2020-2021中考数学提高题专题复习圆与相似练习题含答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021中考数学提高题专题复习圆与相似练习题含答案解析
一、相似
1.如图,在△ABC中,∠C=90°,AC=8,BC=6。

P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N设AP=x.
(1)在△ABC中,AB= ________;
(2)当x=________时,矩形PMCN的周长是14;
(3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明。

【答案】(1)10
(2)5
(3)解:∵PM⊥AC,PN⊥BC,
∴∠AMP=∠PNB=∠C=90º.
∴AC∥PN,∠A=∠NPB.
∴△AMP∽△PNB∽△ABC.
当P为AB中点时,可得△AMP≌△PNB
此时S△AMP=S△PNB= ×4×3=6
而S矩形PMCN=PM·MC=3×4=12.
所以不存在x的值,能使△AMP的面积、△PNB的面积与矩形PMCN面积同时相等.
【解析】【解答】(1)∵△ABC为直角三角形,且AC=8,BC=6,
( 2 )∵PM⊥AC PN⊥BC
∴MP∥BC,AC∥PN(垂直于同一条直线的两条直线平行),
∴,
∵AP=x,AB=10,BC=6,AC=8,BP=10-x,
∴矩形PMCN周长=2(PM+PN)=2( x+8- x)=14,解得x=5;
【分析】在△ABC中,∠C=90°,AC=8,BC=6根据勾股定理,可求出AB的长;AP=x,可以得到矩形PMCN的周长的表达式,构造方程,解方程得到x值.可以证明
△AMP∽△PNB∽△ABC,只有当P为AB中点时,可得△AMP≌△PNB,此时S△AMP=S△PNB,分别求出当P为AB中点时△PAM的面积、△PBN的面积与矩形PMCN的面积比较即可.
2.如图,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于点H,过点C作CD⊥AC,连接AD,点M为AC上一点,且AM=CD,连接BM交AH于点N,交AD于点E.
(1)若AB=3,AD= ,求△BMC的面积;
(2)点E为AD的中点时,求证:AD= BN .
【答案】(1)解:如图1中,
在△ABM和△CAD中,∵AB=AC,∠BAM=∠ACD=90°,AM=CD,∴△ABM≌△CAD,
∴BM=AD= ,∴AM= =1,∴CM=CA﹣AM=2,∴S△BCM= •CM•BA= ×23=3.
(2)解:如图2中,连接EC、CN,作EQ⊥BC于Q,EP⊥BA于P.
∵AE=ED,∠ACD=90°,∴AE=CE=ED,∴∠EAC=∠ECA,∵△ABM≌△CAD,∴∠ABM=∠CAD,∴∠ABM=∠MCE,∵∠AMB=∠EMC,∴∠CEM=∠BAM=90°,
∴△ABM∽△ECM,∴,∴,∵∠AME=∠BMC,∴△AME∽△BMC,∴∠AEM=∠ACB=45°,∴∠AEC=135°,易知∠PEQ=135°,∴∠PEQ=∠AEC,∴∠AEQ=∠EQC,∵∠P=∠EQC=90°,∴△EPA≌△EQC,∴EP=EQ,∵EP⊥BP,EQ⊥BC
∴BE平分∠ABC,∴∠NBC=∠ABN=22.5°,∵AH垂直平分BC,∴NB=NC,∴∠NCB=∠NBC=22.5°,∴∠ENC=∠NBC+∠NCB=45°,∴△ENC的等腰直角三角形,∴NC=
EC,∴AD=2EC,∴2NC= AD,∴AD= NC,∵BN=NC,∴AD= BN.
【解析】【分析】(1)首先利用SAS判断出△ABM≌△CAD,根据全等三角形对应边相等得出BM=AD= ,根据勾股定理可以算出AM,根据线段的和差得出CM的长,利用
S△BCM= •CM•BA即可得出答案;
(2)连接EC、CN,作EQ⊥BC于Q,EP⊥BA于P.根据直角三角形斜边上的中线等于斜边的一半得出AE=CE=ED,根据等边对等角得出∠EAC=∠ECA,根据全等三角形对应角相等得出∠ABM=∠CAD,从而得出∠ABM=∠MCE,根据对顶角相等及三角形的内角和得出∠CEM=∠BAM=90°,从而判断出△ABM∽△ECM,由相似三角形对应边成比例得出BM∶CM= AM∶EM,从而得出BM∶AM= CM∶EM,根据两边对应成比例及夹角相等得出△AME∽△BMC,故∠AEM=∠ACB=45°,∠AEC=135°,易知∠PEQ=135°,故∠PEQ=∠AEC,∠AEQ=∠EQC,又∠P=∠EQC=90°,故△EPA≌△EQC,故EP=EQ,根据角平分线的判定得出BE平分∠ABC,故∠NBC=∠ABN=22.5°,根据中垂线定理得出NB=NC,根据等腰三角形的性质得出∠NCB=∠NBC=22.5°,故∠ENC=∠NBC+∠NCB=45°,△ENC的等腰直角三角形,根据等腰直角三角形边之间的关系得出NC= EC,根据AD=2EC,2NC= AD,AD= NC,又BN=NC,故AD= BN.
3.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:
(1)求证:△BEF∽△DCB;
(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;
(3)当t为何值时,△PQF为等腰三角形?试说明理由.
【答案】(1)解:∵四边形ABCD是矩形,
∴ AD∥BC,
在中,
∵别是的中点,
∴EF∥AD,
∴ EF∥BC,∴

(2)解:如图1,过点Q作于,
∴QM∥BE,


∴(舍)或秒
(3)解:当点Q在DF上时,如图2,

∴ .
当点Q在BF上时,,如图3,


时,如图4,


时,如图5,


综上所述,t=1或3或或秒时,△PQF是等腰三角形
【解析】【分析】(1)根据题中的已知条件可得△BEF和△DCB中的两角对应相等,从而可证△BEF∽△DCB;(2)过点Q作QM⊥EF 于M ,先根据相似三角形的预备定理可证△QMF ∽△BEF;再由△QM F ∽△BEF可用含t的代数式表示出QM的长;最后代入三角形的面积公式即可求出t的值。

(3)由题意应分两种情况:(1)当点Q在DF上时,因为∠PFQ为钝角,所以只有PF = QF 。

(2)当点Q在BF上时,因为没有指明腰和底,所以有 PF=QF;PQ = FQ;PQ = PF 三种情况,因此所求的t值有四种结果。

4.如图(1),在矩形DEFG中,DE=3,EG=6,在Rt△ABC中,∠ABC=90°,BC=3,AC=6,△ABC的一边BC和矩形的一边DG在同一直线上,点C和点D重合,Rt△ABC将从D以每秒1个单位的速度向DG方向匀速平移,当点C与点G重合时停止运动,设运动时间为t秒,解答下列问题:
(1)如图(2),当AC过点E时,求t的值;
(2)如图(3),当AB与DE重合时,AC与EF、EG分别交于点M、N,求CN的长;
(3)在整个运动过程中,设Rt△ABC与△EFG重叠部分面积为y,请求出y与t的函数关系式,并写出相应t的取值范围.
【答案】(1)解:如图(2),当AC过点E时,
在Rt△ABC中,BC=3,AC=6,
∴BC所对锐角∠A=30°,
∴∠ACB=60°,
依题意可知∠ABC=∠EDC=90°,
∵∠ACB=∠ECD,
∴△ABC∽△EDC,
∴,即,
∴CD= ,
∴t=CD= ;
(2)解:如图(3),∵∠EDG=90°,DE=3,EG=6,
∴DG= =3 ,
在Rt△EDG中,sin∠EGD= ,
∴∠EGD=30°,
∵∠NCB=∠CNG+∠EGD,
∴∠CNG=∠NCB﹣∠EGD=60°﹣30°=30°,
∴∠CNG=∠EGD,
∴NC=CG=DG﹣BC=3 ﹣3;
(3)解:由(1)可知,当x>时,△ABC与△EFG有重叠部分.
分两种情况:①当<t≤3时,如图(4),
△ABC与△EFG有重叠部分为△EMN,设AC与EF、EG分别交于点M、N,过点N作直线NP⊥EF于P,交DG于Q,
则∠EPN=∠CQN=90°,
∵NC=CG,
∴NC=DG﹣DC=3 ﹣t,
在Rt△NQC中,NQ=sin∠NCQ×NC=sin60°×(3 ﹣t)= ,
∴PN=PQ﹣NQ=3﹣ = ,
∵∠PMN=∠NCQ=60°,
∴sin∠PMN= ,MN= =t﹣,
在矩形DEFG中,EF∥DG,
∴∠MEN=∠CGN,
∵∠MNE=∠CNG,∠CNG=∠CGN,
∴∠EMN=∠MNE,
∴EM=MN,
∴EM=MN=t﹣,
∴y=S△EMN= EM•PN= × ;
②当3<t≤3 时,如图(5),
△ABC与△EFG重叠部分为四边形PQNM,设AB与EF、EG分别交于点P、Q,AC与EF、EG分别交于点M、N,则∠EPQ=90°,
∵CG=3 ﹣t,
∴S△EMN= ,
∵EP=DB=t﹣3,∠PEQ=30°,
∴在Rt△EPQ中,PQ=tan∠PEQ×EP=tan30°×(t﹣3)= ,
∴S△EPQ= EP•PQ= (t﹣3)× = ,
∴y=S△EMN﹣S△EPQ=()﹣()= +(﹣,
综上所述,y与t的函数关系式:y= .
【解析】【分析】(1)证△ABC∽△EDC,由相似三角形的性质可求出CD的值,即可求t;
(2)利用勾股定理求出DG的值,则由三角函数可∠EGD=30°,进而可证得∠CNG=∠EGD,则NC=CG=DG﹣BC,可求出答案;
(3)根据重叠部分可确定x的取值范围,再由三角形的面积公式可求出函数解析式.
5.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点C出发,以2cm/s 的速度沿折线C→A→B向点B运动,同时点E从点B出发,以1cm/s的速度沿BC边向点C运动,设点E运动的时间为t(单位:s)(0<t<8).
(1)当△BDE 是直角三角形时,求t的值;
(2)若四边形CDEF是以CD、DE为一组邻边的平行四边形,①设它的面积为S,求S关于t的函数关系式;②是否存在某个时刻t,使平行四边形CDEF为菱形?若存在,求出t 的值;若不存在,请说明理由.
【答案】(1)解:如图1,当∠BED=90°时,△BDE是直角三角形,
则BE=t,AC+AD=2t,
∴BD=6+10-2t=16-2t,
∵∠BED=∠C=90°,
∴DE∥AC,
∴,
∴,
∴DE= ,
∵sinB= ,
∴,
t= ;
如图2,当∠EDB=90°时,△BDE是直角三角形,
则BE=t,BD=16-2t,
cosB= ,
∴,
∴t= ;
答:当△BDE是直角三角形时,t的值为或
(2)解:①如图3,当0<t≤3时,BE=t,CD=2t,CE=8-t,
∴S▱CDEF=2S△CDE=2× ×2t×(8-t)=-2t2+16t,
如图4,当3<t<8时,BE=t,CE=8-t,过D作DH⊥BC,垂足为H,
∴DH∥AC,
∴,
∴,
∴DH= ,
∴S▱CDEF=2S△CDE=2× ×CE×DH=CE×DH=(8-t)× = t2− t+ ;
∴S于t的函数关系式为:当0<t≤3时,S=-2t2+16t,
当3<t<8时,S= t2− t+ ;
②存在,如图5,当▱CDEF为菱形时,DH⊥CE,
由CD=DE得:CH=HE,
BH= ,BE=t,EH= ,
∴BH=BE+EH,
∴ =t+ ,
∴t= ,
即当t= 时,▱CDEF为菱形.
【解析】【分析】(1)因为△BDE 是直角三角形有两种情况:
①当∠BED=90°时,可得DE∥AC,根据平行于三角形一边的直线和其它两边(或其延长线)相交,所构成的三角形与原三角形相似可得,于是可得比例式将DE
用含t的代数式表示,再根据sinB=可得关于t的方程,解方程即可求解;
②当∠EDB=90°时,同理可求解;
(2)①当0<t≤3时,S▱CDEF=2S△CDE可得s与t的关系式;当3<t<8时,过D作DH⊥BC,垂足为H,根据平行于三角形一边的直线和其它两边(或其延长线)相交,所构成的三角形与原三角形相似可得,于是可得比例式将DH用含t的代数式表示,则S▱CDEF=2S△CDE可得s与t的关系式;当3<t<8时,同上;
②存在,当▱CDEF为菱形时,DH⊥CE,根据BH=BE+EH可得关于t的方程,解方程即可求解。

6.如图,在Rt△ABC中,∠C=90°,顶点A、C的坐标分别为(﹣1,2),(3,2),点B
在x轴上,点B的坐标为(3,0),抛物线y=﹣x2+bx+c经过A、C两点.
(1)求该抛物线所对应的函数关系式;
(2)点P是抛物线上的一点,当S△PAB= S△ABC时,求点P的坐标;
(3)若点N由点B出发,以每秒个单位的速度沿边BC、CA向点A移动,秒后,点M 也由点B出发,以每秒1个单位的速度沿线段BO向点O移动,当其中一个点到达终点时另一个点也停止移动,点N的移动时间为t秒,当MN⊥AB时,请直接写出t的值,不必写出解答过程.
【答案】(1)解:将点A(﹣1,2),C(3,2),代入抛物线y=﹣x2+bx+c中,
得,解得
∴抛物线y=﹣x2+2x+5.
(2)解:∵点A(-1,2),B(3,0),C(3,2),
∴BC⊥x轴,AC=4,BC=2,
∴,

设直线AB为y=mx+n,
将点A(-1,2),B(3,0),代入可得,解得,∴直线AB为y=

设点P(x,),过点P作PN⊥x轴,交直线AB于点M,则M(x,),
∴PM= ,

即,
∴或,解得,
则点P .
(3)解:当时,如图1,点N在BC的线段上,BN= ,BM= ,
∵MN⊥AB,∴,
又∵A(-1,2),B(3,0),C(3,2),
∴AC∥x轴,BC∥y轴,
∴∠ACB=90°,
∴,

又∵∠MBN=∠ACB=90°,
∴△BNM~△CAB,
∴,则,
解得t= .
当时,点N在线段AC上,如图2,MN与AB交于点D,BM= ,
由A(-1,2),B(3,0),得AB= ,设AD=a,则BD= ,
∵∠ADN=∠ACB=90°, ∠DAN=∠CAB,
∴△ADN~△ACB,
∴;
则 = ,则a=
∵∠BDM=∠ACB=90°, ∠DBM=∠CAB,
∴△BDM~△ACB,
∴ =


解得 .
综上, .
【解析】【分析】(1)将点A(﹣1,2),C(3,2),代入抛物线y=﹣x2+bx+c中,联立方程组解答即可求出b和c的值;(2)由A(-1,2),B(3,0),C(3,2)可求出直线AB 的解析式和,从而求出 .设PP(x,),过点P作PN⊥x
轴,交直线AB于点M,则M(x,),可得
代入求出P的横坐标x的值,再代入抛物线的解析式求出点P的纵坐标;(3)首先要明确时间t表示点N运动的时间,由点M,N的速度可求出它们当到达终点时的时间t,取其中的较小值为t所能取到的最大值;由点M只在线段OB上运动,点N在线段BC和线段AC上运动,则要分成两部分进行讨论,当点N在线段BC上时和当点N在线段AC上时,并分别求出相应时间t的取值范围;结合相似三角形的判定和性质得到相应边成比例,列方程解答即可.
7.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA ,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F , G.
(1)如图,点D在线段CB上,四边形ACDE是正方形.
①若点G为DE中点,求FG的长.
②若DG=GF,求BC的长.
(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.
【答案】(1)①在正方形ACDE中,有DG=GE=6
在Rt△AEG中,AG=
∵EG∥AC
∴△ACF∽△GEF
∴,


②如图1,在正方形ACDE中,AE=ED
∠AEF=∠DEF=45°,
又EF=EF,∴△AEF≌△DEF
∴∠1=∠2(设为x)
∵AE∥BC
∴∠b=∠1=x
∵GF=GD
∴∠3=∠2=x
在△dbf中,∠3+∠FDb+∠b=180°
∴x+(x+90°)+x=180°,解得x=30°
∴∠B=30°
∴在Rt△ABC中,BC=
(2)在Rt△ABC中,AB=
如图2,当点D在线段BC上时,此时只有GF=GD
∵DG∥AC
∴△BDG∽△BCA
设BD=3x,则DG=4x,BG=5x
∴GF=GD=4x,则AF=15-9x
∵AE∥CB,
∴△AEF∽△BCF

∴,即
解得x1=1,x2=5(舍去)
∴腰长G D=4x=4
如图3,当点D在线段BC的延长线上,且直线AB,CE的交点在AE上方时,此时只有GF=Dg,
设AE=3x,则E G=4x,A G=5x,
∴F G=DG=12+4x,
∵AE∥BC
∴△AEF∽△BCF

∴,即x2=4
解得x1=2,x2=-2(舍去)
∴腰长GD=4x+12=20
如图4,当点D在线段BC的延长线上,且直线AB,EC的交点在BD下方时,此时只有DF=DG,过点D作D H⊥FG。

设AE=3x,则EG=4x,AG=5x,DG=4x+12
∴FH=GH=DG·cos∠DGB=
∴GF=2G H= ,
∴AF=GF-AG=
∵AC∥DG
∴△ACF∽△GEF

∴,即7x2=288cos
解得x1= ,x2= (舍去)
∴腰长GD=4x+12=
如图5,当点D在线段Cb的延长线上时,此时只有DF=D g,过点D作D h⊥AG,
设AE=3x,则EG=4x,AG=5x,DG=4x-12
∴FH=GH=DG·cos∠DGB=
∴AF=AG−FG=
∵AC∥EG
∴△ACF∽△GEF

∴,即7x2=288
解得x1= ,x2= (舍去)
∴腰长GD=4x-12=
综上所述,等腰△DFG的腰长为4,20,,
【解析】【分析】(1)①此小题考查相似三角形的判定与性质;由正方形的性质可得AG//EG,则△ACF∽△GEF,即可得FG:AF=EG:AC=1:2,则只要由勾股定理求出AG即可;
②由正方形性的对称性,不难得出∠1=∠2,而由GF=GD可知∠3=∠2,在△BDF中,由三角形内角和为180度,不难求出∠b的度数,可知是一个特殊角的度数,从而求出BC即可;(2)因为BC=9,所以B是定点,动点是D,因为点D是直线BC上一点,随着点D 的位置的变化,E和F点的位置也跟着变化;需要分类计论点D在线段BC上,点D在BC 的延长线和点D在CB的延长线上,再逐个分析等腰三角形的存在性,根据相似三角形的性及三角函数分析解答即可.
8.已知,如图,矩形ABCD中,AD=2,AB=3,点E,F分别在边AB,BC上,且BF=FC,连接DE,EF,并以DE,EF为边作▱DEFG.
(1)求▱DEFG对角线DF的长;
(2)求▱DEFG周长的最小值;
(3)当▱DEFG为矩形时,连接BG,交EF,CD于点P,Q,求BP:QG的值.
【答案】(1)解:如图1所示:
连接DF,
∵四边形ABCD是矩形,
∠C=90°,AD=BC,AB=DC,
∵BF=FC,AD=2;∴FC=1,
∵AB=3;∴DC=3,
在Rt△DCF中,由勾股定理得,
∴DF=;
故▱DEFG对角线DF的长
(2)解:如图2所示:
作点F关直线AB的对称点M,连接DM交AB于点N,
连接NF,ME,点E在AB上是一个动点,
①当点E不与点N重合时点M、E、D可构成一个三角形,∴ME+DE>MD,
②当点E与点N重合时点M、E(N)、D在同一条直线上,∴ME+DE=MD
由①和②DE+EF的值最小时就是点E与点N重合时,
∵MB=BF,∴MB=1,
∴MC=3,
又∵DC=3,
∴△MCD是等腰直角三角形,
∴MD=,
∴NF+DF=MD=2 ,
∴l▱DEFG=2(NF+DF)=4
(3)解:①当AE=1,BE=2时,过点B作BH⊥EF,
如图3(甲)所示:
∵▱DEFG为矩形,
∴∠A=∠ABF=90°,
又∵BF=1,AD=2,
∴在△ADE和△BEF中有,

∴△ADE≌△BEF中(SAS),
∴DE=EF,
∴矩形DEFG是正方形;
在Rt△EBF中,由勾股定理得:
EF=,
∴BH ,
又∵△BEF~△FHB,
∴,
HF=,
在△BPH和△GPF中有:

∴△BPH∽△GPF(AA),

∴PF=,
又∵EP+PF=EF,
∴,
又∵AB∥BC,EF∥DG,
∴∠EBP=∠DQG,∠EPB=∠DGQ,
∴△EBP∽△DQG(AA),
∴ .
②当AE=2,BE=1时,过点G作GH⊥DC,如图3(乙)所示:
∵▱DEFG为矩形,
∴∠A=∠EBF=90°,
∵AD=AE=2,BE=BF=1,
∴在Rt△ADE和Rt△EFB中,由勾股定理得:∴ED=,
EF=,
∴∠ADE=45°,
又∵四边形DEFG是矩形,
∴EF=DG,∠EDG=90°,
∴DG=,∠HDG=45°,
∴△DHG是等腰直角三角形,
∴DH=HG=1,
在△HGQ和△BCQ中有,
∴△HGQ∽△BCQ(AA),
∴,
∵HC=HQ+CQ=2,
∴HQ=,
又∵DQ=DH+HQ,
∴DQ=1+ =,
∵AB∥DC,EF∥DG,
∴∠EBP=∠DQG,∠EPB=∠DGQ,
∴△EBP∽△DQG(AA),
∴,
综合所述,BP:QG的值为或 .
【解析】【分析】(1)▱DEFG对角线DF的长就是Rt△DCF的斜边的长,由勾股定理求解;(2)▱DEFG周长的最小值就是求邻边2(DE+EF)最小值,DE+EF的最小值就是以AB 为对称轴,作点F的对称点M,连接DM交AB于点N,点E与N点重合时即DE+EF=DM 时有最小值,在Rt△DMC中由勾股定理求DM的长;(3)▱DEFG为矩形时有两种情况,一是一般矩形,二是正方形,分类用全等三角形判定与性质,等腰直角三角形判定与性质,三角形相似的判定与性质和勾股定理求解.
二、圆的综合
9.如图,已知AB是⊙O的直径,点C,D在⊙O上,BC=6cm,AC=8cm,∠BAD=45°.点E在⊙O外,做直线AE,且∠EAC=∠D.
(1)求证:直线AE是⊙O的切线.
(2)求图中阴影部分的面积.
【答案】(1)见解析;(2) 25-50
4
π
.
【解析】
分析:(1)根据圆周角定理及推论证得∠BAE=90°,即可得到AE是⊙O的切线;(2)连接OD,用扇形ODA的面积减去△AOD的面积即可.
详解:证明:(1)∵AB是⊙O的直径,
∴∠ACB=90°,
即∠BAC+∠ABC=90°,
∵∠EAC=∠ADC,∠ADC=∠ABC,
∴∠EAC=∠ABC
∴∠BAC+∠EAC =90°,
即∠BAE= 90°
∴直线AE是⊙O的切线;
(2)连接OD
∵ BC=6 AC=8
∴22
6810
AB=+=
∴ OA = 5
又∵ OD = OA
∴∠ADO =∠BAD = 45°
∴∠AOD = 90°
∴AOD ODA S S S ∆-阴影扇形= =90155553602
π⨯⨯-⨯⨯ 25504
π-= (2cm )
点睛:此题主要考查了圆周角定理和圆的切线的判定与性质,关键是利用圆周角定理和切线的判定与性质,结合勾股定理的和弓形的面积的求法求解,注意数形结合思想的应用.
10.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。

(1)如图1,在平面直角坐标系中,已知点A 、B 的坐标分别为A (6,0)、B (0,2),点C (x ,y )在线段AB 上,计算(x+y )的最大值。

小明的想法是:这里有两个变量x 、y ,若最大值存在,设最大值为m ,则有函数关系式y=-x+m ,由一次函数的图像可知,当该直线与y 轴交点最高时,就是m 的最大值,(x+y )的最大值为 ;
(2)请你用(1)中小明的想法解决下面问题:
如图2,以(1)中的AB 为斜边在右上方作Rt △ABM.设点M 坐标为(x ,y ),求(x+y )的最大值是多少?
【答案】(1)6(2)5
【解析】
分析:(1)根据一次函数的性质即可得到结论;
(2)根据以AB 为斜边在右上方作Rt △ABC ,可知点C 在以AB 为直径的⊙D 上运动,根据点C 坐标为(x ,y ),可构造新的函数x +y =m ,则函数与y 轴交点最高处即为x +y 的最大值,此时,直线y =﹣x +m 与⊙D 相切,再根据圆心点D 的坐标,可得C 的坐标为(55y =﹣x +m ,可得m 5x +y 的最大值为
4+25.
详解:(1)6;
(2)由题可得,点C在以AB为直径的⊙D上运动,点C坐标为(x,y),可构造新的函数x+y=m,则函数与y轴交点最高处即为x+y的最大值,此时,直线y=﹣x+m与⊙D相切,交x轴与E,如图所示,连接OD,CD.
∵A(6,0)、B(0,2),∴D(3,1),∴OD=22
=10,∴CD=10.
13
根据CD⊥EF可得,C、D之间水平方向的距离为5,铅垂方向的距离为5,∴C
(3+5,1+5),代入直线y=﹣x+m,可得:1+5=﹣(3+5)+m,解得:
m=4+25,∴x+y的最大值为4+25.故答案为:4+25.
点睛:本题主要考查了切线的性质,待定系数法求一次函数解析式以及等腰直角三角形的性质的综合应用,解决问题的关键是构造一次函数图象,根据圆的切线垂直于经过切点的半径进行求解.
11.阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。

解决问题:如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.
(1)使∠APB=30°的点P有_______个;
(2)若点P在y轴正半轴上,且∠APB=30°,求满足条件的点P的坐标;
(3)设sin∠APB=m,若点P在y轴上移动时, 满足条件的点P有4个,求m的取值范围.
【答案】(1)无数;(2)(0,370,37
+3)0﹤m﹤2 3 .
【解析】
试题分析:(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.
(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标.
(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,由此即可求出m的范围.
试题解析:解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.
在优弧AP1B上任取一点P,如图1,则∠APB=1
2
∠ACB=1
2
×60°=30°,∴使∠APB=30°的点P
有无数个.
故答案为:无数.
(2)点P在y轴的正半轴上,过点C作CG⊥AB,垂足为G,如图1.
∵点A(1,0),点B(5,0),∴OA=1,OB=5,∴AB=4.
∵点C为圆心,CG⊥AB,∴AG=BG=1
2
AB=2,∴OG=OA+AG=3.
∵△ABC是等边三角形,∴AC=BC=AB=4,∴CG22
AC AG
-
=22
42
-
3∴点C的坐标为(3,3
过点C作CD⊥y轴,垂足为D,连接CP2,如图1.∵点C的坐标为(3,3
∴CD=3,OD3.
∵P1、P2是⊙C与y轴的交点,∴∠AP1B=∠AP2B=30°.
∵CP2=CA=4,CD=3,∴DP222
43
-7.
∵点C为圆心,CD⊥P1P2,∴P1D=P2D7∴P1(0,37),P2(0,3
7).
(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.
理由:可证:∠APB=∠AEH,当∠APB最大时,∠AEH最大.由sin∠AEH=
2
AE
得:当AE
最小即PE最小时,∠AEH最大.所以当圆与y轴相切时,∠APB最大.∵∠APB为锐角,∴sin∠APB随∠APB增大而增大,.
连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP.
∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°,∴四边形OPEH是矩形,∴OP=EH,
PE=OH=3,∴EA=3.sin∠APB=sin∠AEH=2
3
,∴m的取值范围是
2
3
m
<<.
点睛:本题考查了垂径定理、圆周角定理、勾股定理、等边三角形的性质、矩形的判定与性质,切线的性质、三角形外角性质等知识,综合性强.同时也考查了创造性思维,有一定的难度.构造辅助圆是解决本题关键.
12.如图,⊙O是△ABC的外接圆,AB是直径,过点O作OD⊥CB,垂足为点D,延长DO 交⊙O于点E,过点E作PE⊥AB,垂足为点P,作射线DP交CA的延长线于F点,连接EF,
(1)求证:OD=OP;(2)求证:FE是⊙O的切线.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(2)证明△POE≌△ADO可得DO=EO;
(3)连接AE,BE,证出△APE≌△AFE即可得出结论.
试题解析:(1)∵∠EPO=∠BDO=90°∠EOP=∠BOD
OE=OB
∴△OPE≌△ODB
∴OD="OP"
(2)连接EA,EB
∴∠1=∠EBC
∵AB是直径
∴∠AEB=∠C=90°
∴∠2+∠3=90°
∵∠3=∠DEB
∵∠BDE=90°
∴∠EBC+∠DEB=90°
∴∠2=∠EBC=∠1
∵∠C=90°∠BDE=90°
∴CF∥OE
∴∠ODP=∠AFP
∵OD=OP
∴∠ODP=∠OPD
∵∠OPD=∠APF
∴∠AFP=∠APF
∴AF=AP 又AE=AE
∴△APE≌△AFE
∴∠AFE=∠APE=90°
∴∠FED=90°
∴FE是⊙O的切线
考点:切线的判定.
13.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF 上,且∠DEC=∠BAC.
(1)求证:DE是⊙O的切线;
(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.
35.
【答案】(1)证明见解析;(2
【解析】
(1)先判断出BD 是圆O 的直径,再判断出BD ⊥DE ,即可得出结论;
(2)根据余角的性质和等腰三角形的性质得到∠F =∠EDF ,根据等腰三角形的判定得到DE =EF =3,根据勾股定理得到CD 225DE CE =-=,证明△CDE ∽△DBE ,根据相似三
角形的性质即可得到结论.
【详解】
(1)如图,连接BD .
∵∠BAD =90°,∴点O 必在BD 上,即:BD 是直径,∴∠BCD =90°,∴∠DEC +∠CDE =90°. ∵∠DEC =∠BAC ,∴∠BAC +∠CDE =90°.
∵∠BAC =∠BDC ,∴∠BDC +∠CDE =90°,∴∠BDE =90°,即:BD ⊥DE .
∵点D 在⊙O 上,∴DE 是⊙O 的切线;
(2)∵∠BAF =∠BDE =90°,∴∠F +∠ABC =∠FDE +∠ADB =90°.
∵AB =AC ,∴∠ABC =∠ACB .
∵∠ADB =∠ACB ,∴∠F =∠FDE ,∴DE =EF =3.
∵CE =2,∠BCD =90°,∴∠DCE =90°,∴CD 225DE CE =-=.
∵∠BDE =90°,CD ⊥BE ,∴∠DCE =∠BDE =90°.
∵∠DEC =∠BED ,∴△CDE ∽△DBE ,∴
CD BD CE DE =,∴BD 5335⨯==,∴⊙O 的半径354
=.
【点睛】
本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定,勾股定理,求出DE =EF 是解答本题的关键.
14.已知四边形ABCD 是⊙O 的内接四边形,∠DAB =120°,BC =CD ,AD =4,AC =7,求
【答案】AB =3.
【解析】
【分析】 作DE ⊥AC ,BF ⊥AC ,根据弦、弧、圆周角、圆心角的关系,求得BC CD =u u u r u u u r ,进而得到∠DAC =∠CAB =60°,在Rt △ADE 中,根据60°锐角三角函数值,可求得DE =23,AE =2,再由Rt △DEC 中,根据勾股定理求出DC 的长,在△BFC 和△ABF 中,利用60°角的锐角三角函数值及勾股定理求出AF 的长,然后根据求出的两个结果,由AB =2AF ,分类讨论求出AB 的长即可.
【详解】
作DE ⊥AC ,BF ⊥AC ,
∵BC =CD ,
∴BC CD =u u u r u u u r ,
∴∠CAB =∠DAC ,
∵∠DAB =120°,
∴∠DAC =∠CAB =60°,
∵DE ⊥AC ,
∴∠DEA =∠DEC =90°,
∴sin60°=4DE ,cos60°=4AE , ∴DE =3AE =2,
∵AC =7,
∴CE =5,
∴DC ()2223537+=
∴BC 37,
∵BF ⊥AC ,
∴∠BFA =∠BFC =90°,
∴tan60°=BF AF ,BF 2+CF 2=BC 2, ∴BF =3AF ,
∴()()()22
23737AF +-=, ∴AF =2或AF =
32, ∵cos60°=AF AB
, ∴AB =2AF ,
当AF =2时,AB =2AF =4,
∴AB =AD ,
∵DC =BC ,AC =AC ,
∴△ADC ≌△ABC (SSS ),
∴∠ADC =∠ABC ,
∵ABCD 是圆内接四边形,
∴∠ADC+∠ABC =180°,
∴∠ADC =∠ABC =90°,
但AC 2=49,()222243753AD DC +=+
=,
AC 2≠AD 2+DC 2,
∴AB =4(不合题意,舍去), 当AF =
32
时,AB =2AF =3, ∴AB =3.
【点睛】 此题主要考查了圆的相关性质和直角三角形的性质,解题关键是构造直角三角形模型,利用直角三角形的性质解题.
15.如图,AB 是O e 的直径,弦CD AB ⊥于点E ,过点C 的切线交AB 的延长线于点F ,连接DF .
(1)求证:DF 是O e 的切线;
(2)连接BC ,若30BCF ∠=︒,2BF =,求CD 的长.
【答案】(1)见解析;(2)【解析】
【分析】(1) 连接OD,由垂径定理证OF 为CD 的垂直平分线,得CF=DF ,∠CDF=∠DCF ,由∠CDO=∠OCD ,再证∠CDO +∠CDB=∠OCD+∠DCF=90°,可得OD ⊥DF ,结论成立.
(2) 由∠OCF=90°, ∠BCF=30°,得∠OCB=60°,再证ΔOCB 为等边三角形,得∠COB=60°,可得∠CFO=30°,所以FO=2OC=2OB ,FB=OB= OC =2,在直角三角形OCE 中,解直角三角形可得CE,再推出CD=2CE.
【详解】(1)证明:连接OD
∵CF 是⊙O 的切线
∴∠OCF=90°
∴∠OCD+∠DCF=90°
∵直径AB ⊥弦CD
∴CE=ED ,即OF 为CD 的垂直平分线
∴CF=DF
∴∠CDF=∠DCF
∵OC=OD ,
∴∠CDO=∠OCD
∴∠CDO +∠CDB=∠OCD+∠DCF=90°
∴OD ⊥DF
∴DF 是⊙O 的切线
(2)解:连接OD
∵∠OCF=90°, ∠BCF=30°
∴∠OCB=60°
∵OC=OB
∴ΔOCB 为等边三角形,
∴∠COB=60°
∴∠CFO=30°
∴FO=2OC=2OB
∴FB=OB= OC =2
在直角三角形OCE 中,∠CEO=90°∠COE=60°
CE sin COE OC 2
∠=
= ∴CF =
∴CD=2 CF =
【点睛】本题考核知识点:垂径定理,切线,解直角三角形. 解题关键点:熟记切线的判定定理,灵活运用含有30°角的直角三角形性质,巧解直角三角形.
16.在△ABC 中,0090,60ACB BAC ∠=∠=,AC=2,P 为△ABC 所在平面内一点,分别连PA,PB ,PC .
(1)如图1,已知,APB BPC APC ∠=∠=∠,以A 为旋转中心,将APB ∆顺时针旋转60度,得到AMN ∆.
①请画出图形,并求证:C 、P 、M 、N 四点在同一条直线上;
②求PA+PB+PC 的值.
(2)如图2,如果点P 满足090BPC ∠=,设Q 为AB 边中点,求PQ 的取值范围.
【答案】(1)①详见解析;②7;(231312PQ PQ ≤≤≠且;
【解析】
【分析】
(1)①欲证明C 、P 、M 、N 四点在同一条直线上,只要证明∠APC+∠APM=180°,∠AMN+∠AMP=180°即可;
②只要证明PA+PB+PC=PC+PM+MN=CN ,在Rt △CBN 中,利用勾股定理求出NC 即可;
(2)如图2中,由∠BPC=90°,推出点P在以BC为直径的圆上(P不与B、C重合),设BC的中点为O,作直线OQ交⊙O与P和P′,可得PQ的最小值为3-1,PQ的最大值为3+1,PQ≠2,由此即可解决问题;
【详解】
(1)①证明:如图,
∵△APB≌△AMN,△APM是等边三角形,
∴∠APM=∠APM=60°,
∵∠APB=∠BPC=∠APC=120°,
∴∠APB=∠BPC=∠APC=∠AMN=120°,
∴∠APC+∠APM=180°,∠AMN+∠AMP=180°,
∴C、P、M、N四点在同一条直线上;
②解:连接BN,易得ΔABN是等边三角形
∴∠ABN=60°,∵∠ABC=30°,
∴∠NBC=90°,
∵AC=2,
∴AB=BN=4,BC=23,
∵PA=PM,PB=MN,
∴PA+PB+PC=PC+PM+MN=CN,
在Rt△CBN中,CN=22
+=,
BC BN27
∴PA+PB+PC=27.
(2) 如图2中,
∵∠BPC=90°,
∴点P在以BC为直径的圆上(P不与B、C重合),
设BC的中点为O,作直线OQ交⊙O与P和P′,
可得PQ-1,PQ+1,PQ≠2,

+1且PQ≠2.

∴≤≤≠
PQ1PQ1PQ2
【点睛】
本题考查几何变换综合题、等边三角形的性质和判定、全等三角形的性质、勾股定理、圆的有关知识等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用辅助圆解决问题,属于中考压轴题.。

相关文档
最新文档