九年级上册江门数学期末试卷中考真题汇编[解析版]

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册江门数学期末试卷中考真题汇编[解析版] 一、选择题 1.下列方程中,是关于x 的一元二次方程的为( ) A .2210x x += B .220x x --= C .2320x xy -= D .240y -=
2.sin 30°的值为( )
A .3
B .3
C .12
D .2 3.若x=2y ,则
x y 的值为( ) A .2 B .1 C .12 D .13
4.方程(1)(2)0x x --=的解是( )
A .1x =
B .2x =
C .1x =或2x =
D .1x =-或2x =-
5.sin30°的值是( )
A .12
B .22
C .32
D .1
6.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1 B .m≤1 C .m >1 D .m <1
7.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为( ) A .19 B .13 C .12 D .23
8.抛物线2(1)2y x =-+的顶点坐标是( )
A .(﹣1,2)
B .(﹣1,﹣2)
C .(1,﹣2)
D .(1,2)
9.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值3
10.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )
A .(203,103)
B .(16345)
C .(20345)
D .(163,3 11.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校
100所数据120 000 000用科学记数法表示为( )
A .12×108
B .1.2×108
C .1.2×109
D .0.12×109
12.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )
A .12a -
B .1(1)2a -+
C .1(1)2a --
D .1(3)2
a -+ 二、填空题
13.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________.
14.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.
15.如图,△ABC 周长为20cm ,BC=6cm,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,则△AMN 的周长为________cm.
16.若a 是方程223x x =+的一个根,则代数式263a a -的值是______.
17.某同学想要计算一组数据105,103,94,92,109,85的方差20S ,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为21S ,则20S ______21S (填“>”、“=”或“<”).
18.数据2,3,5,5,4的众数是____.
19.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35
,则袋中共有小球_____只. 20.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.
21.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶的高度为________m.
22.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8米,母线AB=10米,则该圆锥的侧面积是_____平方米(结果保留π).
23.已知点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,其中k≠0,若y1>y2,则x1的取值范围为_____.
24.如图,C、D是线段AB的两个黄金分割点,且CD=1,则线段AB的长为_____.
三、解答题
25.2019年12月17日,我国第一艘国产航母“山东舰”在海南三亚交付海军.如图,“山东舰”在一次试水测试中,航行至M处,观测指挥塔P位于南偏西30方向,在沿正南方向以30海里/小时的速度匀速航行2小时后,到达N处,再观测指挥塔P位于南偏西45 方向,若继续向南航行.求“山东舰”与指挥塔之间的最近距离为多少海里?(结果保留根号)
26.某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG∶BG=3∶2.设BG的长为2x米.
(1)用含x的代数式表示DF=;
(2)x为何值时,区域③的面积为180平方米;
(3)x 为何值时,区域③的面积最大?最大面积是多少?
27.如图①抛物线y =ax 2+bx +4(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.
(1)试求抛物线的解析式;
(2)点D (3,m )在第一象限的抛物线上,连接BC ,BD .试问,在对称轴左侧的抛物线上是否存在一点P ,满足∠PBC =∠DBC ?如果存在,请求出点P 点的坐标;如果不存在,请说明理由;
(3)点N 在抛物线的对称轴上,点M 在抛物线上,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,请直接写出点M 的坐标.
28.如图,在平面直角坐标系中,一次函数13y x =-的图像与x 轴交于点A .二次函数22y x bx c =-++的图像经过点A ,与y 轴交于点C ,与一次函数13y x =-的图像交于另一点()2,B m -.
(1)求二次函数的表达式;
(2)当12y y >时,直接写出x 的取值范围;
(3)平移AOC ∆,使点A 的对应点D 落在二次函数第四象限的图像上,点C 的对应点E 落在直线AB 上,求此时点D 的坐标.
29.某商场销售一批衬衫,每件成本为50元,如果按每件60元出售,可销售800件;如果每件提价5元出售,其销售量就减少100件,如果商场销售这批衬衫要获利润12000元,又使顾客获得更多的优惠,那么这种衬衫售价应定为多少元?
(1)设提价了x 元,则这种衬衫的售价为___________元,销售量为____________件. (2)列方程完成本题的解答.
30.如图,⊙O 的直径为AB ,点C 在⊙O 上,点D ,E 分别在AB ,AC 的延长线上,DE ⊥AE ,垂足为E ,∠A =∠CDE .
(1)求证:CD 是⊙O 的切线;
(2)若AB =4,BD =3,求CD 的长.
31.在2017年“KFC ”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)
32.数学概念
若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念
(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 .
(2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足
180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)
①如图①,DB DC =
②如图②,BC BD =
深入思考
(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)
(4)下列关于“等角点”、“强等角点”的说法:
①直角三角形的内心是它的等角点;
②等腰三角形的内心和外心都是它的等角点;
③正三角形的中心是它的强等角点;
④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;
⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax 2+bx +c =0(a ≠0)的形式,则这个方程就为一元二次方程.
【详解】
解:A.22
10x x +=,是分式方程, B.220x x --=,正确,
C.2320x xy -=,是二元二次方程,
D.240y -=,是关于y 的一元二次方程,
故选B
【点睛】
此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数; ②只含有一个未知数; ③未知数的最高次数是2.
2.C
解析:C
【解析】
【分析】
直接利用特殊角的三角函数值求出答案.
【详解】
解:sin 30°=
12
故选C
此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.
3.A
解析:A
【解析】
【分析】
将x=2y 代入
x y 中化简后即可得到答案. 【详解】
将x=2y 代入
x y
得: 22x y y y ==, 故选:A.
【点睛】
此题考查代数式代入求值,正确计算即可. 4.C
解析:C
【解析】
【分析】
方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案.
【详解】
解:∵(1)(2)0x x --=,
∴x -1=0或x -2=0,
解得:1x =或2x =.
故选:C.
【点睛】
本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键.
5.A
解析:A
【解析】
【分析】
根据特殊角的三角函数值计算即可.
【详解】
解:sin30°=
12
. 故选:A .
【点睛】
本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.
解析:D
【解析】
分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.
详解:∵方程2x 2x m 0-+=有两个不相同的实数根,
∴()2
240m =-->,
解得:m <1.
故选D .
点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 7.B
解析:B
【解析】
【分析】
让白球的个数除以球的总数即为摸到白球的概率.
【详解】
解:6个黑球3个白球一共有9个球,所以摸到白球的概率是
3193
=. 故选:B .
【点睛】
本题考查了概率,熟练掌握概率公式是解题的关键. 8.D
解析:D
【解析】
【分析】
根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.
【详解】
∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),
∴抛物线2(1)2y x =-+的顶点坐标是(1,2).
故选D .
9.A
解析:A
【解析】
【分析】
把点(-1,-3)代入y =x 2+mx +n 得n=-4+m ,再代入mn +1进行配方即可.
【详解】
∵二次函数y=x2+mx+n的图像经过点(-1,-3),
∴-3=1-m+n,
∴n=-4+m,
代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.
∴代数式mn+1有最小值-3.
故选A.
【点睛】
本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.
10.C
解析:C
【解析】
【分析】
利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.
【详解】
解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,
∵A的坐标为(2,5),∴AE=5,OE=2.
由等腰三角形底边上的三线合一得OB=2OE=4,
在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,
由旋转前后三角形面积相等得OB AE A'B O'F
22
⋅⋅
=,即453O'F
2
⋅⋅
=,
∴O′F=45
3

在Rt△O′FB中,由勾股定理可求BF=
2
2
458
4
33
⎛⎫
-=


⎝⎭
,∴OF=
820
4
33
+=.
∴O′的坐标为(2045
,
3
).
故选C.
【点睛】
本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.11.B
解析:B
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
120 000 000=1.2×108,
故选:B.
【点睛】
此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
12.D
解析:D
【解析】
【分析】
设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.
【详解】
设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为
a+1,
∵△ABC放大到原来的2倍得到△A′B′C,
∴2(﹣1﹣x)=a+1,
解得x=﹣1
2
(a+3),
故选:D.
【点睛】
本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.
二、填空题
13.5
【解析】
【分析】
根据根与系数的关系求出,代入即可求解.
【详解】
∵是方程的两根
∴=-=4,==1
∴===4+1=5,
故答案为:5.
【点睛】
此题主要考查根与系数的关系,解题的关键是
解析:5
【解析】
【分析】
根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.
【详解】
∵12,x x 是方程2410x x -+=的两根
∴12x x +=-b a =4,12x x ⋅=c a
=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,
故答案为:5.
【点睛】
此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a
的运用. 14.3
【解析】
【分析】
根据圆周角定理可求出∠AOB 的度数,设扇形半径为x ,从而列出关于x 的方程,求出答案.
【详解】
由题意可知:∠AOB=2∠ACB=2×40°=80°,
设扇形半径为x ,
故阴
解析:3
【解析】
【分析】
根据圆周角定理可求出∠AOB 的度数,设扇形半径为x ,从而列出关于x 的方程,求出答案.
【详解】
由题意可知:∠AOB =2∠ACB =2×40°=80°,
设扇形半径为x ,
故阴影部分的面积为πx 2×80360
=29×πx 2=2π,
故解得:x1=3,x2=-3(不合题意,舍去),
故答案为3.
【点睛】
本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.
15.8
【解析】
【分析】
先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.
【详解】
解:∵圆O是△ABC的内切圆,MN是圆O的切线
解析:8
【解析】
【分析】
先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.
【详解】
解:∵圆O是△ABC的内切圆,MN是圆O的切线,
如下图,连接各切点,有切线长定理易得,
BE=BF,CE=CG,ME=MH,NG=NH,
∵△ABC周长为20cm, BC=6cm,
∴BC=CE+BE=CG+BF=6cm,
∴△AMN的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,
又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm
故答案是8
【点睛】
本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.
16.9
【解析】
【分析】
根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.
【详解】
解:∵a 是方程的一个根,
∴2a2=a+3,
∴2a2-a=3,
∴.
故答案为:9
解析:9
【解析】
【分析】
根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.
【详解】
解:∵a 是方程223x x =+的一个根,
∴2a 2=a+3,
∴2a 2-a=3,
∴()
2263=32339a a a a --=⨯=.
故答案为:9.
【点睛】
本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键. 17.=
【解析】
【分析】
根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.
【详解】
解:∵一组数据中的每一个数据都加上或减去同一个非零常数
解析:=
【解析】
【分析】
根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.
【详解】
解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,
∴2201S S =
故答案为:=.
【点睛】
本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.
18.5
【解析】
【分析】
由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.
【详解】
解:∵5是这组数据中出现次数最多的数据,
∴这组数据的众数为5.
故答案
解析:5
【解析】
【分析】
由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.
【详解】
解:∵5是这组数据中出现次数最多的数据,
∴这组数据的众数为5.
故答案为:5.
【点睛】
本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.
19.【解析】
【分析】
直接利用概率公式计算.
【详解】
解:设袋中共有小球只,
根据题意得,解得x=10,
经检验,x=10是原方程的解,
所以袋中共有小球10只.
故答案为10.
【点睛】
此题主
解析:【解析】
【分析】
直接利用概率公式计算.【详解】
解:设袋中共有小球只,
根据题意得63
5
x
=,解得x=10,
经检验,x=10是原方程的解,
所以袋中共有小球10只.
故答案为10.
【点睛】
此题主要考查概率公式,解题的关键是熟知概率公式的运用.
20.【解析】
【分析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红
解析:5 8
【解析】
【分析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5
个,从中随机摸出一个,则摸到红球的概率是
55 538
= +
故答案为: 5
8

【点睛】
本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件
A出现m种结果,那么事件A的概率P(A)=m
n

21.5 【解析】【分析】
根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.
【详解】
解:设举起手臂之后的身高为x
由题可得:1.7:0.85=x:1.1,解得x=2.2,
解析:5
【解析】
【分析】
根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.
【详解】
解:设举起手臂之后的身高为x
由题可得:1.7:0.85=x:1.1,解得x=2.2,
则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m
【点睛】
本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.
22.【解析】
【分析】
根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=lr,求得答案即可.
【详解】
解:∵AO=8米,AB=10米,
∴OB=6米,
∴圆锥的
解析:60
【解析】
【分析】
根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方
法S=1
2
lr,求得答案即可.
【详解】
解:∵AO=8米,AB=10米,
∴OB=6米,
∴圆锥的底面周长=2×π×6=12π米,
∴S扇形=1
2
lr=
1
2
×12π×10=60π米2,
故答案为60π.【点睛】
本题考查圆锥的侧面积,掌握扇形面积的计算方法S=1
2
lr是解题的关键.
23.x1>2或x1<0.
【解析】
【分析】
将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后
y1>y2,列出关于x1的不等式即可求出结论.
【详解】
解:y=(x+k)(x﹣k﹣2
解析:x1>2或x1<0.
【解析】
【分析】
将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.
【详解】
解:y=(x+k)(x﹣k﹣2)
=(x﹣1)2﹣1﹣2k﹣k2,
∵点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,
∴y1=(x1﹣1)2﹣1﹣2k﹣k2,
y2=﹣2k﹣k2,
∵y1>y2,
∴(x1﹣1)2﹣1﹣2k﹣k2>﹣2k﹣k2,
∴(x1﹣1)2>1,
∴x1>2或x1<0.
故答案为:x1>2或x1<0.
【点睛】
此题考查的是比较二次函数上两点之间的坐标大小关系,掌握二次函数的顶点式和根据函数值的取值范围求自变量的取值范围是解决此题的关键.
24.2+
【解析】
【分析】
设线段AB=x,根据黄金分割点的定义可知AD=AB,BC=AB,再根据CD=AB﹣AD﹣BC可列关于x的方程,解方程即可
【详解】
∵线段AB=x,点C、D是AB黄金分割点
解析:
【解析】
【分析】
设线段AB =x ,根据黄金分割点的定义可知AD 35AB ,BC 35AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可
【详解】
∵线段AB =x ,点C 、D 是AB 黄金分割点,
∴较小线段AD =BC x ,
则CD =AB ﹣AD ﹣BC =x ﹣x =1,
解得:x =
故答案为:【点睛】 本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的35倍.
三、解答题
25.30
【解析】
【分析】
过P 作PH ⊥MN 于H ,构建直角三角形,设PH=x 海里,分别在两个直角三角形△PHN 和△PHM 中利用正切函数表示出NH 长和MH 长,列方程求解.
【详解】
过P 作PH ⊥MN ,垂足为H ,设PH=x 海里,
在Rt △PHN ,tan ∠PNH=
PH NH , ∴tan45°=
PH NH , ∴NH=tan 45x x ,
在Rt △PHM 中,tan ∠PMH=
PH MH , ∴tan30°=
PH MH , ∴MH=3tan 30
x
x ,
∵MN=30×2=60海里,
∴360
x x
-=,
∴30330
x .
答:“山东舰”与指挥塔之间的最近距离为30330海里.
【点睛】
本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,找准线段之间的关系,利用锐角三角函数进行解答.
26.(1)48-12x;(2)x为1或3;(3)x为2时,区域③的面积最大,为240平方米【解析】
【分析】
(1)将DF、EC以外的线段用x表示出来,再用96减去所有线段的长再除以2可得DF的长度;
(2)将区域③图形的面积用关于x的代数式表示出来,并令其值为180,求出方程的解即可;
(3)令区域③的面积为S,得出x关于S的表达式,得到关于S的二次函数,求出二次函数在x取值范围内的最大值即可.
【详解】
(1)48-12x
(2)根据题意,得5x(48-12x)=180,
解得x1=1,x2=3
答:x为1或3时,区域③的面积为180平方米
(3)设区域③的面积为S,则S=5x(48-12x)=-60x2+240x=-60(x-2)2+240
∵-60<0,∴当x=2时,S有最大值,最大值为240
答:x为2时,区域③的面积最大,为240平方米
【点睛】
本题考查了二次函数的实际应用,解题的关键是正确理解题中的等量关系,正确得出区域面积的表达式.
27.(1)y=﹣x2+3x+4;(2)存在.P(﹣3
4

19
16
).(3)
1
539
(,)
24
M--
2
1139 (,) 24
M-
3
521 (,) 24
M
【解析】
【分析】
(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;
(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,
(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】
解:如图:
(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.

40
16440
a b
a b
-+=


++=

解得
1
3
a
b
=-


=

∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:
y=﹣x2+3x+4=﹣(x﹣3
2
)2+
25
4

∵点D(3,m)在第一象限的抛物线上,
∴m=4,∴D(3,4),∵C(0,4)
∵OC=OB,∴∠OBC=∠OCB=45°.
连接CD,∴CD∥x轴,
∴∠DCB=∠OBC=45°,
∴∠DCB=∠OCB,
在y轴上取点G,使CG=CD=3,
再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)
∴∠DBC=∠GBC.
设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得
k=﹣1
4
,b=1,
∴BP解析式为y BP=﹣1
4
x+1.
y BP=﹣1
4
x+1,y=﹣x2+3x+4
当y=y BP时,﹣1
4
x+1=﹣x2+3x+4,
解得x1=﹣3
4
,x2=4(舍去),
∴y=19
16
,∴P(﹣
3
4

19
16
).
(3)
1
539 (,)
24
M--
2
1139 (,) 24
M-
3
521 (,) 24
M理由如下,如图
B(4,0),C(0,4) ,抛物线对称轴为直线
3
2
x=,
设N(3
2
,n),M(m, ﹣m2+3m+4)
第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,
∴4-3
2
=0-m,∴m=
5
2
-
∴﹣m2+3m+4=
39 4 -,

1
539 (,)
24
M--;
或∴0-3
2
=4-m,
∴m=11 2
∴﹣m2+3m+4=
39 4 -,

2
1139 (,) 24
M-;
第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),
∴3
22 2
m
∴m=5 2
∴﹣m 2+3m+4=214 ∴3521(,)24
M 综上所述,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,点M 的坐标为
1539(,)24M -- 21139(,)24M - 3521(,)24
M .
【点睛】
本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.
28.(1)2y x 2x 3=-++;(2)2x <-或3x >;(3)()4,5D -.
【解析】
【分析】
(1)先求出A,B 的坐标,再代入二次函数即可求解;
(2)根据函数图像即可求解;
(3)先求出C 点坐标,再根据平移的性质得到3EF FD ==,设点(),3E a a -,则()3,6D a a +-,把D 点代入二次函数即可求解.
【详解】
解:(1)令0y =,得3x =,∴()3,0A .把()2,B m -代入3y x =-,解得()2,5B --. 把()3,0A ,()2,5B --代入2
y x bx c =-++, 得093542b c b c =-++⎧⎨-=--+⎩,∴23b c =⎧⎨=⎩
, ∴二次函数的表达式为2y x 2x 3=-++.
(2)由图像可知,当12y y >时,2x <-或3x >.
(3)令0x =,则3y =,∴()0,3C .
∵平移,∴AOC DFE ∆≅∆,∴3EF FD ==.
设点(),3E a a -,则()3,6D a a +-,
∴()()2
63233a a a -=-++++,∴11a =,26a =-(舍去). ∴()4,5D -.
【点睛】
此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法的运用.
29.(1)(60x)+,(80020)x -;(2)(60+x−50)(800−20x )=12000,70,见解析
【解析】
【分析】
(1)根据销售价等于原售价加上提价,销售量等于原销售量减去减少量即可;
(2)根据销售利润等于单件的利润乘以销售量即可解答.
【详解】
(1)设这种衬衫应提价x 元,则这种衬衫的销售价为(60+x )元,
销售量为(800−
1005
x )=(800−20x )件. 故答案为(60+x );(800−20x ).
(2)根据(1)得:
(60+x−50)(800−20x )=12000
整理,得x 2−30x +200=0
解得:x 1=10,x 2=20.
为使顾客获得更多的优惠,
所以x =10,60+x =70. 答:这种衬衫应提价10元,则这种衬衫的销售价为70元.
【点睛】
本题考查了一元二次方程的应用,解决本题的关键是掌握销售问题的关系式.
30.(1)见解析;(2【解析】
【分析】
(1)连接OC ,根据三角形的内角和得到90EDC ECD ∠+∠︒=,根据等腰三角形的性质得到A ACO ∠∠=,得到90OCD ∠︒=,于是得到结论;
(2)根据已知条件得到1=
22
OC OB AB ==,根据勾股定理即可得到结论. 【详解】
(1)证明:连接OC ,
∵DE AE ⊥,
∴90E ∠︒=,
∴90EDC ECD ∠+∠︒=,
∵A CDE ∠∠=,
∴90A DCE ∠+∠︒=,
∵OC OA =,
∴A ACO ∠∠=,
∴90ACO DCE ∠+∠︒=,
∴90OCD ∠︒=,
∴OC CD ⊥
∵点C 在
O 上, ∴CD 是O 的切线
(2)解:∵43AB BD =,= ,
∴1=
22
OC OB AB ==, ∴235OD +==, ∴ 2221CD OD OC =-=
【点睛】
本题主要考查切线的判定以及圆和勾股定理,根据题意准确作出辅助线是求解本题的关键. 31.14
【解析】
【分析】
根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.
【详解】
根据题意画出树状图如下:
一共有4种情况,确保两局胜的有1种,所以,P =
14
. 考点:列表法与树状图法.
32.(1)100、130或160;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤
【解析】
【分析】
(1)根据“等角点”的定义,分类讨论即可;
(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;
②弧和弦的关系和圆的内接四边形的性质即可得出结论;
(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;
(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.
【详解】
(1)(i )若APB ∠=BPC ∠时,
∴BPC ∠=APB ∠=100°
(ii )若BPC CPA ∠=∠时, ∴12
BPC CPA ∠=∠=
(360°-APB ∠)=130°; (iii )若APB ∠=CPA ∠时,
BPC ∠=360°-APB ∠-CPA ∠=160°, 综上所述:BPC ∠=100°、130°或160°
故答案为:100、130或160.
(2)选择①:
连接,PB PC
∵DB DC =
∴=DB DC
∴BPD CPD ∠=∠
∵180APB BPD ∠+∠=,180APC CPD ∠+∠=
∴APB APC ∠=∠
∴P 是ABC ∆的等角点.
选择②
连接,PB PC
∵BC BD =
∴BC BD =
∴BDC BPD ∠=∠
∵四边形PBDC 是圆O 的内接四边形,
∴180BDC BPC ∠+∠=
∵180BPD APB ∠+∠=
∴BPC APB ∠=∠
∴P 是ABC ∆的等角点
(3)作BC的中垂线MN,以C为圆心,BC的长为半径作弧交MN与点D,连接BD,根据垂直平分线的性质和作图方法可得:BD=CD=BC
∴△BCD为等边三角形
∴∠BDC=∠BCD=∠DBC=60°
作CD的垂直平分线交MN于点O
以O为圆心OB为半径作圆,交AD于点Q,圆O即为△BCD的外接圆
∴∠BQC=180°-∠BDC=120°
∵BD=CD
∴∠BQD=∠CQD
∴∠BQA=∠CQA=1
2
(360°-∠BQC)=120°
∴∠BQA=∠CQA=∠BQC
如图③,点Q即为所求.
(4)③⑤.
①如下图所示,在RtABC中,∠ABC=90°,O为△ABC的内心
假设∠BAC=60°,∠ACB=30°
∵点O是△ABC的内心
∴∠BAO=∠CAO=1
2
∠BAC=30°,∠ABO=∠CBO=
1
2
∠ABC=45°,
∠ACO=∠BCO=1
2
∠ACB=15°
∴∠AOC=180°-∠CAO-∠ACO=135°,∠AOB=180°-∠BAO-∠ABO=105°,∠BOC=180°-∠CBO-∠BCO=120°
显然∠AOC ≠∠AOB ≠∠BOC ,故①错误;
②对于钝角等腰三角形,它的外心在三角形的外部,不符合等角点的定义,故②错误; ③正三角形的每个中心角都为:360°÷3=120°,满足强等角点的定义,所以正三角形的中心是它的强等角点,故③正确;
④由(3)可知,点Q 为△ABC 的强等角,但Q 不在BC 的中垂线上,故QB ≠QC ,故④错误;
⑤由(3)可知,当ABC ∆的三个内角都小于120时,ABC ∆必存在强等角点Q . 如图④,在三个内角都小于120的ABC ∆内任取一点'Q ,连接'Q A 、'
Q B 、'Q C ,将'Q AC ∆绕点A 逆时针旋转60到MAD ∆,连接'Q M ,
∵由旋转得'Q A MA =,'Q C MD =,'
60Q AM ∠=
∴'AQ M ∆是等边三角形.
∴''Q M Q A =
∴'''''Q A Q B Q C Q M Q B MD ++=++
∵B 、D 是定点,
∴当B 、'Q 、M 、D 四点共线时,''Q M Q B MD ++最小,即'''Q A Q B Q C ++最小.
而当'Q 为ABC ∆的强等角点时,'''120AQ B BQ C CQ A AMD ∠=∠=∠==∠, 此时便能保证B 、'Q 、M 、D 四点共线,进而使'''
Q A Q B Q C ++最小.
故答案为:③⑤.
【点睛】
此题考查的是新定义类问题、圆的基本性质、圆周角定理、圆的内接多边形综合大题,掌握“等角点”和“强等角点”的定义、圆的基本性质、圆周角定理、圆的内接多边形中心角公式和分类讨论的数学思想是解决此题的关键.。

相关文档
最新文档