 3==j s []⎥⎦⎤⎢⎣⎡=4003/4329)1(33Et K 3==j r 2==i s []⎥⎦⎤⎢⎣⎡=03/23/20329)1(32Et K 3==j r 4==m s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)1(34Et K 4==m r 4==m s []⎥⎦⎤⎢⎣⎡=3/133/43/43/7329)1(44Et K 4==m r 2==i s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)1(42Et K 4==m r 3==j s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)1(43Et K由子矩阵[]e rs K 合成单元刚度矩阵[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=3/133/443/23/13/23/43/73/23/43/2143/24003/23/23/403/43/203/13/203/23/103/213/2001329)1(Et K将单元①的单元刚度矩阵补零升阶变为单元刚度矩阵,其在总体刚度矩阵中的位置为:节点号→单元②的i b ,i c⎩⎨⎧=--=-=-=0)(1m j im j i y x c y y b ⎩⎨⎧-=--==-=2)(0i m ji m j x x c y y b ⎩⎨⎧=--==-=2)(1j i mj i m y x c y y b 然后对单元 求解单元刚度子矩阵:3==i r 3==i s []⎥⎦⎤⎢⎣⎡=3/1001329)2(33Et K 3==i r 2==j s []⎥⎦⎤⎢⎣⎡=03/23/20329)2(32Et K 3==i r 1==m s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)2(31Et K 1 2 3 412[])1(22K[])1(23K[])1(24K3[])1(32K[])1(33K[])1(34K4[])1(42K[])1(43K[])1(44K2==j r 2==j s []⎥⎦⎤⎢⎣⎡=4003/4329)2(22Et K 2==j r 3==i s []⎥⎦⎤⎢⎣⎡=03/23/20329)2(23Et K 2==j r 1==m s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)2(21Et K 1==m r 1==m s []⎥⎦⎤⎢⎣⎡=3/133/43/43/7329)2(11Et K 1==m r 3==i s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)2(13Et K 1==m r 2==j s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)2(12Et K 由子矩阵[]e rs K 合成单元刚度矩阵[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=3/133/443/23/13/23/43/73/23/43/2143/24003/23/23/403/43/203/13/203/23/103/213/2001329)2(Et K将单元②的单元刚度矩阵补零升阶变为单元贡献矩阵,其在总体刚度矩阵中的位置为:节点号→1 2 3 41 [])2(11K[])2(12K[])2(13K2 [])2(21K[])2(22K[])2(23K3 [])2(31K [])2(32K [])2(33K 4三、计算总体刚度矩阵总体刚度矩阵是由各单元的贡献矩阵迭加而成)2()1(][][][][K K K K e +==∑四、进行节点约束处理根据节点约束情况,在总刚矩阵中可采用划行划列处理约束的方法,由题目易知,节点3和4的已知水平位移和垂直位移都为零,划去其相对应的行和列,则总刚矩阵由8阶变为4阶,矩阵如下:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------2/02/03/13043/203/73/23/443/23/133/43/23/43/43/73292211p p v u v u Et329][Et K =1 2 3 413/133/43/43/743/23/23/4----3/13/23/21----000243/23/23/4----3/13003/73/43/403/13/23/21----33/13/23/21----3/43/403/13003/743/23/23/4----40003/13/23/21----43/23/23/4----3/133/43/43/7化简⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------Et p Et p v u v u 3/1603/160130122072412213424472211 五、求解线性方程组方法:采用LU 分解法 1.求解矩阵[]U 各元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------75/10775/640075/6475/353007/767/27/7502447~7/877/87/7607/87/337/207/767/27/7502447~13012207241221342447⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----353/44900075/6475/353007/767/27/7502447~ 得到的[]U 矩阵如下:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=353/44900075/6475/353007/767/27/7502447U 2.求解矩阵[]L 各元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----13012207241221342447353/44900075/6475/353007/767/27/75024471353/6475/767/20175/27/40017/40001 得到的[]L 矩阵如下:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=13012207241221342447L3.进行求解⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧---=⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=Et p Et p Et p y Et p Et p Ly 79425/850800225/323/1603/1603/160⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⇒=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡Et p Et p Et p v u v u y v u v u U 79425/850800225/323/160353/44900075/6475/353007/7675/27/750244722112211 解得Et p v /422.82-= Et p u /497.12-= Et p v /028.91-= Et p u /897.11=于是求得各节点的位移为:⎩⎨⎧-==Etp v Etp u /028.9/897.111 ⎩⎨⎧-=-=Etp v Etp u /422.8/497.122 ⎩⎨⎧==033v u ⎩⎨⎧==044v u 六、求解相应的支反力(运用静力学的平衡方程进行求解)3号节点和4号节点的支反力如下图所示:。

(完整word版)有限元分析大作业报告要点

(完整word版)有限元分析大作业报告要点

有限元分析大作业报告试题1:一、问题描述及数学建模图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:(1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算;(3)当选常应变三角单元时,分别采用不同划分方案计算。

该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。

二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算1、有限元建模(1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences 为Structural(2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。

因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。

(3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3(4)建几何模型:生成特征点;生成坝体截面(5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后得到600个单元。

(6)模型施加约束:约束采用的是对底面BC 全约束。

大坝所受载荷形式为Pressure ,作用在AB 面上,分析时施加在L AB 上,方向水平向右,载荷大小沿L AB 由小到大均匀分布。

以B 为坐标原点,BA 方向为纵轴y ,则沿着y 方向的受力大小可表示为:}{*980098000)10(Y y g gh P -=-==ρρ2、 计算结果及结果分析 (1) 三节点常应变单元三节点常应变单元的位移分布图三节点常应变单元的应力分布图(2)六节点三角形单元六节点三角形单元的变形分布图六节点三角形单元的应力分布图①最大位移都发生在A点,即大坝顶端,最大应力发生在B点附近,即坝底和水的交界处,且整体应力和位移变化分布趋势相似,符合实际情况;②结果显示三节点和六节点单元分析出来的最大应力值相差较大,原因可能是B点产生了虚假应力,造成了最大应力值的不准确性。

清华大学弹性力学有限元大作业

清华大学弹性力学有限元大作业

弹性力学有限元大作业一、模型信息:已知:材料为铝合金。

E=71GPa ,v=0.3.矩形平板的几何参数:板长为480mm ,宽为360mm ,厚度为2mm ;图形如下图;加肋平板:二、matlab 编程实现1、程序相关说明:计算使用的软件为:matlab2010a 主函数:main.m 主要计算部分子函数:Grids.m 生成网格,节点数为:+1*+1I J ()()、单元数: 2**I J AssembleK.m 将单元刚度矩阵组装成总刚度矩阵(叠加方法)GenerateB.m 生成单元格e B 矩阵 GenerateS.m 生成单元格e S 矩阵 GenerateK.m 生成单元刚度矩阵2、网格划分:利用Grid.m 子函数,取2020I J ==、,即可以得到网格如下: 节点数为:441个,单元格数:800个3、计算过程及结果 (1)、网格划分:通过Grid.m ,生成节点数为:441个、单元格数:800个的网格 (2)、生成总刚度矩阵K :通过GenerateK.m 、AssembleK.m 生成总刚度矩阵 采用常应变三角单元,e e u N a =,易得=e e B LN由平面应力问题,可以确定2101011002E D νννν⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎢⎥⎣⎦即e e S DB =单元刚度矩阵为:e eT e K AtB DB = 总刚度矩阵为:eTe e eK GK G =∑(3)、求解过程:系统平衡方程为:Ka P = 将方程进一步划分为:E EF E E E T F F EFF K K d f r d f K K +⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 通过已知边界条件(位移、载荷),确定E E F d f f 、、 ,从而将K 矩阵划分为四个模块:E EF TEF F K K K K ⎡⎤⎢⎥⎣⎦1()E E E EF F E TF F F EF E r K d K d f d K f K d -=+-=-支反力:部分位移:即整体位移向量为:E F d a d ⎡⎤=⎢⎥⎣⎦整体力边界条件为:E E F f r P f +⎡⎤=⎢⎥⎣⎦(4)后处理:(应力、应变、抹平) a 、单元应力、应变:e e e ee eS a B aσε==b 、抹平得到节点应力、应变:将每个节点参与组成的单元应力、应变叠加,然后除以叠加的单元数,得到抹平后的节点应力、应变。

有限元分析-清华大学教程

有限元分析-清华大学教程

8.1 进入工程分析模块8.2施加约束8.3 施加载荷8.4 静态有限元计算过程和后处理8.5动态分析的前处理和显示计算结果8.6有限元分析实例习题工程分析指的是有限元分析,包括静态分析(Static Analyses)和动态分析。

动态分析又分为限制状态固有频率分析(Frequency Analyses)和自由状态固有频率分析(Free Frequency Analyses),前者在物体上施加一定约束,后者的物体没有任何约束,即完全自由。

8.1 进入工程分析模块1. 进入工程分析模块前的准备工作(1)在三维实体建模模块建立形体的三维模型,为三维形体添加材质,见4.7。

(2)将显示模式设置为Shading(着色)和Materials(材料),这样才能看到形体的应力和变形图,详见2.11.6。

2. 进入工程分析模块选择菜单【Start】→【Analysis & Simulation】→【Generative Structural Analysis】弹出图8-1所示新的分析实例对话框。

在对话框中选择静态分析(Static Analyses)、限制状态固有频率分析(Frequency Analyses)还是自由状态固有频率分析(Free Frequency Analyses),单击OK按钮,将开始一个新的分析实例。

图8-1新的分析实例对话框3.有限元分析的过程有限元分析的一般流程为:(1)从三维实体建模模块进入有限元分析模块。

(2)在形体上施加约束。

(3)在形体上施加载荷。

(4)计算(包括网格自动划分),解方程和生成应力应变结果。

(5)分析计算结果,单元网格、应力或变形显示。

(6)对关心的区域细化网格、重新计算。

上述(1)~(3)过程是有限元分析预(前)处理,(4)是计算过程,(5)、(6)是有限元后处理。

有限元文件的类型为CATAnalysis。

8.2施加约束1. 夹紧约束该约束施加于形体表面或边界,使其上的所有节点的位置固定不变(三个平移自由度全部约束)。

有限元课程大作业

有限元课程大作业

金属坯料挤压过程有限元分析一、前言:金属挤压是将放在挤压模具内的金属锭坯从一端施加外力,强迫其从特定的模孔中流出,获得所需要的断面形状和尺寸的制品的技术。

冷挤压时由于材料是在冷态下成形,而且变形量一般都很大,挤压过程中作用在模具上的单位压力很大,此时模具有开裂破坏的可能,对压力机也构成威胁,金属坯料在通过模具过程中,坯料与模具之间产生相当大的应力,这就要求模具需要有相当大的强度、硬度、以及耐磨性,因此冷挤压时要进行挤压力的计算。

挤压力的计算是模具设计的重要依据,也是选择挤压设备的依据。

模具角度、接触表面的摩擦系数、坯料变形量都会影响应力变化,在保证加工要求的前提下,应当通过适当方式降低坯料及模具之间的应力。

通过有限元分析,得出应力分布图,分析变形区域、死区,对模具进行优化改进。

二、有限元介绍:ANSYS概述ANSYS软件是融结构、热、流体、电磁、声学于一体的大型通用有限元软件,可广泛地用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、生物医学、水利、日用家电等一般工业及科学研究。

该软件提供了不断改进的功能清单,具体包括:结构高度非线性分析、电磁分析、计算流体力学分析、设计优化、接触分析、自适应网格划分及利用ANSYS参数设计语言扩展宏命令功能。

ANSYS软件功能强大,主要特点有:实现多场及多场耦合分析;实现前后处理、求解及多场分析统一数据库的一体化;具有多物理场优化功能;强大的非线性分析功能;多种求解器分别适用于不同的问题及不同的硬件设备;支持异种、异构平台的网络浮动,在异种、异构平台上用户界面统一、数据文件全部兼容;强大的并行计算功能支持分布式并行及共享内存式并行;多种自动网格划分技术;良好的用户开发环境。

ANSYS不仅支持用户直接创建模型,也支持与其他CAD软件进行图形传递,其支持的图形传递有:SAT、Parasolid、STEP。

相应地,可以进行接口的常用CAD 软件有:Unigraphics、Pro/Engineer、I-Deas、Catia、CADDS、SolidEdge、SolidWorks等。

有限元受力分析大作业

有限元受力分析大作业

1. 定义分析类型
Main Menu >Solution > Analysis Type > New Analysis, 选择Static 2. 定义位移约束
Main Menu >Solution> Define Loads >Apply >Structural>Displacement > On Areas, 在 弹出对话框中选Circle,点击OK后,在弹出的对话框中填入:0
后处理
1. 查看总体变形
Main Menu >General Postproc >Plot Results > Deformed shape
(2)
(2)
四. 加载和求解
1. 定义分析类型
Main Menu >Solution > Analysis Type > New Analysis, 选择Static 2. 定义位移约束
Main Menu >Solution> Define Loads >Apply >Structural>Displacement > On Areas, 在 弹出对话框中选Circle,点击OK后,在弹出的对话框中填入:0
七. 后处理
1. 查看总体变形
Main Menu >General Postproc >Plot Results > Deformed shape
S
作业三:轴承座盈利分析
1、 题目
2、建模
3、ansys前处理
导入
ansys前处理
1、定义单元类型 Main Menu>Proprocessor>Element Type >Add/Edit/Delete 弹出对话框 中后,点“Add” 。双弹出对话框,选“Solid”和“10node 92”,点 “OK”,退回到前一个对话框。

有限元分析技术课程大作业

有限元分析技术课程大作业

有限元分析技术课程大作业1 工程介绍现需要对某露天大型玻璃平面舞台的钢结构进行分析,该钢结构布置在xy 平面内。

学生序号为079,分格的列数(x向分格)=0×10+7+5=12,分格的行数(y向分格)=9+4=13,共有156个分格。

每个分格x方向尺寸为1m,y方向尺寸为1m。

钢结构的主梁为高160宽100厚14的方钢管;次梁为直径60厚10的圆钢管(单位为毫米),材料均为碳素结构钢Q235;该结构固定支撑点位于左右两端主梁和最中间的次梁的两端。

玻璃采用四点支撑与钢结构连接(采用四点支撑表明垂直作用于玻璃平面的面载荷将传递作用于玻璃所在钢结构分格四周的节点处,表现为点载荷;试对在垂直于玻璃平面方向的22/KN m的面载荷(包括玻璃自重、钢结构自重、活载荷(人员与演出器械载荷)、风载荷等)作用下的舞台进行有限元分析(每分格面载荷对于每一支撑点的载荷可等效于0.5KN的点载荷)。

作业提交的内容:(1)屏幕截图显示该结构的平面布置结构;(2)该结构每个支座的支座反力;(3)该结构节点的最大位移及其所在位置;(4)对该结构中最危险单元(杆件)进行强度校核。

2有限元模型的建立该钢结构中每一分格x方向尺寸为1m,y方向尺寸为1m,x方向分格数量为12,y方向分格数量为13。

该钢结构由主梁和次梁构成,其中主梁为高160mm、宽100mm、厚14mm的方钢管,次梁为直径60mm、厚10mm的圆钢管。

由于在该结构中所有构件均为梁单元,而Ansys程序中提供了多种梁单元,以模拟不同场合的应用,且对于每种梁单元类型都有特定的算法。

在本次建模过程中,考虑到需要对该结构中的危险单元进行强度校核,因此,选择了BEAM188单元类型来建立本钢架结构,进而对其进行有限元分析。

BEAM188为三维线性有限应变梁单元,该单元基于铁木辛哥的梁结构理论,考虑了剪切变形的影响,能够满足本次分析的需求。

以下为基于ANSYS图形界面(Graphic User Interface , GUI)的菜单操作流程(1) 进入ANSYS(设定工作目录和工作文件)程序→ ANSYS → ANSYS Interactive → Working directory(设置工作目录)→Initial Jobname(设置工作文件名):Analysis → Run → OK(2) 设置计算类型ANSYS Main Menu:Preferences → Structural → OK(3) 定义单元类型ANSYS Main Menu:Preprocessor → Element Type → Add/Edit/Delete... → Add → Beam: 3D 2node 188 → OK(返回到Element Types窗口)→ Close(4) 定义材料参数ANSYS Main Menu: Preprocessor → Material Props → Material Models → Structural → Linear → Elastic → Isotropic → input EX: 2.0E5, PRXY: 0.3(定义泊松比及弹性模量) → OK → Close(关闭材料定义窗口)(5)定义梁单元截面ANSYS Main Menu:Preprocessor →Sections→Beam→Common Sections→Beam Tool(6) 构造梁模型生成舞台几何模型ANSYS Main Menu:Preprocessor → Modeling → Create → Keypoints → In Active CS → NPT Keypoint number:1,X,Y,Z Location in active CS:0,0,0 → Apply 通过复制关键点操作,形成14行13列的关键点。

有限元分析及应用+homework+I

有限元分析及应用+homework+I

《有限元分析及应用》习题I要求:(1) 每位同学独立完成;(2) 请手写书面完成,交手写稿,不要打印稿;(3) 跟随课堂进度完成相应的习题,在课程结束时一并上交,具体时间见通知。

1.如图所示的1D 杆结构,试用取微单元体的方法建立起全部基本方程和边界条件,并求出它的所有解答。

注意:它的弹性模量为E ,横截面积为A第1题图2.设平面问题中的应力为123456789xx yy xy a a x a ya a x a y a a x a yσστ=++=++=++ 其中a i (i=1,2,…,9)为常数,令所有体积力为零,对下列特殊情况说明平衡是否满足?为什么?或者在a i 之间有什么关系才满足平衡。

(1)除a 1 、a 4 、a 7外,其余a i 为零。

(2)a 3=a 5=a 8=a 9=0 (3)a 2=a 6=a 8=a 9=0 (4)所有a i 均为非零。

3.如图所示,已知平面应力问题的应力状态为,,xx yy xy σστ, 求: (1)斜面上应力σN ,τN 的表达式。

(2)最大主应力、最小主应力及此时斜面的方向余弦。

第3题图4.分别就以下情形,写出所有基本方程及边界条件(分量形式、指标形式)、各基本变量(分量形式、指标形式以及对应关系)。

(1)1D 情形 (2)2D 情形 (3)3D 情形5 设有应变分量的表达式为22440122440122012()()()()()xx yy xy A A x y x y B B x y x y C C xy x y C εεγ=++++=++++=+++ 其中0101012,,,,,,A A B B C C C 为常数,试问这些常数需要满足何种关系时,以上的应变分量才能成为一种真正的应变状态。

6. 分别给出平面应力和平面应变状态下的前提条件及表达式,推导两种情况下的物理方程,以及它们之间的转换关系。

7. 一个立方块的弹性体放在同样大小的刚性盒内,其上面用刚性盖密闭后加均匀压力q , 方块与盒盖之间无摩擦力,设加压方向为z 轴,盒的侧面法向为x 轴和y 轴,求弹性体的应力,,xx yy zz σσσ和应变,,xx yy zz εεε8. 某一长方体的位移分量为321132213(12)(,,)(12)(,,)(12)(,,)P u x y z x b y b z a E P v x y z y b z b x a E P w x y z z b x b y a Eμμμ−=−+−+−=−+−+−=−+−+其中123123,,,,,a a a b b b 为常数。

有限元-计算结构力学-大作业

有限元-计算结构力学-大作业

有限元-计算结构力学-大作业本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.MarchSHANGHAI JIAO TONG UNIVERSITY 平面应力问题解的Matlab实现姓名: heiya168 学号: 帆哥班级:指导老师:目录1绪论 (4)2平面问题的四节点四边形单元 (4)2.1单元的构造 (4)2.2等参变换 (5)2.3边界条件的处理——置“1”法 (7)3有限元分析流程 (8)3.1程序原理和流程 (8)3.2使用的函数 (9)3.3文件管理 (9)3.4数据文件格式 (10)4算例——开方孔的矩形板拉伸分析 (11)4.1问题的具体参数与载荷 (11)4.2Matlab程序计算 (11)4.3ANSYS建模计算 (13)4.4误差分析 (15)5总结 (15)参考文献 (16)附录 (17)1绪论有限元方法(finite element method),是求取复杂微分方程近似解的一种非常有效的工具,是现代数字化科技的一种重要基础性原理。

将它用于在科学研究中,可成为探究物质客观规律的先进手段。

将它应用于工程技术中,可成为工程设计和分析的可靠工具。

弹性体在载荷作用下,其基本方程可写成以下的三类方程和两种边界条件。

平衡方程——应力与外载荷的关系;几何方程——应变位移关系;物理方程——应力应变关系;力的边界条件;几何边界条件。

应用最小位能原理,并利用上述关系,最终建立由刚度方程,节点位移和等效节点载荷所构成的求解方程。

带入边界条件求解方程,就可以得出弹性力学问题的一般性解答。

本次大作业基于有限元方法的基本原理,使用Matlab这一平台,针对平面应力问题,采用四节点四边形单元编写了求解单元节点位移的程序。

主要内容包括:1)介绍有限元的基本原理;2)编程基本思路及流程介绍;3)程序原理及说明; 4)具体算例这四个部分。

有限元分析题及大作业题答案

有限元分析题及大作业题答案

有限元分析及应用作业报告试题10一、问题描述确定图示扳手中的应力, E=210Gpa,μ=0.3, 假设厚度为10mm;并讨论采用何种处理可降低最大应力或改善应力分布。

图1为扳手的基本形状和基本尺寸图二、数学建模与分析由图1及问题描述可知,板手的长宽尺寸远远大于厚度,研究结构为一很薄的等厚度薄板,满足平面应力的几何条件;作用于薄板上的载荷平行于板平面且作用在沿厚度方向均匀分布在办手柄的左边缘线,而在两板面上无外力作用,满足平面应力的载荷条件。

故该问题属于平面应力问题,薄板所受的载荷为面载荷,分布情况及方向如图1所示,建立几何模型,并进行求解。

薄板的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3三、有限元建模1、单元选择:选取三节点常应变单元来计算分析薄板扳手的位移和应力。

由于此问题为平面应力问题,:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元。

2、定义材料参数:ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3 →OK3、生成几何模型:a.创建关键点点:ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入16个点的坐标→OKb、将这16个关键点有直线依次连起来,成为线性模型4、生成实体模型:ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS →连接特征点→生成两个area→Operate→Subtract→拾取整个扳手区域→OK→生成扳手模型5、结点布置及规模6、网格划分方案ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool →Mesh: Areas, Shape: Tri,Free →Mesh →Pick All (in Picking Menu) →Close( the Mesh Tool window)7、载荷及边界条件处理8、求解控制A、模型施加约束给模型施加x方向约束ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement →On Lines →拾取模型左部的竖直边→OKB、给模型施加载荷ANSYS Main Menu: Solution →Define Loads →Apply →Structural →force→on keypoints→拾取上面左端关键点→700N/mm→okC、分析计算:ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load Step window) →OK6)结果显示:ANSYS Main Menu: General Postproc →Plot Results →Deformed Shape… →select Def + Undeformed →OK (back to Plot Results window) →Contour Plot →Nodal Solu →select: DOF solution →displacement vector sum,von mises stress→OK四、计算结果及结果分析1、三节点常应变单元1)三节点单元的网格划分图2 常应变三节点单元的网格划分平面图图3 常应变三节点单元的网格划分立体图2)三节点单元的约束受载情况图4 常应变三节点单元的约束受载图3)三节点单元的位移分析图5 常应变三节点单元的位移分布图4)三节点单元的应力分析图6 常应变三节点单元的应力分布图2、六节点三角形单元1)六节点三角形单元网格划分图7 六节点三角形单元网格划分图2)六节点三角形单元约束和受载情况分析图8 六节点三角形单元约束受载图3)六节点三角形单元位移分析图9 六节点三角形单元的变形分布图4) 六节点三角形单元的应力分析图9 六节点三角形单元的应力分布图图10 六节点三角形单元的局部应力分布图根据以上位移和应力图,可以得出常应变三节点单元和六节点三角形单元的最小最大位移应力如表1-1所示。

清华大学弹性力学-大作业

清华大学弹性力学-大作业

(1b)
其中 2 为 Laplace 算子, (1,1) (1,1) 为求解区域。 y 1

y 1
u0
-1

O -1
1
x
u 0 n
1
u0
O
u 0 n
图 2 第一象限
x 1
图 1 薄膜小挠度弯曲模型
其势能泛函为:
I (u ) 1 u u [( ) 2 ( ) 2 ]dA f u dA 2 x y x 1 , y 1 u 0,

1
y 2
y 1

2

1
1
3x 4 (a)
5 (b)
x 3
4 (c)
3
x
图 3 有限元单元种类
(2)
s.t.
(1) 根据最小势能原理,试由式(2)导出式(1)。 (2) 当 f ( x, y ) 2 ,即薄膜受均布荷载作用时,其挠度 u 关于 x 轴和 y 轴均对称, 取第一象限 1 (0,1) (0,1) 为求解区域,如图 2 所示(图中 n 为外法线方向) , 请分别使用如下三种有限元单元计算原点 O 处的挠度 u (0,0) , 并比较分析有限 元解与精确解的误差: (a) 2 个常应变三角形单元(如图 3a) ; (b) 4 个常应变三角形单元(如图 3b) ; (c) 1 个四结点四边形单元(如图 3c) 。 (注:精确解为 u (0,0) 0.5893 。 ) y 1 2 1 4
有限元法大作业——薄膜小挠度弯曲问题的有限元求解
如图 1 所示,边长为 2、四边固支的正方形薄膜,受到横向分布荷载 f ( x, y ) 的作用,用挠度 u u ( x, y ) 表示的平衡微分方程为 (1a) 2u f ( x, y ) , ( x, y )

有限元大作业

有限元大作业

有限元大作业第一篇:有限元大作业有限元应力分析报告大作业机械与运载工程学院车辆四班龙恒 20110402415 2014年8月30日一、问题描述桦木板凳材料参数如图形状参数:长40mm,宽30mm,高45mm(其他详细参数见零件图)通过施加垂直于板凳上表面的均匀载荷600N,分析板凳的应变和应力?二、使用inventor进行建模及应力分析1、通过inventor建立板凳3D模型利用草图拉伸等方法建立与零件图中尺寸一致的三维立体板凳模型2、点选环境下的应力分析开始对板凳进行应力分析3、根据所给条件设置材料等参数、将安全系数设为屈服强度,因为板凳主要受压变形点开“木材(桦木)”根据前面所给参数对其进行参数设置4、固定约束如图板凳的4个脚底面设置为固定约束,使得板凳受载后,脚底面不会沿垂直方向位移,模拟真实情况5、施加载荷在板凳上表面施加大小为600N的垂直均布载荷(这里是模拟一个成人坐上去的重力)6、划分网格通过设置网格的尺寸参数来划分出5种不同网格数量,从而得出5种不同网格数划分得出的应力应变分布图,最后分析划分不同网格数对结果的影响。

(1)网格最大(2)网格较大(3)网格一般大小(4)网格较小(5)网格最小7、求解得出结果得出5组不同网格数所得数据(应力云图,应变云图,所有结果数据)(1)网格数1437根据应力云图可知,红色地方所受的应力最大,最大应力为:15.48Mpa 根据应变云图可知,红色地方的应变最大,最大应变为:0.001434μl(2)网格数8651根据应力云图可知,红色地方所受的应力最大,最大应力为:18.88Mpa 根据应变云图可知,红色地方的应变最大,最大应变为:0.001755μl(3)网格数20484根据应力云图可知,红色地方所受的应力最大,最大应力为:22.62Mpa 根据应变云图可知,红色地方的应变最大,最大应变为:0.002103μl(4)网格数41578根据应力云图可知,红色地方所受的应力最大,最大应力为:23.76Mpa 根据应变云图可知,红色地方的应变最大,最大应变为:0.002206μl(5)网格数68788根据应力云图可知,红色地方所受的应力最大,最大应力为:25.97Mpa 根据应变云图可知,红色地方的应变最大,最大应变为:0.002454μl综合上述5种请况可知随着网格的细分,所得的应变以及应力的结果是收敛的。

有限元分析题及大作业题答案

有限元分析题及大作业题答案

;有限元分析及应用作业报告~【、有限元分析及应用作业报告一、问题描述图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;2):3)分别采用不同数量的三节点常应变单元计算;4)当选常应变三角单元时,分别采用不同划分方案计算。

二、几何建模与分析图1-2 力学模型由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。

因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。

假设大坝的材料为钢,则其材料参数:弹性模量E=,泊松比σ=¥三、第1问的有限元建模本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。

1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。

因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。

3)定义材料参数4)生成几何模a. 生成特征点b.生成坝体截面*5)网格化分:划分网格时,拾取lineAB和lineBC进行Size Conrotls,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后得到600个单元。

有限元大作业

有限元大作业
模态分析主要用于确定结构的固有频率和振型,也可以对有预应力的结构进行模态分析,模态分析可以在产品设计之前预先避免可能引起的共振。模态分析中一般并不需要施加载荷,但是由于风机在流体中具有预应力,因此需要在静态结构分析之后,把应力结果加载到风机表面,再进行模态分析。
1.3
在做有限元分析之前,需要对风机的有限元建模分析系统制定一个有效的整体流程图,以指导后面有限元分析工作能够有条不紊的进行,整体流程图大致如图1-1所示:
Again, for the second geometry preprocessing, meshing, import fan pressure distribution, structural analysis, calculate the stress distribution.
Finally, based on structural analysis of modal analysis,modal analysis of fangetvibration mode and natural frequency, and the results were analyzed to assess.
rpm
300
1.5
2.4
1.5
12
铝合金
400
结构分析主要是指分析结构在给定静力载荷作用下的响应。在风机工作时,风机叶片在风速的影响下会转动起来,风机会受到迎风压力,因此需要对风机进行结构分析,研究风机的叶片、塔架等抗弯强度是否符合要求,而分析需要的静力载荷来源需要由流体分析来求解出来。流体分析主要是用于求解模型在流动介质中的压力分布情况,为其他分析提供载荷基础。。
首先,利用PRO/E软件对风机进行三维实体建模,并导入到ANSYS Workbench中进行预处理,然后进行网格划分和流体分析,求出风机的压力分布。

有限元大作业-开孔平板静力分析

有限元大作业-开孔平板静力分析

《结构有限元方法与应用》大作业报告实验名称:开孔平板静力分析学院_ 宇航学院 _ 专业_ __飞行器设计__ _ 姓名_ _ 李东芳 ___ __ 学号_ __ **********__ _联系电话_ __ ***********_ _年月日摘要有限元方法可以把杆件结构力学中的位移法推广到求解连续体介质力学问题,它之所以能获得成功在于从结构力学推导的刚度矩阵容易被接受,同时这种方法所包含的大量数值运算可以友由发展起来的数字计算机来完成。

用于有限元前后处理的软件有很多种,其中功能较为强大的是ABAQUS,它可以对工程中的各种线性与非线性问题进行分析计算。

本文中的算例就是用ABAQS软件对一种较为简单的结构,即开孔平板进行静力分析。

并从网格形状和尺寸两个方面对结果进行对比。

关键词:有限元方法,ABAQUS,开孔平板目录实验名称:开孔平板静力分析 (1)1.简介 (1)2、静力分析算例介绍 (1)2.1 问题定义 (1)2.2有限元软件分析步骤 (1)2.3对比 (9)3.总结: (13)致谢 (14)参考文献 (15)《结构有限元方法与应用》报告——实验名称:开孔平板静力分析1.简介ABAQUS是功能强大的有限元软件,可以分析复杂的固体力学和结构力学系统,模拟非常庞大复杂的模型,处理高度非线性问题。

ABAQUS不但可以做单一零件的力学和多物理场的分析,同时还可以完成系统级的分析和研究。

由于ABAQUS强大的分析能力和模拟复杂系统的可靠性,它在各国的工业和研究中得到了广泛的应用,在大量的高科技产品开发中发挥着巨大的作用。

ABAQUS 的分析功能有很多,最基本的就是静态应力/位移分析,包括线性、材料非线性、几何非线性、结构断裂分析等[1]。

2、静力分析算例介绍2.1 问题定义图2.1 开孔平板示意图如图2.1所示开孔平板,单位均为m,厚度0.02m。

材料为钢,杨氏模量209e9 Pa,泊松比0.3,屈服极限为245MPa。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档