河北省2020年七年级月考数学试题

合集下载

河北省石家庄石家庄外国语教育集团2019-2020学年第一学期七年级上10月份月考数学试卷含解析

河北省石家庄石家庄外国语教育集团2019-2020学年第一学期七年级上10月份月考数学试卷含解析

河北省石家庄石家庄外国语教育集团2019-2020学年第一学期七年级上10月份月考数学试卷含解析一、选择题(每题2,分共20分)1.下列温度是由﹣3℃上升5℃的是()A.2℃B.﹣2℃C.8℃D.﹣8℃2.有四包合盐,每包以标准克数(400克)为基准,超过的克数记作正数,不足的克数记负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A.+6 B.﹣7 C.﹣14 D.+183.若()﹣(﹣2)=3,则括号内的数是()A.﹣5 B.﹣1 C.1 D.54.下列语句正确的是()A.“+15米”表示向东走15米B.0℃表示没有温度C.﹣a可以表示正数D.0既是正数也是负数5.|a﹣2|+|b+1|=0,则(a+b)2等于()A.﹣1 B.1 C.0 D.﹣26.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④7.下列语句正确的是()A.1是最小的自然数B.平方等于它本身的数只有1C.绝对值等于它的相反数的数是非正数D.倒数等于它本身的数只有18.一根绳子的长为1m,第1次剪去一半,第2次剪去剩下的半,如此剪下去,第5次后剩下的绳子长度为()A.B.C.D.9.如果a、b互为相反数c、d互为倒数,m的绝对值是2,那么a+m+b﹣cd的值()A.1 B.﹣3 C.1或﹣2 D.1或﹣310.如图,下列式子成立的是()A.a﹣b>0 B.a+b<0 C.0<﹣a<b D.a<﹣b<0二、填空题(每题2分共12分)11.较大小:﹣﹣;﹣8 |﹣8|(填“<”“=”或“>”).12.把下列各数分别填入相应的集合里.﹣4,﹣|﹣|,0,,﹣3.14,2006,﹣(+5),+1.88(1)负数集合:{ };(2)非负整数集合:{ }.13.小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a﹣2b.小明计算出2*5=3×2﹣2×5=﹣4,请你帮小刚计算2*(﹣5)=.14.请写出大于﹣2而小于3的整数分别是.15.若|a|=2,|b|=3,若ab>0,则|a+b|=.16.如图是一个简单的数值运算程序,当输入的x的值为﹣1时,则输出的值为.三.解答题(共68分)17.计算下列各题(1)﹣2+(﹣7)+8;(2)25﹣13﹣4﹣25;(3);(4)(﹣2.4)﹣(﹣4.5)+|﹣2.4|+(﹣0.5);(5)()×(﹣36);(6);(7)(﹣12);(8)13×(﹣)+(﹣13)×+13×;(9)﹣12018+;(10).18.(1)把数轴补充完整.(2)在数轴上表示下列各数.(3)用“<”连接起来..(4)﹣|﹣2|与﹣4之间的距离是.3,﹣4,﹣(﹣1.5),﹣|﹣2|19.有10筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)10筐白菜中,最重的一筐比最轻的一筐重千克?(2)与标准重量比较,10筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这10筐白菜可卖多少元?20.如图,数轴上A、B两点分别对应有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是;(2)数轴上一个点到表示2的点的距离为5.2,这个点表示的数为;(3)若x表示一个数,数轴上表示x和﹣5的两点之间的距离是;(用含x的式子表示)(4)若x表示一个数,|x+1|+|x﹣2|的最小值是,相应的x的取值范围.参考答案与试题解析一.选择题(共10小题)1.下列温度是由﹣3℃上升5℃的是()A.2℃B.﹣2℃C.8℃D.﹣8℃【分析】先根据题意列出算式,然后利用加法法则计算即可.【解答】解:﹣3+5=2℃.故选:A.2.有四包合盐,每包以标准克数(400克)为基准,超过的克数记作正数,不足的克数记负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A.+6 B.﹣7 C.﹣14 D.+18【分析】根据正负数的绝对值越小,越接近标准,可得答案.【解答】解:|+6|<|﹣7|<|﹣14|<|+18|,A最接近标准,故选:A.3.若()﹣(﹣2)=3,则括号内的数是()A.﹣5 B.﹣1 C.1 D.5【分析】根据被减数=减数+差,列出算式计算即可求解.【解答】解:3+(﹣2)=1.答:括号内的数是1.故选:C.4.下列语句正确的是()A.“+15米”表示向东走15米B.0℃表示没有温度C.﹣a可以表示正数D.0既是正数也是负数【分析】根据正负数的意义进行选择即可.【解答】解:A、“+15米”不一定表示向东走15米,原说法错误,故这个选项不符合题意;B、0℃不是没有温度,而是表示零上温度和零下温度的分界点,原说法错误,故这个选项不符合题意;C、﹣a可以表示正数,也可以表示负数,原说法正确,故这个选项符合题意;D、0 既不是正数也不是负数,原说法错误,故这个选项不符合题意;故选:C.5.|a﹣2|+|b+1|=0,则(a+b)2等于()A.﹣1 B.1 C.0 D.﹣2【分析】直接利用绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵|a﹣2|+|b+1|=0,∴a﹣2=0,b+1=0,∴a=2,b=﹣1,∴(a+b)2=(2﹣1)2=1.故选:B.6.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选:B.7.下列语句正确的是()A.1是最小的自然数B.平方等于它本身的数只有1C.绝对值等于它的相反数的数是非正数D.倒数等于它本身的数只有1【分析】直接利用绝对值以及相反数和倒数的定义分别分析得出答案.【解答】解:A、0是最小的自然数,故此选项不合题意;B、平方等于它本身的数只有1和0,故此选项不合题意;C、绝对值等于它的相反数的数是非正数,正确;D、倒数等于它本身的数只有1和﹣1,故此选项不合题意.故选:C.8.一根绳子的长为1m,第1次剪去一半,第2次剪去剩下的半,如此剪下去,第5次后剩下的绳子长度为()A.B.C.D.【分析】根据题意归纳总结得到一般性规律,确定出所求即可.【解答】解:第一次剪去全长的,剩下全长的,第二次剪去剩下的,剩下全长的×=,第三次再剪去剩下的,剩下全长的×=,如此剪下去,第5次后剩下的绳子的长为×1==(m).故选:C.9.如果a、b互为相反数c、d互为倒数,m的绝对值是2,那么a+m+b﹣cd的值()A.1 B.﹣3 C.1或﹣2 D.1或﹣3【分析】根据a、b互为相反数c、d互为倒数,m的绝对值是2,可以求得a+b、cd、m的值,从而可以求得所求式子的值.【解答】解:∵a、b互为相反数c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1,m=±2,当m=2时,a+m+b﹣cd=(a+b)+m﹣cd=0+2﹣1=1,当m=﹣2时,a+m+b﹣cd=(a+b)+m﹣cd=0+(﹣2)﹣1=﹣3,即a+m+b﹣cd的值为1或﹣3,故选:D.10.如图,下列式子成立的是()A.a﹣b>0 B.a+b<0 C.0<﹣a<b D.a<﹣b<0【分析】根据a、b两点在数轴上的位置判断出其取值范围,再对各选项进行逐一分析即可.【解答】解:a、b两点在数轴上的位置可知:﹣1<a<0,b>1,∴a﹣b<0,a+b>0,0<﹣a<b,﹣b<a<0,故A、B、D错误,故C正确.故选:C.二.填空题(共6小题)11.较大小:﹣>﹣;﹣8 <|﹣8|(填“<”“=”或“>”).【分析】根据两个负数比较大小,其绝对值大的反而小比较即可,根据正数大于一切负数比较即可.【解答】解:|﹣|==0.75,|﹣|=0.8,∵0.75<0.8,∴﹣>﹣,∵|﹣8|=8,∴﹣8<|﹣8|,故答案为:>,<.12.把下列各数分别填入相应的集合里.﹣4,﹣|﹣|,0,,﹣3.14,2006,﹣(+5),+1.88(1)负数集合:{ ﹣4,﹣|﹣|﹣3.14,﹣(+5)};(2)非负整数集合:{ 0,,2006,+1.88 }.【分析】(1)直接利用负数的定义得出答案;(2)直接利用非负整数的定义分析得出答案.【解答】解:﹣4,﹣|﹣|=﹣,0,,﹣3.14,2006,﹣(+5)=﹣5,+1.88(1)负数集合:{﹣4,﹣|﹣|﹣3.14,﹣(+5)};故答案为:{﹣4,﹣|﹣|﹣3.14,﹣(+5);(2)非负整数集合:{0,2006}.故答案为:0,2006.13.小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a﹣2b.小明计算出2*5=3×2﹣2×5=﹣4,请你帮小刚计算2*(﹣5)=16 .【分析】根据题中的新定义a*b=3a﹣2b,将a=2,b=﹣5代入计算,即可求出2*(﹣5)的值.【解答】解:根据题中的新定义得:2*(﹣5)=3×2﹣2×(﹣5)=6+10=16.故答案为:16.14.请写出大于﹣2而小于3的整数分别是﹣1,0,1,2 .【分析】根据正数大于零,零大于负数,可得答案.【解答】解:大于﹣2而小于3的整数分别是﹣1,0,1,、2,故答案为:﹣1,0,1,2.15.若|a|=2,|b|=3,若ab>0,则|a+b|= 5 .【分析】由条件可以求出a、b的值,再由ab>0可以知道a、b同号,据此确定a,b的值,从而可以求出结论.【解答】解:∵|a|=2,|b|=3,∴a=±2,b=±3,∵ab>0,∴a=2,b=3或a=﹣2,b=﹣3,当a=2,b=3时,|a+b|=|2+3|=5;当a=﹣2,b=﹣3时,|a+b|=|﹣2+(﹣3)|=|﹣5|=5;综上,|a+b|=5,故答案为:5.16.如图是一个简单的数值运算程序,当输入的x的值为﹣1时,则输出的值为﹣5 .【分析】把x=﹣1代入运算程序中计算即可求出值.【解答】解:把x=﹣1代入得:(﹣1)2×(﹣3)﹣2=﹣3﹣2=﹣5,故答案为:﹣5三.解答题(共4小题)17.计算下列各题(1)﹣2+(﹣7)+8;(2)25﹣13﹣4﹣25;(3);(4)(﹣2.4)﹣(﹣4.5)+|﹣2.4|+(﹣0.5);(5)()×(﹣36);(6);(7)(﹣12);(8)13×(﹣)+(﹣13)×+13×;(9)﹣12018+;(10).【分析】(1)原式利用加法法则计算即可求出值;(2)原式结合后,相加即可求出值;(3)原式利用除法法则计算即可求出值;(4)原式利用减法法则变形,计算即可求出值;(5)原式利用乘法分配律计算即可求出值;(6)原式先计算括号中的运算,再计算乘除运算即可求出值;(7)原式变形后,利用乘法分配律计算即可求出值;(8)原式逆用乘法分配律计算即可求出值;(9)原式先计算乘方运算,再计算乘除运算,最后算就原式即可求出值;(10)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣9+8=﹣1;(2)原式=﹣17;(3)原式=×=;(4)原式=﹣2.4+2.4+4.5﹣0.5=4;(5)原式=﹣6+24﹣15=3;(6)原式=﹣××=﹣;(7)原式=(100﹣)×(﹣12)=﹣1200+1=﹣1199;(8)原式=13×(﹣﹣+)=13×(﹣2)=﹣26;(9)原式=﹣1+3=2;(10)原式=﹣×24﹣×(﹣8)﹣25=﹣1+2﹣25=﹣24.18.(1)把数轴补充完整.(2)在数轴上表示下列各数.(3)用“<”连接起来.﹣4<﹣|﹣2|<﹣(﹣1.5)<3.(4)﹣|﹣2|与﹣4之间的距离是 2 .3,﹣4,﹣(﹣1.5),﹣|﹣2|【分析】(1)把数轴补充完整即可;(2)在数轴上表示出各数即可;(3)根据数轴上的点表示的数右边的总比左边的大,可得答案;(4)观察数轴可得结果.【解答】解:(1)把数轴补充完整如图:(2)﹣(﹣1.5)=1.5,﹣|﹣2|=﹣2,在数轴上表示出各数如图:(3)它们的大小关系为﹣4<﹣|﹣2|<﹣(﹣1.5)<3.故答案为:﹣4<﹣|﹣2|<﹣(﹣1.5)<3;(4)从数轴可知:﹣|﹣2|与﹣4之间的距离是2.故答案为:2.19.有10筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)10筐白菜中,最重的一筐比最轻的一筐重千克?(2)与标准重量比较,10筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这10筐白菜可卖多少元?【分析】(1)从表格可知,最重的超出2.5kg,最轻的不足3kg;(2)将表格中数据进行求和运算即可;(3)求出总重量再乘以单价即可.【解答】解:(1)从表格可知,最重的超出2.5kg,最轻的不足3kg,∴2.5﹣(﹣3)=5.5kg;(2)﹣3+3×(﹣2)+0+1×2+2.5×2=﹣2kg,∴总重量不足2kg;(2)(25×10﹣2)×2.6=644.8(元),∴出售这10筐白菜可卖644.8元.20.如图,数轴上A、B两点分别对应有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是8 ;(2)数轴上一个点到表示2的点的距离为5.2,这个点表示的数为7.2或﹣3.2 ;(3)若x表示一个数,数轴上表示x和﹣5的两点之间的距离是|x+5| ;(用含x的式子表示)(4)若x表示一个数,|x+1|+|x﹣2|的最小值是 3 ,相应的x的取值范围﹣1≤x≤2 .【分析】(1)根据题目中的数据,可以计算出这两个数之间的距离;(2)根据数轴上一个点到表示2的点的距离为5.2,可以求得这个点表示的数;(3)根据题意,可以用含x的代数式表示出x和﹣5的两点之间的距离;(4)利用分类讨论的方法可以解答本题.【解答】解:(1)数轴上表示2和10两点之间的距离是10﹣2=8,故答案为:8;(2)数轴上一个点到表示2的点的距离为5.2,这个点表示的数为:2+5.2=7.2或2﹣5.2=﹣3.2,故答案为:7.2或﹣3.2;(3)数轴上表示x和﹣5的两点之间的距离是:|x﹣(﹣5)|=|x+5|,故答案为:|x+5|;(4)当x>2时,|x+1|+|x﹣2|=x+1+x﹣2=2x﹣1>3,当﹣1≤x≤2时,|x+1|+|x﹣2|=x+1+2﹣x=3,当x<﹣1时,|x+1|+|x﹣2|=﹣x﹣1+2﹣x=﹣2x+1>3,由上可得,|x+1|+|x﹣2|的最小值是3,故答案为:3,﹣1≤x≤2.。

河北省石家庄市赵县2022-2023学年七年级下学期3月月考数学试题(含答案解析)

河北省石家庄市赵县2022-2023学年七年级下学期3月月考数学试题(含答案解析)

河北省石家庄市赵县2022-2023学年七年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列命题是假命题的是()A .同旁内角互补,两直线平行;B .如果两条直线都和第三条直线平行,那么这两条直线也互相平行;C .同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行;D .同位角互补,两直线平行;2.“小小竹排江中游,巍巍青山两岸走”,所描绘的图形变换主要是()A .平移变换B .翻折变换C .旋转变换D .以上都不对3.下列四个图形中,1∠与2∠是对顶角的是()A .B .C .D .4.2(0.7)-的平方根是()A .−0.7B .+0.7C .0.7±D .0.495.下列图形中,∠1与∠2是同位角的是()A .B .C .D .6.如图所示,直线AB 与CD 相交形成了1∠、2∠、3∠和4∠中,若要确定这四个角的度数,至少要测量其中的()A .1个角B .2个角C .3个角D .4个角7.在如下所示的条件中,可以判断两条直线互相垂直的是()①两直线相交所成的四个角都是直角;②两直线相交,对顶角互补;③两直线相交所成的四个角都相等.A .①②B .①③C .②③D .①②③8.下列图形中,线段MN 的长度表示点M 到直线l 的距离的是()A .B .C .D .9.试说明“若180A B ∠+∠=︒,180C D ∠+∠=︒,A C ∠=∠,则B D ∠=∠”是真命题.以下是排乱的推理过程:①因为A C ∠=∠(已知);②因为180A B ∠+∠=︒,180C D ∠+∠=︒(已知);③所以180B A ∠=︒-∠,180D C ∠=︒-∠(等式的性质);④所以B D ∠=∠(等量代换);⑤所以180B C ∠=︒-∠(等量代换).正确的顺序是()A .①→③→②→⑤→④B .②→③→⑤→①→④C .②→③→①→⑤→④D .②→⑤→①→③→④10.如图,ABC 沿直线BC 向右平移得到DEF △,已知2EC =,8BF =,则CF 的长为()A .3B .4C .5D .611.若2253a b ==,,则a b +=()12.如图,//AB CD ,BF 交CD 于点E ,AE BF ⊥,34CEF ∠=︒,则A ∠的度数是()A .34°B .66°C .56°D .46°13.若2m -4与3m -1是同一个正数的平方根,则m 的值是()A .-3B .-1C .1D .-3或114.如图,长方形ABCD 的长为6,宽为4,将长方形先向上平移2个单位,再向右平移2个单位得到长方形A B C D '''',则阴影部分面积是()A .12B .10C .8D .615.如图,,AB CD EC CD ⊥∥于C ,CF 交AB 于B ,已知229∠=︒,则1∠的度数是()A .58︒B .59︒C .61︒D .62︒16.如图,P 是∠ABC 内一点,点Q 在BC 上,过点P 画直线a ∥BC ,过点Q 画直线b ∥AB ,若∠ABC =115°,则直线a 与b 相交所成的锐角的度数为()A .25°B .45°C .65°D .85°二、填空题17.81的平方根是__________.18.如图,甲、乙两只蚂蚁在两条平行马路同一侧的A,B两点处,比赛看谁先横过马路.如果它们同时出发,速度一样,都走最近的道路,结果是______,依据是________________________.19.如图,若12∠=∠,则AD______BC,依据是__________________.三、解答题20.求下列各数的平方根:(1)121;(2)0.01;(3)72 9;(4)()213-.21.如图,已知:点A、点B及直线l.(1)请画出从点A到直线l的最短路线,并写出画图的依据.(2)请在直线l上确定一点O,使点O到点A与点O到点B的距离之和最短,并写出画图的依据.22.如图,1∠与2∠互补,C EDF∠=∠.那么AED C∠=∠.证明如下:∵12180∠+∠=︒(已知),∴DF ______()∴C DFB ∠=∠()∵C EDF ∠=∠(已知)∴DFB EDF ∠=∠()∴______ ______()∴AED C ∠=∠()23.如图,AB 和CD 相交于点O ,OD 平分BOF ∠,OE CD ⊥于点O ,40AOC ∠=︒,求EOF ∠的度数.24.如图,AB 、CD 交于点O ,∠1=∠2,∠3:∠1=8:1,求∠4的度数.25.如图,EF //AD ,AD //BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°,求∠FEC 的度数.26.已知,在下列各图中,点O 为直线AB 上一点,∠AOC =60°,直角三角板的直角顶点放在点O处.(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC 的度数为°,∠CON的度数为°;(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB 的下方,此时∠BON的度数为°;(3)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为°;∠DOC 与∠BON的数量关系是∠DOC∠BON(填“>”、“=”或“<”);(4)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为°;∠AOM﹣∠CON的度数为°参考答案:1.D【分析】利用平行线的性质及判定分别判断后即可确定正确的选项.【详解】解:A 、同旁内角互补,两直线平行;是真命题,不合题意;B 、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,是真命题,不合题意;C 、同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行,是真命题,不合题意;D 、同位角相等,两直线平行;故同位角互补,两直线平行是假命题,符合题意,故选D .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质及判定,属于基础定义及定理,难度不大.2.A【分析】根据平移是图形沿某一直线方向移动一定的距离,可得答案.【详解】解:“小小竹排水中游,巍巍青山两岸走”所描绘的图形变换主要是平移变换,故选:A .【点睛】本题考查了平移变换,利用了平移的定义.3.D【分析】根据对顶角的定义,对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,据此即可判断.【详解】解:由对顶角的定义可知,四个图形中D 中∠1与∠2为对顶角.故选:D .【点睛】本题考查了对顶角的定义,属于基础题,熟练掌握对顶角的概念是解决本题的关键.4.C【分析】根据平方根的定义解答.【详解】22(0.7)0.70.49-== ,0.7=±,2(0.7)∴-的平方根是0.7±.故选C .【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.5.B【分析】根据同位角的定义即两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角则可得出答案.【详解】解:A 、∠1与∠2的对顶角是同位角,故本选项不符合题意;B 、∠1与∠2是同位角,故本选项符合题意;C 、∠1与∠2是内错角,故本选项不符合题意;D 、∠1与∠2是同旁内角,故本选项不符合题意.故选:B .【点睛】本题考查了相交直线及其所成角的相关知识点,熟练区分同位角、内错角、同旁内角是解题的关键.6.A【分析】根据对顶角的定义解答即可.【详解】根据题意可得13∠=∠,24∠∠=,12180∠+∠= ∴要确定这四个角的度数,至少要测量其中的1个角即可.故选A【点睛】本题考查了对顶角的定义,是基础题,熟记概念并准确识图是解题的关键.7.D【分析】利用两条直线垂直的定义,结合补角、周角的定义、对顶角的性质逐一分析即可得出结论.【详解】解:∵因为两直线相交所成的四个角都是直角,即四个角都是90︒,∴所以两条直线互相垂直.∴①结论符合题意.两直线相交,对顶角互补,(对顶角相等)∴两条直线相交所成的对顶角是180=902︒︒.∴所以两条直线互相垂直.∴②结论符合题意.两直线相交所成的四个角都相等,∴四个角都是360=904︒︒.∴所以两条直线互相垂直.∴③结论符合题意.故选:D .【点睛】本题考查两条直线垂直的定义的理解与判断能力.如果两条直线相交所成的四个角中的任意一个角等于90︒,那么这两条直线垂直.理解对顶角相等、两条直线垂直的定义是解本题的关键.8.A【详解】解:图B 、C 、D 中,线段MN 不与直线l 垂直,故线段MN 的长度不能表示点M 到直线l 的距离;图A 中,线段MN 与直线l 垂直,垂足为点N ,故线段MN 的长度能表示点M 到直线l 的距离.故选A .9.C【分析】写出正确的推理过程,进行排序即可.【详解】证明:因为180A B ∠+∠=︒,180C D ∠+∠=︒(已知),所以180B A ∠=︒-∠,180D C ∠=︒-∠(等式的性质);因为A C ∠=∠(已知),所以180B C ∠=︒-∠(等量代换).所以B D ∠=∠(等量代换).∴排序顺序为:②→③→①→⑤→④.故选C .【点睛】本题考查推理过程.熟练掌握推理过程,是解题的关键.10.A【分析】根据平移的性质可得=BC EF ,根据CF EF EC =-即可求解.【详解】解:∵ABC 沿直线BC 向右平移得到DEF △,∴=BC EF ,∵CF BC EC =-,∴()==+CF BF BC BF CF EC --,∴()()1182322CF BF EC =-=-=,故选A .【点睛】本题考查了平移的性质,解一元一次方程,掌握平移的性质是解题的关键.11.D【分析】根据平方根和绝对值的意义先得出a b ,的值,再求出a b +即可得出答案.【详解】解:225a = ,||3b =,5a ∴=,3b =;5a =-,3b =;5a =,3b =-;5a =-,3b =-,则8a b +=±或2±.故选:D .【点睛】本题考查了平方根和绝对值的意义和有理数的加法,理解概念,掌握运算法则是解题关键.12.C【分析】由余角的定义得出AEC ∠的度数,由两直线平行内错角相等即可得出结论.【详解】解:∵AE BF ⊥,34CEF ∠=︒,∴903456AEC ∠=-= ,∵//AB CD ,∴56A AEC ∠=∠= ,故选:C【点睛】本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.13.D【分析】根据平方根的性质列方程求解即可;【详解】当24=31m m --时,3m =-;当24310m m +=--时,1m =;故选:D.【点睛】本题主要考查平方根的性质,易错点是容易忽略相等的情况,做好分类讨论是解决本题的关键.14.C【分析】利用平移的性质得到AB ∥A ′B ′,BC ∥B ′C ′,则A ′B ′⊥BC ,延长A ′B ′交BC 于F ,AD 交A ′B ′于E ,CD 交B ′C ′于G ,根据平移的性质得到FB ′=2,AE =2,易得四边形ABFE 、四边形BEDG 都为矩形,然后计算出DE 和B ′E 后可得到阴影部分面积.【详解】解:∵长方形ABCD 先向上平移2个单位,再向右平移2个单位得到长方形A ′B ′C ′D ′,∴AB ∥A ′B ′,BC ∥B ′C ′,∴A ′B ′⊥BC ,延长A ′B ′交BC 于F ,AD 交A ′B ′于E ,CD 交B ′C ′于G ,∴FB ′=2,AE =2,易得四边形ABFE 、四边形BEDG 都为矩形,∴DE =AD -AE =6-2=4,B ′E =EF -B ′F =AB -B ′F =4-2=2,∴阴影部分面积=4×2=8.故选C .【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.15.C【分析】延长DC 到F ,根据垂直的性质得到90DCE ∠=︒,根据余角的性质得到361∠=︒,根据平行线的性质由AB CD ∥,可得161∠=︒.【详解】延长DC 到F ,∵EC CD ⊥,∴90DCE ∠=︒,∵229∠=︒,∴361∠=︒,∵AB CD ∥,∴3161∠=∠=︒.故选C .【点睛】本田考查了平行线的性质,准确添加辅助线,熟练掌握知识点是解题关键.16.C【分析】首先根据题意画出图形,再根据两直线平行,同旁内角互补可得∠1=65°,再根据两直线平行,内错角相等可得∠2的度数.【详解】解:∵b∥AB,∴∠1+∠B=180°,∵∠ABC=115°,∴∠1=65°,∵a∥BC,∴∠2=∠1=65°,故选:C.【点睛】本题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补;两直线平行,内错角相等.17.±92【详解】81的平方根是;4,4的算术平方根即为2;故填±9;2.【点睛】前面题目可以根据平方根的定义求出结果;后面题目先根据算术平方根的定义化简18.同时到达平行线间的距离处处相等【分析】根据垂线段最短,以及平行线间的距离处处相等,进行作答即可.【详解】解:∵点到直线之间,垂线段最短,∴两只蚂蚁走的都是垂线段,∵平行线间的距离处处相等,它们同时出发,速度一样,∴它们同时到达;故答案为:同时到达,平行线间的距离处处相等.【点睛】本题考查平行线间的距离.熟练掌握平行线间的距离处处相等,是解题的关键.19. 内错角相等,两直线平行【分析】根据内错角相等,两直线平行,进行作答即可.【详解】解:若12∠=∠,AD BC∥,依据是内错角相等,两直线平行.故答案为: ,内错角相等,两直线平行.【点睛】本题考查平行线的判定.熟练掌握内错角相等,两直线平行,是解题的关键.20.(1)11±(2)0.1±(3)5 3±(4)13±【分析】(1)根据平方根的定义,进行求解即可;(2)根据平方根的定义,进行求解即可;(3)根据平方根的定义,进行求解即可;(4)根据平方根的定义,进行求解即可.【详解】(1)解:11=±;(2)0.1±;(3)53 ==±;(4)13=±.【点睛】本题考查求一个数的平方根.熟练掌握平方根的定义,是解题的关键.21.(1)如图所示:点E为所求见解析,根据垂线段最短;(2)如图所示见解析,根据两点之间线段最短.【分析】(1)过A作AE⊥l;(2)连接AB,与l交点就是O.【详解】(1)如图所示:点E为所求,根据垂线段最短;(2)如图所示:根据两点之间线段最短.【点睛】本题考查了垂线段最短,线段的性质:两点之间线段最短,熟练掌握这些知识点是本题解题的关键.22.见解析【分析】根据平行线的判定和性质,进行作答即可.【详解】证明:∵12180∠+∠=︒(已知),∴DF AC ∥(同旁内角互补,两直线平行),∴C DFB ∠=∠(两直线平行,同位角相等),∵C EDF ∠=∠(已知),∴DFB EDF ∠=∠(等量代换),∴DE BC ∥(内错角相等,两直线平行),∴AED C ∠=∠(两直线平行,同位角相等).【点睛】本题考查平行线的判定和性质.熟练掌握平行线的判定方法,证明两直线平行,是解题的关键.23.130︒【分析】OE CD ⊥,得到90COE DOE ∠=∠=︒,对顶角得到BOD AOC ∠=∠,根据OD 平分BOF ∠,得到DOF BOD ∠=∠,再用DOE DOF ∠+∠进行计算即可得解.【详解】解:∵OE CD ⊥,∴90COE DOE ∠=∠=︒,∵AB 和CD 相交于点O ,∴40BOD AOC ∠=∠=︒,∵OD 平分BOF ∠,∴40DOF BOD ∠=∠=︒,∴130EOF DOE DOF ∠=∠+∠=︒.【点睛】本题考查几何图形中的角度计算.正确的识图,理清角之间的和差关系,是解题的关键.24.∠4=36°【分析】利用∠1=∠2,∠3:∠1=8:1的关系,结合平角的定义,可得∠1,∠2的度数,运用对顶角相等得∠4的度数.【详解】∵∠1+∠2+∠3=180°,又∵∠1=∠2,∠3:∠1=8:1,即∠3=8∠1,∴∠1+∠1+8∠1=180°,即∠1=18°,∴∠4=∠1+∠2=36°.【点睛】本题考查对顶角的性质以及平角的定义,是一个需要熟记的内容.25.20°【分析】推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.【详解】∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB−∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.【点睛】本题考查了平行线的性质和判定,平行公理及推论,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.26.(1)120;150;(2)30°;(3)30,=;(4)150;30.【分析】(1)根据∠AOC=60°,利用两角互补可得∠BOC=180°﹣60°=120°,根据∠AON=90°,利用两角和∠CON=∠AOC+∠AON即可得出结论;(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON 的度数;(3)根据对顶角求出∠AOD=30°,根据∠AOC=60°,可得∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.(4)根据垂直可得∠AON与∠MNO互余,根据∠MNO=60°(三角板里面的60°角),可求∠AON=90°﹣60°=30°,根据∠AOC=60°,求出∠CON=∠AOC﹣∠AON=60°﹣30°=30°即可.【详解】解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°,∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°=150°.故答案为120;150;(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,由(1)得∠BOC=120°,∴∠BOM=12∠BOC=60°,又∵∠MON=∠BOM+∠BON=90°,∴∠BON=90°﹣60°=30°.故答案为30°;(3)∵∠AOD=∠BON(对顶角),∠BON=30°,∴∠AOD=30°,又∵∠AOC=60°,∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.故答案为30,=;(4)∵MN⊥AB,∴∠AON与∠MNO互余,∵∠MNO=60°(三角板里面的60°角),∴∠AON=90°﹣60°=30°,∵∠AOC=60°,∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,∴∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.故答案为150;30.【点睛】本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键.。

2019-2020年初一下册数学第二次月考试题

2019-2020年初一下册数学第二次月考试题

2019-2020年初一下册数学第二次月考试题班级: 姓名: 得分: 一、 选择题(每小题3分,共24分)1.不等式组⎩⎨⎧<<15x x 的解集在数轴上表示,正确的是( ))D ()C ()B ()A (2.在实数0,1,π,.91415.3,3..2,3,72.0-,0.020020002…(每个2间多一个零),中无理数的个数为( )A.1.B.2.C.3.D.4.3.若点A (3,-1),B (3,3),则AB 与x 轴的关系是 ( ) A .AB 与x 轴垂直 B.AB 与x 轴平行 C.AB 与x 轴相交 D.以上都不对 4.如果a ∥b, b ∥c, d ⊥a,那么( )A.b ⊥dB.a ⊥cC.b ∥dD.c ∥d 5.点A (-3,2)关于y 轴对称的点的坐标是( )(A)(-3,-2). (B)(3,2). (C)(3,-2). (D)(2,-3) 6.为了了解某校七年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计,下列判断:①这种调查方式是抽样调查;②800名学生是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量。

其中判断正确的是( )A.1个B.2个C.3个D.4个 7.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置( )A .第一象限B .第二象限C .第三象限D .第四象限 8.如右图,下列不能判定AB ∥CD 的条件是( ).A .︒=∠+∠180BCDB B .21∠=∠C .43∠=∠D .5∠=∠B . 二、填空题(每空3分,共24分) 9.16的算术平方根是 .10.已知∠1与∠2是对顶角,∠1与∠3是邻补角,则∠2+∠3=_______. 11.不等式2x +1<9的正整数解是_______12.一个正数x 的两个平方根为m +1和m -3,则x = . 13.写出一个解为⎩⎨⎧-==13y x 的二元一次方程______. 14.若不等式组⎩⎨⎧>+>-010x x a 无解, 则a 的取值范围是___ _.15.比较大小:7____328 新- 课 -标-第 -一- 网16.将三角板的直角顶点放在直尺的一边上,∠1=300, ∠2=500,则∠3等于 度.ABCED三、解答题(共72分)17.解方程(不等式)组:(每题6分,共24分)⎩⎨⎧-=-=+343154y x y x4118)1(3--<+x x ⎩⎨⎧-≥->--13)3(211)1(2%20x x x x18.填空:(8分)已知,如图,∠1=∠ACB ,∠2=∠3,FH ⊥AB 于H ,请说明CD ⊥AB 的理由.答:理由:∵∠1=∠ACB ( )∴DE ∥BC ( ) ∴∠2= ( ) ∵∠2=∠3(已知) ∴∠3= ∴CD ∥FH ( )∴∠BDC =∠BHF ( ) 又∵FH ⊥AB (已知)∴ .19.如图,△ABC 中,∠A=70º,外角平分线CE ∥AB.求∠B 和∠ACB 的度数(8分)⎪⎩⎪⎨⎧=+--=--2322)1(3)1(4y x y y x CA BDEFH12320、(10分)把若干颗花生分给若干只猴子。

2022-2023学年新人教版七年级下数学月考试卷(含解析)

2022-2023学年新人教版七年级下数学月考试卷(含解析)

2022-2023学年初中七年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:130 分考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 10 小题,每题 5 分,共计50分)1. 在下列各数0.51525354⋯,0,3π,227,6.1,316,√2中,无理数的个数是( )A.4B.3C.2D.12. 一个正数x的两个平方根分别用a+1与a−3表示,则a的值可能是( )A.2B.−1C.1D.03. 若x,y都是实数,且√2x−1+√1−2x+y=4,则xy的值为( )A.0B.12C.2D.不能确定4. 下列说法不正确的是( )A.经过两点有一条直线,并且只有一条直线B.射线OP和射线PO表示的不是同一条射线C.连接两点间的线段,叫做这两点的距离D.直线AB和直线BA表示同一条直线5. 已知M=√2×√8+√5,则M的取值范围是( )A.8<M<9B.7<M<8C.6<M<7D.5<M<66. 如图,已知:∠AOB=60∘,点A,B分别在∠AOB两边上,直线l,m,n分别过A,O,B三点,且满足直线l//m//n,OB与直线n所夹的角为25∘,则∠α的度数为( )A.25∘B.45∘C.35∘D.30∘7. 如图,已知直线AB//CD,BE平分∠ABC,交CD于点D,∠C=120∘,则∠CDE的度数为()A.120∘B.140∘C.150∘D.160∘8. 如图,把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,若∠1=48∘,则∠2的度数为( )A.111∘B.121∘C.132∘D.138∘9. 将一块含45∘角的直角三角尺ABC按照如图所示的方式放置,点C落在直线a上,点B落在直线b上,a//b,∠1=25∘,则∠2的度数是()A.15∘B.20∘C.25∘D.30∘10. 如图OA⊥OB,∠BOC=30∘,OD平分∠AOC,则∠BOD的度数是()度.A.60B.40C.30D.20卷II(非选择题)二、填空题(本题共计 10 小题,每题 5 分,共计50分)11. √16的平方根是________.12. 已知:一个正数的两个平方根分别是2a−3和a−2,则a的值是________.13. 对于有理数a,b,定义min{a,b}的含义为:当a<b时,min{a,b}=a,当a>b时,min{a,b}=b.例如:min{1,−2}=−2,min{3,−1}=−1.已知min{√21,a}=√21,min{√21,b}=b,且a和b是两个连续的正整数,则a+b=________.14. 已知有理数a、b所对应的点在数轴上如图所示,化简|a−b|=________.15. 直线y=−x+1与x轴和y轴围成的三角形的面积是________.16. 如图,直线AB//CD,直线EC分别与AB,CD相交于点A,点C,AD平分∠BAC,已知∠ACD=80∘,则∠ADC的度数为________.17. 如图所示是用一张长方形纸条折成的.如果∠1=130∘,那么∠2=________∘.18. 如图,在矩形纸片ABCD中,AB=6,BC=8点P是对角线BD上一动点,将纸片折叠,使点C与点P重合,折痕为EF,折痕EF的两端分别在BC、DC边上(含端点),当△PDF为直角三角形时,FC的长为________.19. 如图,AB//CD,EF⊥AB于点F,若∠EPC=46∘,则∠FEP的度数为________.20. 探究并尝试归纳:探究1 如图1,已知直线a与直线b平行,夹在平行线间的一条折线形成一个角∠A,试求∠1+∠2+∠A的度数,请加以说明;探究2 如图2,已知直线a与直线b平行,夹在平行线间的一条折线增加一个折,形成两个角∠A和∠B,请直接写出∠1+∠2+∠A+∠B=________度.探究3 如图3,已知直线a与直线b平行,夹在平行线间的一条折线每增加一个折,就增加一个角.当形成n个折时,请归纳并写出所有角与∠1、∠2的总和=________.【结果用含有n的代数式表示,n是正整数,不用证明】三、解答题(本题共计 6 小题,每题 5 分,共计30分)21. 计算:3√−8+√36−√3+|1−√3|.22.(1)12x3=32 ;(2)13x2−12=0.23. 任意给出一个非零实数m,按如图所示的程序进行计算.(1)用含m的代数式表示该程序的运算过程.(2)当实数m+的一个平方根是-时,求输出的结果.24. 如图,已知EF//AD,∠1=∠2.求证∠DGA+∠BAC=180∘.请将下列证明过程填写完整.证明:∵EF//AD(已知),∴∠2=________(________),又∵∠1=∠2(已知),∴∠1=∠3,(________),∴AB//________(________),∴∠DGA+∠BAC=180∘(________).25. 如图1,点A、C,B不在同一条直线上,AD//BE.(1)求证:∠B+∠ACB−∠A=180∘;(2)如图2,HQ,BQ分别为∠DAC,∠EBC的平分线所在的直线,试探究∠C与∠AQB的数量关系. 26. 如图,在平面直角坐标系中,点A的坐标为(−3,5),点B的坐标为(0,1),点C的坐标为(4,5),将线段AB沿AC方向平移,平移距离为线段AC的长度.动手操作(1)直接写出B的对应点D的坐标;(2)连接BD,试探究∠BAC,∠BDC的数量关系,并证明你的结论;(3)若点E在线段BD上,连接AD,AE,且满足∠EAD=∠CAD,请求出∠ADB:∠AEB的值,并写出推理过程.参考答案与试题解析2022-2023学年初中七年级下数学月考试卷一、选择题(本题共计 10 小题,每题 5 分,共计50分)1.【答案】B【考点】无理数的识别【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0.51525354…是无理数;0是整数,属于有理数;3π是无理数;227是分数,属于有理数;6.1是有限小数,属于有理数;316是分数,属于有理数;√2是无理数;∴无理数有0.51525354…,3π,√2,共3个.故选B.2.【答案】C【考点】平方根【解析】根据平方根的性质来解答即可.【解答】解:∵一个正数的两个平方根分别为a+1与a−3,∴(a+1)+(a−3)=0,解得a=1.故选C.3.【答案】C【考点】非负数的性质:算术平方根【解析】根据二次根式有意义的条件列出不等式,求出x、y的值,计算即可.【解答】解:由题意得,2x−1≥0,1−2x≥0,解得:x≥12,x≤12,∴x=12,∴y=4,则xy=2.故选C.4.【答案】C【考点】直线、射线、线段两点间的距离【解析】根据“两点之间,线段最短“,两点确定一条直线,两点间的距离,既可解答.【解答】解:A,经过两点有且只有一条直线,故选项A正确;B,射线OP和射线PO不是同一条射线,因为它们的端点不同,故选项B正确;C,连接两点间的线段长度,叫做这两点间的距离,故选项C错误;D,直线AB和直线BA是同一条直线,故选项D正确.故选C.5.【答案】C【考点】估算无理数的大小【解析】根据被开方数越大算术平方根越大,可得答案.【解答】M=√2×√8+√5=4+√5,∵2<√5<3,∴6<4+√5<7,∴6<M<7,6.【答案】C【考点】先根据m//n求出∠BCD的度数,再由△ABC是等边三角形求出∠ACB的度数,根据l//m即可得出结论.【解答】解:如图,∵m//n,边BO与直线n所夹的角为25∘,∴∠1=25∘.∵∠AOB=60∘,∴∠2=60∘−25∘=35∘.∵l//m,∴∠α=∠2=35∘.故选C.7.【答案】C【考点】角平分线的定义平行线的判定与性质【解析】由题可得∠ABD=∠BDC,∠ABC+∠C=180∘,即可得到∠ABC=60∘,根据BE平分∠ABC,可得∠ABD=∠ABC2=30∘,则∠BDC=30∘,即可得解∠CDE=180∘−∠CBD.【解答】解:∵AB//CD,∴∠ABD=∠BDC,∠ABC+∠C=180∘,∴∠ABC=180∘−∠C=180∘−120∘=60∘,∵BE平分∠ABC,∴∠ABD=∠ABC2=30∘,∴∠BDC=30∘,∴∠CDE=180∘−∠CBD=180∘−30∘=150∘.故选C.8.【答案】A【考点】翻折变换(折叠问题)直接利用长方形的性质结合平行线的性质得出∠3=∠6=∠4,再利用四边形内角和定理得出答案.【解答】解:如图所示:∵四边形ABCD 是长方形,∴AD//BC ,∴∠3=∠6,∵把一张长方形纸片ABCD 折叠后,点C 、点D 的对应点分别为点C ′和点D ′,∴∠3=∠4=∠6,∵∠1=48∘,∴∠5=132∘,∴∠6=∠4=360∘−90∘−132∘2=69∘,∴∠2=180∘−69∘=111∘.故选A .9.【答案】B【考点】平行线的性质【解析】利用两直线平行,同旁内角互补进行求解即可.【解答】解:如图:∵a//b ,∴∠FBC +∠ECB =180∘,∴∠1+90∘+∠2+45∘=180∘,又∵∠1=25∘,∴∠2=20∘.故选B.10.【答案】C【考点】角平分线的定义垂线【解析】此题主要考查了垂线和角平分线的定义在解题中的应用.【解答】解:∵OA⊥OB,∠BOC=30∘,∴∠AOC=∠AOB+∠BOC=120∘,∵OD平分∠AOC,∴∠AOD=12∠AOC=60∘,∴∠BOD=∠AOB−∠AOD=30∘.故选C.二、填空题(本题共计 10 小题,每题 5 分,共计50分)11.【答案】±2【考点】平方根算术平方根【解析】根据平方根及算术平方根,立方根的概念解答即可.【解答】解:∵,且{\left(\pm2\right)^2=4},{\therefore\sqrt{16}}的平方根是{\pm2}.故答案为:{\pm2}.12.【答案】{\dfrac{5}{3}}【考点】平方根【解析】此题暂无解析【解答】解:∵一个正数的两个平方根分别是{2a-3}和{a-2},∴{2a-3+a-2=0},解得:{a=\dfrac{5}{3}}.故答案为:{\dfrac{5}{3}} .13.【答案】{9}定义新符号估算无理数的大小【解析】根据已知和{4\lt \sqrt{21}\lt 5}得出{a}、{b}的值,再求出{a+ b}的值,最后根据平方根的定义得出即可.【解答】解:∵{\min \{\sqrt{21},\, a\} = \sqrt{21}},{\min \{\sqrt{21},\, b\}=b},且{a}和{b}为两个连续正整数,{4\lt \sqrt{21}\lt 5},∴{a=5},{b=4},∴{a+ b=9}.故答案为:{9}.14.【答案】{b-a}【考点】数轴绝对值【解析】此题暂无解析【解答】此题暂无解答15.【答案】{\dfrac{1}{2}}【考点】一次函数图象上点的坐标特点三角形的面积【解析】当{x=0}时,求出与{y}轴的交点坐标;当{y=0}时,求出与{x}轴的交点坐标;然后即可求出一次函数{y=-x+1}与坐标轴围成的三角形面积.【解答】解:当{x=0}时,{y=1},则与{y}轴的交点坐标为{\left( 0, 1\right)},当{y=0}时,{x=1},则与{x}轴的交点坐标为{\left( 1, 0\right)},则三角形的面积为{{\dfrac12}\times1\times1={\dfrac12}}.故答案为:{\dfrac12}.16.【答案】{50^{\circ }}角平分线的定义平行线的性质【解析】依据平行线的性质,即可得到{\angle BAC}的度数,再根据角平分线的定义,即可得到{\angle DAC}的度数,再根据三角形内角和定理可得{\triangle ADC}的度数.【解答】解:{\because AB//CD},{\angle ACD=80^{\circ }},{\therefore \angle ACD+\angle BAC=180^{\circ }},{\therefore \angle BAC=100^{\circ }}.又{\because AD}平分{\angle BAC},{\therefore \angle BAD=\dfrac{1}{2}\angle BAC=50^{\circ }},{\therefore \angle ADC=\angle BAD=50^{\circ }}.故答案为:{50^{\circ }}.17.【答案】{65^{{\circ}} }【考点】平行线的判定与性质翻折变换(折叠问题)【解析】此题暂无解析【解答】解:∵长方形的对边互相平行,又根据折叠的性质,{\therefore}{\angle1=2\angle2}(两直线平行,内错角相等).∵{\angle1=130^\circ},∴{\angle2={\dfrac12}\angle1=65^\circ}.故答案为:{65^\circ}.18.【答案】{\dfrac{24}{7}}或 {\dfrac{8}{3}}【考点】平移的性质【解析】此题暂无解析【解答】解:设{FC= x},由翻折知 {PF= CF= x},∴{DF= 6- x},∴{BD= \sqrt{AB^{2}+ AD^{2}}= \sqrt{6^{2}+ 8^{2}}= 10},①当 {\angle DPF= 90^{\circ }}时,∵{\angle PDF= \angle BDC, \angle DPF= \angle DCB= 90^{\circ }},∴{\triangle DPF\sim \triangle DCB},∴{ \dfrac{PF}{BC}= \dfrac{DF}{BD}},即{\dfrac{x}{8}= \dfrac{6- x}{10}},∴{10x= 48- 8x},解得{x=\dfrac{8}{3}}.②当 {\angle DFP= 90^{\circ }}时,∵{\angle PDF= \angle BDC, \angle DFP= \angle DCB= 90^{\circ }},∴{\triangle DPF\sim \triangle DBC},∴{\dfrac{PF}{BC}= \dfrac{DF}{DC}},∴{\dfrac{x}{8}= \dfrac{6- x}{6}},解得{x= \dfrac{24}{7}}.故答案为:{\dfrac{8}{3}}或{\dfrac{24}{7}}.19.【答案】{136^\circ }【考点】平行线的性质垂线【解析】作{EM\parallel CD},则可求出{\angle1=\angle EPC=46^\circ},{EM\parallel CD\parallel AB},由{EF\perp AB},求出{\angle FEM=90^\circ},即可得答案.【解答】解:如图,作{EM// CD},则{\angle PEM=\angle EPC=46^\circ},{EM// CD//AB}.∵{EF\perp AB},∴{\angle BFE=90^\circ},∴{\angle FEM=90^\circ},∴{\angle FEP=\angle PEM+\angle FEM=90^\circ+46^\circ=136^\circ}.故答案为:{136^\circ}.20.【答案】解:探究一:如图{1},过{A}作{AB\,//\,}直线{a},则{AB\,//\,}直线{b},∴{\angle 1+ \angle 3= \angle 4+ \angle 2= 180^{{\circ} }},∴{\angle 1+ \angle 2+ \angle A= 360^{{\circ} }}.探究二:如图{2},过{A}作{AC\,//\,}直线{a},{BD\,//\,}直线{a},则{AC\,//\,BD\,//\,}直线{b},∴{\angle 1+ \angle 3= \angle 5+ \angle 6= \angle 4+ \angle 2= 180^{{\circ} }},∴{\angle 1+ \angle 2+ \angle A+ \angle B= 540^{{\circ} }},故答案为:{540}.探究三:由探究一,探究二知,当形成{n}个折时,所有角与{\angle 1}、{\angle 2}的总和{= 180\cdot (n+ 1)^{{\circ} }},故答案为:{180\cdot (n+ 1)^{{\circ} }}.【考点】平行线的判定与性质【解析】根据平行线的性质即可得到结论.【解答】解:探究一:如图{1},过{A}作{AB\,//\,}直线{a},则{AB\,//\,}直线{b},∴{\angle 1+ \angle 3= \angle 4+ \angle 2= 180^{{\circ} }},∴{\angle 1+ \angle 2+ \angle A= 360^{{\circ} }}.探究二:如图{2},过{A}作{AC\,//\,}直线{a},{BD\,//\,}直线{a},则{AC\,//\,BD\,//\,}直线{b},∴{\angle 1+ \angle 3= \angle 5+ \angle 6= \angle 4+ \angle 2= 180^{{\circ} }},∴{\angle 1+ \angle 2+ \angle A+ \angle B= 540^{{\circ} }},故答案为:{540}.探究三:由探究一,探究二知,当形成{n}个折时,所有角与{\angle 1}、{\angle 2}的总和{= 180\cdot (n+ 1)^{{\circ} }},故答案为:{180\cdot (n+ 1)^{{\circ} }}.三、解答题(本题共计 6 小题,每题 5 分,共计30分)21.【答案】解:原式{=-2+6-\sqrt{3}+\sqrt{3}-1}{=3}.【考点】绝对值平方根立方根的性质【解析】暂无【解答】解:原式{=-2+6-\sqrt{3}+\sqrt{3}-1}{=3}.22.【答案】解:{(1)}{\dfrac{1}{2}x^{3}=32},{x^{3}=64},{x^{3}=4^{3}},{x=4}.{(2)}{\dfrac{1}{3}x^{2}-12=0},{\dfrac{1}{3}x^{2}=12},{x^{2}=36},{x=\pm6}.【考点】立方根的应用平方根【解析】此题暂无解析【解答】解:{(1)}{\dfrac{1}{2}x^{3}=32},{x^{3}=64},{x^{3}=4^{3}},{x=4}.{(2)}{\dfrac{1}{3}x^{2}-12=0},{\dfrac{1}{3}x^{2}=12},{x^{2}=36},{x=\pm6}.23.【答案】根据题意得:{(m^{2}+ m)\div m-2 \rm{m} }={m+ 1-2 \rm{m} }={-m+ 1};根据题意得:{m+ }=(-){^{2}},即{m}={3-},则{-m+ 1}={-3+ 1}={-2}.【考点】平方根实数的运算【解析】(1)根据程序中的运算列出关系式即可;(2)根据题意求出{m}的值,代入原式计算即可求出值.【解答】根据题意得:{(m^{2}+ m)\div m-2 \rm{m} }={m+ 1-2 \rm{m} }={-m+ 1};根据题意得:{m+ }=(-){^{2}},即{m}={3-},则{-m+ 1}={-3+ 1}={-2}.24.【答案】{\angle 3},两直线平行,同位角相等,等量代换,{DG},内错角相等,两直线平行,两直线平行,同旁内角互补【考点】平行线的判定与性质【解析】分别根据平行线的性质及平行线的判定定理解答即可.【解答】解:∵{EF\,//\,AD},(已知)∴{\angle 2= \angle 3}.(两直线平行,同位角相等)又∵{\angle 1= \angle 2},(已知)∴{\angle 1= \angle 3},(等量代换)∴{AB\,//\,DG},(内错角相等,两直线平行)∴{\angle DGA+ \angle BAC= 180^{{\circ} }}(两直线平行,同旁内角互补).故答案为:{\angle 3};两直线平行,同位角相等;等量代换;{DG};内错角相等,两直线平行;两直线平行,同旁内角互补.25.【答案】{(1)}证明:过点{C}作{CF//AD},则{CF//BE},{\because}{CF//AD//BE},{\therefore}{\angle ACF=\angle A},{\angle BCF+\angle B=180^{\circ}},{\therefore}{\angle B+\angle ACB-\angle A}{=\angle B+\angle BCF+\angle ACF-\angle A}{=\angle B+\angle BCF=180^{\circ}}.{(2)}解:过点{Q}作{QM//AD},则{QM//BE},{\because}{QM//AD},{QM//BE},{\therefore}{\angle AQM=\angle HAD},{\angle BQM=\angle EBQ},{\because}{HQ}平分{\angle CAD},{BQ}平分{\angle CBE},{\therefore}{\angle HAD=\dfrac{1}{2}\angle CAD},{\angle EBQ=\dfrac{1}{2}\angle CBE},{\therefore}{\angle AQB=\angle BQM-\angle AQM=\dfrac{1}{2}(\angle CBE-\angle CAD)},{\because}{\angle C=180^{\circ}-(\angle CBE-\angle CAD)=180^{\circ}-2\angle AQB},{\therefore}{2\angle AQB+\angle C=180^{\circ}}.【考点】平行线的判定与性质角平分线的定义【解析】{(1)}过点{C}作{CF//AD},则{CF//BE},根据平行线的性质可得出{\angle ACF=\angle A}、{\angle BCF+\angle B=180^{\circ}},代入{\angle B+\angle ACB-\angle A}即可算出角度;{(2)}过点{Q}作{QM//AD},则{QM//BE},根据平行线的性质、角平分线的定义可得出{\angle AQB=\dfrac{1}{2}(\angle CBE-\angle CAD)},结合{(1)}的结论可得出{2\angle AQB+\angle C=180^{\circ}}.【解答】{(1)}证明:过点{C}作{CF//AD},则{CF//BE},{\because}{CF//AD//BE},{\therefore}{\angle ACF=\angle A},{\angle BCF+\angle B=180^{\circ}},{\therefore}{\angle B+\angle ACB-\angle A}{=\angle B+\angle BCF+\angle ACF-\angle A}{=\angle B+\angle BCF=180^{\circ}}.{(2)}解:过点{Q}作{QM//AD},则{QM//BE},{\because}{QM//AD},{QM//BE},{\therefore}{\angle AQM=\angle HAD},{\angle BQM=\angle EBQ},{\because}{HQ}平分{\angle CAD},{BQ}平分{\angle CBE},{\therefore}{\angle HAD=\dfrac{1}{2}\angle CAD},{\angle EBQ=\dfrac{1}{2}\angle CBE},{\therefore}{\angle AQB=\angle BQM-\angle AQM=\dfrac{1}{2}(\angle CBE-\angle CAD)},{\because}{\angle C=180^{\circ}-(\angle CBE-\angle CAD)=180^{\circ}-2\angle AQB},{\therefore}{2\angle AQB+\angle C=180^{\circ}}.26.【答案】{(1)}解:点{D}的坐标为{\left(7,1\right)}.{(2)}证明:∵{AB}平移后得到线段{CD},∴{AB//CD},{AC//BD},∴{\angle ABD+\angle BDC=180^{\circ }},{\angle BAC+\angle ABD=180^{\circ }},∴{\angle BAC=\angle BDC}.{(3)}解:{ADB:\angle AEB=1:2},理由如下:如图,∵{AC//BD},∴{\angle CAD=\angle ADB},{\angle AEB=\angle CAE},∵{\angle EAD=\angle CAD},∴{\angle CAE=2\angle CAD},∴{\angle AEB=2\angle ADB},即{ \angle ADB:\angle AEB=1:2}.【考点】作图-平移变换平行线的判定与性质平行线的性质【解析】(1)利用{A}、{C}点的坐标确定平移的方向与距离,从而得到{D}点坐标;(2)利用平移的性质得到{AB//CD},{AC//BD},再根据平行线的性质得{\angle ABD+\angle BDC=180^\circ,\angle BAC+\angle ABD=180^\circ},所以{\angle BAC=\angle BDC}.(3)先由{AC//BD}得到{\angle CAD=\angle ADB,\angle AEB=\angle CAE},再由{\angle EAD=\angle CAD},然后利用等量代换可确定{\angle AEB=2\angle ADB}.【解答】{(1)}解:点{D}的坐标为{\left(7,1\right)}.{(2)}证明:∵{AB}平移后得到线段{CD},∴{AB//CD},{AC//BD},∴{\angle ABD+\angle BDC=180^{\circ }},{\angle BAC+\angle ABD=180^{\circ }},∴{\angle BAC=\angle BDC}.{(3)}解:{ADB:\angle AEB=1:2},理由如下:如图,∵{AC//BD},∴{\angle CAD=\angle ADB},{\angle AEB=\angle CAE},∵{\angle EAD=\angle CAD},∴{\angle CAE=2\angle CAD},∴{\angle AEB=2\angle ADB},即{ \angle ADB:\angle AEB=1:2}.。

河北省邯郸市人和中学2023-2024学年七年级下学期第一次月考数学试题

河北省邯郸市人和中学2023-2024学年七年级下学期第一次月考数学试题

河北省邯郸市人和中学2023-2024学年七年级下学期第一次月考数学试题一、单选题1.下列现象中,属于平移的是( )A .传送带上物品的输送B .教室的门打开C .方向盘的转动D .钟摆的运动2.下列判断正确的是( )A .图1中的1∠与2∠是同位角B .图1中的1∠与2∠是同旁内角C .图2中的1∠与2∠是邻补角D .图2中的1∠与2∠是对顶角 3.利用三角尺或量角器判断,图中的两点所成的直线能与直线l 垂直的是( )A .点M 和点NB .点P 和点QC .点M 和点QD .点N 和点P 4.如图,直线a ,b ,c 交于点O ,若1270∠+∠=︒,则3∠的度数为( )A .35︒B .70︒C .100︒D .110︒ 5.如图,若图形A 经过平移与下方图形(阴影部分)拼成一个长方形,则平移方式可以是()A .向右平移4个格,再向下平移4个格B .向右平移6个格,再向下平移5个格C .向右平移4个格,再向下平移3个格D .向右平移5个格,再向下平移4个格6.如图,已知直线a b P ,1125∠=︒,则2∠的度数为( )A .45︒B .35︒C .30︒D .25︒7.下列选项中,能够说明“若m 是非零有理数,则||1m m =”是假命题的是( ) A .1m =- B .1m = C .2m = D .3m =8.如图,已知370∠=︒,4110∠=︒.若285∠=︒,则1∠的度数为( )A .110︒B .105︒C .95︒D .70︒9.如图,施工队从点A 出发,沿北偏东62︒方向修公路AC ,在BC 段出现塌陷区,后改变方向,由点B 沿北偏西38︒的方向继续修建BD 段,到达点D 又改变方向,从点D 继续修建DE 段,若要使路段DE AB ∥,则BDE ∠的度数应为( )A .110°B .100°C .90°D .80°10.用两个完全一样的含30°角的三角尺画平行线,下列画出的直线a 与b 不一定平行的是( )A .B .C .D .11.一次数学活动中,检验两条纸带①、②的边线是否平行,嘉嘉和淇淇采用两种不同的方法:嘉嘉将纸带①沿AB 折叠,量得1259∠=∠=︒;淇淇将纸带②沿CD 折叠,发现CN 与CM 重合,DQ 与DP 重合(点C 在MN 上,点D 在PQ 上),如图所示.下列判断正确的是( )A .只有纸带①的边线平行B .只有纸带②的边线平行C .纸带①、②的边线都平行D .纸带①、②的边线都不平行12.如图,AB CD P ,ACF AEF ∠=∠,CE EG ⊥,垂足为E ,CE 平分ACD ∠.关于结论Ⅰ、Ⅱ,下列判断正确的是( )结论Ⅰ:AC EF P结论Ⅱ:若(180)A A ∠∠<︒的度数每增加2︒,则EGD ∠的度数会减少1︒A .结论Ⅰ、Ⅱ都正确B .结论Ⅰ、Ⅱ都不正确C .只有结论Ⅰ正确D .只有结论I 正确二、填空题13.如图,已知点O 在直线AB 上EO OF ⊥,,EM AB ⊥于点M ,连接EF ,则点E 到OF 的距离是线段 的长度.14.在图中,点D 在BC 的延长线上,在不增加辅助线的前提下,增加一个条件 后,能判定AB CE P .15.如图,为美化校园,某校要在长12米,宽6米的长方形空地中划出三个小长方形(阴影部分),若小长方形的宽均为2米,空白部分的面积为 平方米.16.如图,把一块三角放(45)90OEF E ∠=︒︒角的顶点O 放在长方形ABCD 的边BC 上,保持点O 的位置不动,在转动三角板OEF 时,若EF 与长方形ABCD 的边平行,则EOC ∠的度数为.三、解答题17.在如图所示的网格中,每个小正方形的边长都为1,点A ,B ,C 在小正方形的顶点上.(1)将三角形ABC 向右平移4个单位长度,再向上平移1个单位长度后,得到三角形DEF ,点A ,B ,C 的对应点分别是点D ,E ,F ,请在图中画出平移后的三角形DEF ;(2)在(1)的基础上,连接AD ,CF .①AD 与CF 之间的数量关系为 ;②四边形ACFD 的面积为 .18.如图,汽车站、码头分别位于A ,B 两点,直线m ,n 分别表示公路与河流.(1)从汽车站A 到码头B 怎样走最近?画出最近路线,并说明理由;(2)从码头B 到公路m 怎样走最近?画出最近路线BC ,并说明理由;(3)在(1),(2)的基础上,比较AC 和AB 的大小.19.如图,AB CD ∥,AB CB ⊥,垂足为B .(1)判断BC 与CD 之间的位置关系,并说明理由;(2)若12∠=∠,求证:BE CF ∥.20.已知命题“两直线平行,同旁内角互补”.(1)写出该命题的题设和结论,并将其改写成“如果……那么……”的形式;(2)嘉淇想证明该命题,下面是她的解题过程,请将其补全,并在括号内填上推理的根据. 如图,已知直线AB CD P ,直线EF 截AB ,CD 于点M ,N .求证AMN ∠+ 180=︒.证明:∵AB CD P (已知),∴AME CNM ∠=∠( ).∵AME ∠+ 180=︒(平角的定义),∴AMN ∠+ 180=︒( ).21.如图,直线AB ,CD 相交于点O ,EO CD ⊥,垂足为O ,OF 平分BOD ∠,OE 与OF 在直线CD 的同侧.(1)若50AOC ∠=︒,求EOF ∠的度数;(2)若60EOF ∠=︒,求BOC ∠的度数;(3)试猜想EOF ∠与BOC ∠之间的数量关系,并说明理由.22.如图,在三角形ABC 中,90B ??,53BAC ∠=︒,8BC =.将三角形ABC 沿BC 向左平移,得到三角形A B C ''',A B ''与AC 交于点D ,连接AA '.(1)分别求B DC ∠'和AA C ∠''的度数;(2)若3CC '=,4DB '=,求图中阴影部分的面积;(3)已知点P 在三角形ABC 约内部,三角形ABC 平移到三角形A B C '''后,点P 的对应点为P ',连接PP '.若三角形ABC 的周长为m ,四边形ABC A ''的周长为12m +,请直接写出PP '的长度.23.图1展示了光线反射定律:EF 是镜面AB 的垂线,一束光线m 射到平面镜AB 上,被AB 反射后的光线为n ,则入射光线m ,反射光线n 与垂线EF 所夹的锐角12θθ=.(1)在图1中,1∠______2∠(填“>”“<”或“=”);(2)在图2中,AB ,BC 是两面平面镜,入射光线m 经过两次反射后得到反射光线n ,已知130∠=︒,460∠=︒,判断入射光线m 与反射光线n 的位置关系,并说明理由;(3)图3是潜望镜工作原理示意图,AB ,CD 是两面平面镜,且AB CD ∥.请解释进入潜望镜的光线m 为什么和离开潜望镜的光线n 是平行的?24.如图1、图2,直线AB ,CD 被射线MN 所截,且AB CD P ,P 是射线NB 上的定点,点Q 在射线MN 上,连接PQ ,过点Q 作QE PQ ⊥,与直线CD 交于点E ,且50NMD ∠=︒.(1)如图1,当点Q 与点N 重合时,求MQE ∠的度数;(2)若点Q 在线段MN 上(点Q 不与点M ,N 重合).①依题意,在图2中补全图形;②猜想NPQ ∠与MEQ ∠之间的数量关系,并证明;(3)当点Q 在线段MN 的延长线上,且15MQE ∠=︒时,求NPQ ∠的度数.。

2020—2021学年度第一学期七年级数学月考试卷(含解析)

2020—2021学年度第一学期七年级数学月考试卷(含解析)

2020—2021学年度第一学期月考试卷七年级数学2020.12一、选择题(本题共20分,每小题2分)1.若代数式x+4的值是2,则x等于()A.2B.﹣2C.6D.﹣62.在国庆70周年的联欢活动中,参与表演的3290名群众演员,每人手持一个长和宽都为80厘米的光影屏,每一块光影屏上都有1024颗灯珠,约3369000颗灯珠共同构成流光溢彩的巨幅光影图案,给观众带来了震撼的视觉效果.将3369000用科学记数法表示为()A.0.3369×107B.3.369×106C.3.369×105D.3369×1033.在解方程时,去分母正确的是()A.3(x﹣1)﹣2(2x+3)=6B.3(x﹣1)﹣2(2x+3)=1C.2(x﹣1)﹣2(2x+3)=6D.3(x﹣1)﹣2(2x+3)=34.如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是()A.两点之间,线段最短B.两点确定一条直线C.两点之间,直线最短D.直线比线段长5.下列解方程的步骤中正确的是()A.由x﹣5=7,可得x=7﹣5B.由8﹣2(3x+1)=x,可得8﹣6x﹣2=xC.由x=﹣1,可得x=﹣D.由,可得2(x﹣1)=x﹣36.已知3a2﹣a=1,则代数式6a2﹣2a﹣5的值为()A.﹣3B.﹣4C.﹣5D.﹣77.有理数a,b,c在数轴上的对应点的位置如图所示,有如下四个结论:①|a|>3;②ab >0;③b+c<0;④b﹣a>0.上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④8.下列说法中正确的是()A.如果|x|=7,那么x一定是7B.﹣a表示的数一定是负数C.射线AB和射线BA是同一条射线D.一个锐角的补角比这个角的余角大90°9.下列图形中,可能是右面正方体的展开图的是()A.B.C.D.10.居民消费价格指数是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.据统计,从2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率如图所示:根据上图提供的信息,下列推断中不合理的是()A.2018年12月的增长率为0.0%,说明与2018年11月相比,全国居民消费价格保持不变B.2018年11月与2018年10月相比,全国居民消费价格降低0.3%C.2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是﹣0.4%D.2019年1月到2019年8月,全国居民消费价格每月比上个月的增长率一直持续变大二.填空题(共8小题)11.如图所示的网格是正方形网格,∠ABC∠DEF(填“>”,“=”或“<”)12.用四舍五入法将0.0586精确到千分位,所得到的近似数为.13.已知x=3是关于x的一元一次方程ax+b=0的解,请写出一组满足条件的a,b的值:a=,b=.14.若(x+1)2+|y﹣2020|=0,则x y=.15.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”.《九章算术》大约成书于公元前200年~公元前50年,是以应用问题解法集成的体例编纂成书的,全书按题目的应用范围与解题方法划分为“方田”、“粟米”、“衰分”等九章.《九章算术》中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x个人,那么可以列方程为.16.我们把称为二阶行列式,且=ad﹣bc如:=1×(﹣4)﹣3×2=﹣10.(1)计算:=;(2)若=6,则m的值为.17.已知线段AB如图所示,延长AB至C,使BC=AB,反向延长AB至D,使AD=BC,点E是线段CD的中点.(1)依题意补全图形;(2)若AB的长为30,则BE的长为.18.一件商品的包装盒是一个长方体(如图1),它的宽和高相等.小明将四个这样的包装盒放入一个长方体大纸箱中,从上面看所得图形如图2所示,大纸箱底面长方形未被覆盖的部分用阴影表示.接着小明将这四个包装盒又换了一种摆放方式,从上面看所得图形如图3所示,大纸箱底面未被覆盖的部分也用阴影表示.设图1中商品包装盒的宽为a,则商品包装盒的长为,图2中阴影部分的周长与图3中阴影部分的周长的差为(都用含a的式子表示).三、计算题(本题共12分,每小题3分)19.(1) 5-15x+=x;(2)13(x-1)=17(2x-3);(3)0.60.4x-+x=0.110.3x+;(4)13(2x-5)=14( x-3)-112.四、解答题20.(本题6分)当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=3m的解大2?21.(本题8分)小明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟,如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,求他推车步行了多少分钟?22.(本题8分)已知:如图,O是直线AB上一点,OD是∠AOC的平分线,∠COD与∠COE互余.求证:∠AOE与∠COE互补.请将下面的证明过程补充完整:证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=°∵OD是∠AOC的平分线∴∠AOD=∠(理由:)∴∠BOE=∠COE(理由:)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补23.(本题6分)某同学模仿二维码的方式为学校设计了一个身份识别图案系统:在4×4的正方形网格中,黑色正方形表示数字1,白色正方形变式数字0.如图1是某个学生的身份识别图案.约定如下:把第i行,第j列表示的数字记为a ij(其中i,j=1,2,3,4),如图1中第2行第1列的数字a ij=0;对第i行使用公式A i=8a i1+4a i2+2a i3+a i4进行计算,所得结果A1表示所在年级,A2表示所在班级,A3表示学号的十位数字,A4表示学号的个位数字.如图1中,第二行A2=8×0+4×1+2×0+1=5,说明这个学生在5班.(1)图1代表的学生所在年级是年级,他的学号是;(2)请仿照图1,在图2中画出八年级4班学号是36的同学的身份识别图案24.(本题6分)学校计划在某商店购买秋季运动会的奖品,若买5个篮球和10个足球需花费1150元,若买9个篮球和6个足球需花费1170元.(1)篮球和足球的单价各是多少元?(2)实际购买时,正逢该商店进行促销.所有体育用品都按原价的八折优惠出售,学校购买了若干个篮球和足球,恰好花费1760元.请直接写出学校购买篮球和足球的个数各是多少.25.(本题8分)点O为数轴的原点,点A、B在数轴上的位置如图所示,点A表示的数为5,线段AB的长为线段OA长的1.2倍.点C在数轴上,M为线段OC的中点.(1)点B表示的数为;(2)若线段BM的长为4.5,则线段AC的长为;(3)若线段AC的长为x,求线段BM的长(用含x的式子表示).26.(本题6分)对于平面内给定射线OA,射线OB及∠MON,给出如下定义:若由射线OA、OB组成的∠AOB的平分线OT落在∠MON的内部或边OM、ON上,则称射线OA 与射线OB关于∠MON内含对称.例如,图1中射线OA与射线OB关于∠MON内含对称.已知:如图2,在平面内,∠AOM=10°,∠MON=20°.(1)若有两条射线OB1,OB2的位置如图3所示,且∠B1OM=30°,∠B2OM=15°,则在这两条射线中,与射线OA关于∠MON内含对称的射线是;(2)射线OC是平面上绕点O旋转的一条动射线,若射线OA与射线OC关于∠MON 内含对称,设∠COM=x°,求x的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH=20°,现将射线OH绕点O以每秒1°的速度顺时针旋转,同时将射线OE和OF绕点O都以每秒3°的速度顺时针旋转.设旋转的时间为t秒,且0<t<60.若∠FOE的内部及两边至少存在一条以O为顶点的射线与射线OH关于∠MON内含对称,直接写出t的取值范围.参考答案与试题解析一.选择题1.【分析】根据已知条件列出关于x的一元一次方程,通过解一元一次方程来求x的值.【解答】解:依题意,得x+4=2移项,得x=﹣2故选:B.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3369000用科学记数法表示为3.369×106,故选:B.3.【分析】去分母的方法是:方程左右两边同时乘以各分母的最小公倍数,这一过程的依据是等式的基本性质,注意去分母时分数线起到括号的作用,容易出现的错误是:漏乘没有分母的项,以及去分母后忘记分数线的括号的作用,符号出现错误.【解答】解:方程左右两边同时乘以6得:3(x﹣1)﹣2(2x+3)=6.故选:A.4.【分析】依据线段的性质,即可得出结论.【解答】解:点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是:两点之间,线段最短,故选:A.5.【分析】各项方程变形得到结果,即可作出判断.【解答】解:A、由x﹣5=7,可得x=7+5,不符合题意;B、由8﹣2(3x+1)=x,可得8﹣6x﹣2=x,符合题意;C、由x=﹣1,可得x=﹣6,不符合题意;D、由=﹣3,可得2(x﹣1)=x﹣12,不符合题意,故选:B.6.【分析】原式变形后,把已知等式代入计算即可求出值.【解答】解:∵3a2﹣a=1,∴原式=2(3a2﹣a)﹣5=2﹣5=﹣3,故选:A.7.【分析】根据图示,可得:﹣3<a<﹣2,﹣2<b<﹣1,3<c<4,据此逐项判断即可.【解答】解:∵﹣3<a<﹣2,∴|a|<3,∴选项①不符合题意;∵a<0,b<0,∴ab>0,∴选项②符合题意;∵﹣2<b<﹣1,3<c<4,∴b+c>0,∴选项③不符合题意;∵b>a,∴b﹣a>0,∴选项④符合题意,∴正确结论有2个:②④.故选:C.8.【分析】根据绝对值,负数,射线,余角和补角的定义一一判断即可.【解答】解:A、∵|x|=7,∴x=±7,故本选项不符合题意.B、﹣a不是的数不一定是负数,本选项不符合题意.C、射线AB和射线BA不是同一条射线,本选项不符合题意.D、一个锐角的补角比这个角的余角大90°,正确,本选项符合题意,故选:D.9.【分析】利用正方体及其表面展开图的特点解题.【解答】解:A、折叠后,圆不是与两个空白小正方形相邻,故与原正方体不符,故此选项错误;B、折叠后,圆与三角形成对面,与原正方体不符,故此选项错误;C、折叠后与原正方体相同,与原正方体符合,故此选项正确;D、折叠后,两个三角形的短边不是与两个空白小正方形相邻,与原正方体不符,故此选项错误.故选:C.10.【分析】根据统计图中的数据可以判断各个选项中的说法是否合理,从而可以解答本题.【解答】解:由统计图可知,2018年12月的增长率为0.0%,说明与2018年11月相比,全国居民消费价格保持不变,故选项A合理;2018年11月与2018年10月相比,全国居民消费价格降低0.3%,故选项B合理;2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是﹣0.4%,故选项C合理;2019年1月到2019年8月,全国居民消费价格每月比上个月的增长率先增大,后减小,再增大,故选项D不合理;故选:D.二.填空题11.【分析】依据图形即可得到∠ABC=45°,∠DEF<45°,进而得出两个角的大小关系.【解答】解:由图可得,∠ABC=45°,∠DEF<45°,∴∠ABC>∠DEF,故答案为:>.12.【分析】把万分位上的数字6进行四舍五入即可.【解答】解:0.0586≈0.059(精确到千分位).故答案为0.059.13.【分析】把x=3代入关于x的一元一次方程ax+b=0得到3a+b=0,依此写出一组满足条件的a,b的值.【解答】解:把x=3代入关于x的一元一次方程ax+b=0得到3a+b=0,则一组满足条件的a,b的值:a=1,b=﹣3.故答案为:1,﹣3(答案不唯一).14.【分析】直接利用绝对值和偶次方的性质得出x,y的值,进而得出答案.【解答】解:∵(x+1)2+|y﹣2020|=0,∴x+1=0,y﹣2020=0,解得:x=﹣1,y=2020,所以x y=(﹣1)2020=1.故答案为:1.15.【分析】设有x个人,根据金的价钱不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有x个人,依题意,得:400x﹣3400=300x﹣100.故答案为:400x﹣3400=300x﹣100.16.【分析】(1)根据:=ad﹣bc,求出的值是多少即可.(2)根据:=6,可得:﹣4m﹣2×7=6,据此求出m的值为多少即可.【解答】解:(1)=2×5﹣(﹣3)×6=10﹣(﹣18)=28(2)∵=6,∴﹣4m﹣2×7=6,∴﹣4m﹣14=6,∴m=﹣5.故答案为:28、﹣5.17.【分析】(1)根据题意画出图形;(2)由图,根据线段中点的意义,根据线段的和与差进一步解决问题.【解答】解:(1)如图所示;(2)∵AB=30,BC=AB,∴BC=AB=30,∵AD=BC=10,∴BD=AD+AB=10+30=40,∵点E是线段CD的中点,∴DE=CD=(10+30+30)=35,∴BE=BD﹣DE=5,故答案为:5.18.【分析】根据摆放情况可得,包装盒的一个长等于两个宽,即长为2a,用含有a的代数式表示出长方体纸箱的长和宽,再表示出图2和图3的周长,最后求差即可.【解答】解:根据摆放情况可得,包装盒的一个长等于两个宽,即长为2a,大纸箱的长为4a,宽为3a,图2中阴影部分的周长为:3a×2+2a×2+2a=12a,图3中阴影部分的周长为:4a×2+2a=10a,图2与图3周长的差为12a﹣10a=2a,故答案为:2a,2a.三.解答题19.(1) x=4 (2) 2x=-(3)0.60.4x-+x=0.110.3x+;(4)13(2x-5)=14( x-3)-112.20.【分析】分别解两个方程求得方程的解,然后根据x的方程5m+3x=1+x的解比关于x 的方程2x+m=3m的解大2,即可列方程求得m的值.【解答】解:解方程5m+3x=1+x得:x=,解2x+m=3m得:x=m,根据题意得:﹣2=m,解得:m=﹣.21.【分析】根据关键语句“到学校共用时15分钟,骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米”可得方程,解方程即可求解.【解答】解:设他推车步行了x分钟,依题意得:80x+250(15﹣x)=2900,解得x=5.答:他推车步行了5分钟.22.【分析】根据余角的定义可得∠COD+∠COE=90°,再根据平角的定义可得∠AOD+∠BOE=90°;根据角平分线的定义可得∠AOD=∠COD,再根据等式性质可得∠BOE=∠COE,进而得证.【解答】证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=90°∵OD是∠AOC的平分线∴∠AOD=∠COD(理由:角平分线的定义)∴∠BOE=∠COE(理由:等式性质)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补.故答案为:90;COD;角平分线的定义;等式性质.23.【分析】(1)根据所给公式分别求出A1=8×0+4×1+2×1+1=7,A3=8×0+4×0+2×1+0=2,A4=8×1+4×0+2×0+0=8,即可求解;(2)由所给信息画出图形即可.【解答】解:(1)A1=8×0+4×1+2×1+1=7,A3=8×0+4×0+2×1+0=2,A4=8×1+4×0+2×0+0=8,故答案为7,28;(2)如图:24.【分析】(1)设篮球的单价为x元,足球的单价为y元,根据“若买5个篮球和10个足球需花费1150元,若买9个篮球和6个足球需花费1170元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设学校购买篮球m个,足球n个,根据总价=单价×数量,即可得出关于m,n的二元一次方程,再结合m,n均为非负整数,即可得出结论.【解答】解:(1)设篮球的单价为x元,足球的单价为y元,依题意,得:,解得:.答:篮球的单价为80元,足球的单价为75元.(2)设学校购买篮球m个,足球n个,依题意,得:0.8(80m+75n)=1760,∴m=.∵m,n均为非负整数,∴或.答:学校购买篮球20个、足球8个或者篮球5个、足球24个.25.【分析】(1)根据点A表示的数为5,线段AB的长为线段OA长的1.2倍.即可得点B 表示的数;(2)根据线段BM的长为4.5,即可得线段AC的长;(3)根据数轴,结合(2)的过程即可用含x的式子表示BM的长.【解答】解:(1)∵点A表示的数为5,线段AB的长为线段OA长的1.2倍,∴AB=1.2×5×=×6∵OA=5,∴OB=AB﹣OA=1,∴点B表示的数为﹣1.故答案为﹣1;(2)∵BM=4.5,∴OM=4.5﹣1=3.5(点M在原点右侧)或OM=|﹣1﹣4.5|=5.5(点M在原点左侧)∵M为线段OC的中点∴OC=2OM=7或11∴AC=7﹣5=2(点C在原点右侧)或AC=11+5=16(点C在原点左侧)∴线段AC的长为2或16.故答案为2或16;(3)当AC=x,点C在点A右侧,OC=5+x∴OM=OC=(5+x)∴BM=OB+OM=1+(5+x)=x+点C在线段OA上,OC=OA﹣AC=5﹣x∴OM=OC=(5﹣x)∴BM=OM﹣OB=(5﹣x)+1=﹣x+.当点C在线段OB上时,OC=x﹣5,OM=(x﹣5),BM=1﹣(x﹣5)=﹣x,当点C在点B的左侧时,OC=x﹣5,OM=(x﹣5),BM=|1﹣(x﹣5)|=﹣x 或x﹣,答:线段BM的长为:x+或x﹣或﹣x.26.【分析】(1)由∠MON内含对称的定义可求解;(2)由∠MON内含对称的定义可得10°≤(x+10)°≤30°,可求解;(3)分两种情况讨论,利用∠MON内含对称的定义列出不等式,即可求解.【解答】解:(1)∵∠AOB1在∠MON的外部,∴射线OA、OB1组成的∠AOB1的平分线在∠MON的外部,∴OB1不是与射线OA关于∠MON内含对称的射线,∵∠B2OM=15°,∠AOM=10°,∴∠AOB2=25°,∴射线OA、OB2组成的∠AOB2的平分线在∠MON的内部,∴OB2是与射线OA关于∠MON内含对称的射线,故答案为:OB2;(2)由(1)可知,当OC在直线OA的下方时,才有可能存在射线OA与射线OC关于∠MON内含对称,∵∠COM=x°,∠AOM=10°,∠MON=20°,∴∠AOC=(x+10)°,∠AON=30°,∵射线OA与射线OC关于∠MON内含对称,∴10°≤(x+10)°≤30°,∴10≤x≤50;(3)∵∠AOE=∠EOH=2∠FOH=20°,∴∠HOM=50°,∠HON=70°,∠EOM=30°,∠FOM=40°,若射线OE与射线OH关于∠MON内含对称,∴50﹣t≤≤70﹣t,∴20≤t≤30;若射线OF与射线OH关于∠MON内含对称,∴50﹣t≤≤70﹣t,∴22.5≤t≤32.5,综上所述:20≤t≤32.5.。

2019-2020年七年级上学期9月份月考数学试卷

2019-2020年七年级上学期9月份月考数学试卷

2019-2020年七年级上学期9月份月考数学试卷教师寄语:亲爱的同学们,考试只是老师了解你掌握知识多少的一种方式,请你放松心情,认真、细心答题,相信你定能在这里展示出你的风采!一、选择题(每小题3分,共计30分)1.下列四个式子中,是方程的是( )(A )2x -6 (B )2x +y=5 (C )-3+1=-2 (D )3264= 2.下列方程中,解为2x =的方程是( )(A )24=x (B ) 063=+x (C ) 021=x (D )0147=-x3.下列等式变形正确的是( )(A )如果12S ab =,那么2Sb a = (B )如果162x =,那么3x =(C )如果mx my =,那么x y = (D )如果33x y -=-,那么0x y -=4.将(32)2(21)x x +--去括号正确的是( )(A )3221x x +-+ (B )3241x x +-+(C )3242x x +-- (D )3242x x +-+5.若关于x 的一元一次方程k(x+4)-2k-x=5的解为x=-3,则k 的值是( )(A )-2 (B )2 (C )51(D )51-6.在解方程21x --332x +=1时,去分母正确的是( )(A )3(x -1)-2(2+3x )=1 (B )3(x -1)-2(2x +3)=6(C) 3x -1-4x +3=1 (D )3x -1-4x +3=67.某小组分若干本书,若每人分一本,则余一本,若每人分给2本,则缺3本,那么共有图书() (A )6本 (B )5本 (C )4本 (D )3本8.某商贩在一次买卖中,同时卖出两件上衣,每件都以80元出售,若按成本计算,其中一件赢利60%,另一件亏本20%,在这次买卖中,该商贩( )(A )不盈不亏 (B )盈利10元 (C )亏损10元 (D )盈利50元.9.已知1+x +23y x ()—+=0,那么2y x )(+的值是( ) (A )0 (B )1 (C )9 (D )4 10.如图所示,第一个天平的两侧分别放2个球体和5个圆柱体,第二个天平的两侧分别放2个正方体和3个圆柱体,两个天平都平衡,则12个球体的质量等于( )个正方体的质量.(A )12 (B )16(C )20 (D )24二、填空题(每小题3分,共计30分)11.方程052=+x 的解是=x .12.若x=-3是方程3(x-a )=7的解,则a= .13.若方程04x )2a (1a =+--是关于x 的一元一次方程,则a=_______.14.当n = 时,多项式2217n x y +2513x y -可以合并成一项. 15.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某同学做了全部试题共得85分,他做对了 道题.16.如果关于x 的方程3x+4=0与方程3x+4k=18的解相同,则k= .17.有一列数,按一定规律排成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1 701,这三个数中最小数为 .18.甲队有31人,乙队有26人,现另调24人分配给甲、乙两队,使甲队的人数是乙队人数的2倍,则应分配给甲队 人.19.A 、B 两地相距64千米,甲从A 出发,每小时行14千米,乙从B 地出发,每小时行18千米,若两人同时出发相向而行,则需_________小时两人相距16千米.20.一个通讯员骑自行车需要在规定时间内把信件送到某地,每小时走15公里早到24分钟,如果每小时走12公里,就要迟到15分钟,原定时间是________分.三、解答题(21题8分,22题10分,23题6分,24题8分,25题8分,26题10分,27题10分,共计60分)(第10题图)21.解方程(每小题4分,共8分)(1)52682x x -=-; (2) 37322x x +=-.22.解方程(每小题5分,共10分)(1)2(10)5+2(1)x x x x -+=-; (2)53210232213+--=-+x x x .23.(本题6分)已知:方程2=+k x 的解比方程k k x 2321=+-的解大1,求k 的值.24.(本题8分)某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?25. (本题8分) 有一些相同的房间需要粉刷墙面,一天3名一级技工可粉刷8个房间,结果其中有50平方米墙面没来得及粉刷;同样时间内5名二级技工可粉刷了10间房之外,还多刷了40平方米的墙.已知每名一级技工比二级技工一天多粉刷10平方米的墙面,求每个房间需要粉刷的墙面面积.26.(本题10分)某商场经销甲、乙两种商品,甲种商品每件进价20元,售价35元;乙种商品每件进价30元,售价50元.(1)若该商场同时购进甲、乙两种商品共100件,且使这100件商品的总利润(利润=售价进价)为1800元,需购进甲、乙两种商品各多少件?(2)在“十一”期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过500元售价一律打九折超过500元售价一律打八折按上述优惠条件,若小李第一天只购买甲种商品一次性付款210元,第二天只购买乙种商品打折后一次性付款440元,那么这两天他在该商场购买甲、乙两种商品一共多少件?27.(本题10分)十一黄金周(7天)期间,萧红中学7年3班某同学计划租车去旅行,在看过租车公司的方案后,认为有以下两种方案比较适合(注:两种车型的油耗相同):周租金(单位:元)免费行驶里程(单位:千米)超出部分费用(单位:元/千米)A型1740 100 1.5B型2640 220 1.2解决下列问题:(1)如果此次旅行的总行程为800千米,请通过计算说明租用哪种型号的车划算;(2)设本次旅行行程为x千米(x是正整数),请通过计算说明如何根据旅行行程选择省钱的租车方案.答案一、选择题:1.B2.D3.D4.D5.A6.B7.B8.B9.B 10.C二、填空题:11.-2.5 12.-16/3 13.-2 14.2 15.2216.5.5 17.-2187 18.23 19.1.5或2.5 20.180三、解答题:21.(1)x=4 (2)x=522. (1)x=-4/3 (2)x=7/1623.由方程(1)得X=2-K 由(2)得X=6K-6由题知:2-K=6K-6+1 得K=124.解:设应该安排X名工人生产螺钉2000(22-X)=2×1200XX=1022-10=12(人)答:25.解:设每个房间需要粉刷X平方米(8X-50)÷3=(10X+40)÷5+10X=52 答:26.(1)设该商场购进甲种商品a件,则购进乙种商品(100-a)件. 根据题意得(35-20)a+(50-30)(100-a)=1800--------------------------------------------2分解得,a=40,100-a=60. ------------------------------------------------------------2分答:(2)根据题意得,第一天只购买甲种商品不享受优惠条件∴210÷35=6(件)--------------------------------------------------------------------2分第二天只购买乙种商品有以下两种可能:①:若购买乙商品打九折,440÷90%÷50=889(件),不符合实际,舍去;②:购买乙商品打八折,440÷80%÷50=11(件)-------------------------------2分∴一共可购买甲、乙两种商品6+11=17(件)---------------------------------2分27.(1)1740+(800-100)×1.5=2790----------------------2分2640+(800-220)×1.2=3336-------------------2分∵3336>2790∴选择A型号车划算------------------------1分(2)1740+1.5×(X-100)=1.5X+1590--------------------------1分2640+1.2×(X-220)=1.2X+2376--------------------------1分1.5X+1590=1.2X+2376X=2620------------------------------------2分当X>2620时,选择B型号车划算当X=2620时,选择A、B型号车均可当X<2620时,选择A型号车划算--------------------------------------1分。

人教版2020年七年级下册数学第一次月考试题五(含答案解析)

人教版2020年七年级下册数学第一次月考试题五(含答案解析)

人教版2020年七年级下册数学第一次月考试题五一.选择题(共10小题,满分30分,每小题3分)1.(3分)四条直线相交于一点,总共有对顶角()A.8对B.10对C.4对D.12对2.(3分)下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.3.(3分)某城市有四条直线型主干道分别为l1,l2,l3,l4,l3和l4相交,l1和l2相互平行且与l3、l4相交成如图所示的图形,则共可得同旁内角()对.A.4 B.8 C.12 D.164.(3分)如图,∠AOB=50°,CD∥OB交OA于E,则∠AEC的度数为()A.120°B.130°C.140°D.150°5.(3分)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行 B.垂直 C.平行或垂直D.无法确定6.(3分)如图,下列条件中能判断直线l1∥l2的是()A.∠1=∠2 B.∠1=∠5 C.∠3=∠5 D.∠1+∠3=180°7.(3分)下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程=1.2中的分母化为整数,得=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A.1个B.2个C.3个D.4个8.(3分)把图中的一个三角形先横向平移x格,再纵向平移y格,就能与另一个三角形拼合成一个四边形,那么x+y()A.是一个确定的值B.有两个不同的值C.有三个不同的值D.有三个以上不同的值9.(3分)学校,电影院,公园在平面图上的标点分别是A,B,C,电影院在学校的正东方向,公园在学校的南偏西25°方向,那么平面图上的∠CAB等于()A.115°B.155°C.25° D.65°10.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E 不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④二.填空题(共6小题,满分18分,每小题3分)11.(3分)如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.12.(3分)如图,直线AB,CD相交于点O,OE⊥AB,O为垂足,∠EOD=26°,则∠AOC= ,∠COB= .13.(3分)如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.14.(3分)如图①,点E、F分别为长方形纸带ABCD的边AD、BC上的点,∠DEF=19°,将纸带沿EF折叠成图②(G为ED和EF的交点,再沿BF折叠成图③(H为EF和DG的交点),则图③中∠DHF= °15.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于度16.(3分)如图,把一张长方形的纸条ABCD沿EF折叠,若∠BFC′比∠BFE多6°,则∠EFC= .三.解答题(共8小题,满分72分)17.(8分)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE 平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.18.(8分)已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).19.(8分)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,求∠BOF的度数;(2)若∠BOF=36°,求∠AOC的度数;(3)若|∠AOC﹣∠BOF|=α°,请直接写出∠AOC和∠BOF的度数.(用含的代数式表示)20.(8分)如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN 上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA 度数;若不存在,说明理由.21.(8分)如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE 与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据得∠1=∠A=67°所以,∠CBD=23°+67°= °;根据当∠ECB+∠CBD= °时,可得CE∥AB.所以∠ECB= °此时CE与BC的位置关系为.22.(10分)已知:如图,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①所示,求证:OB∥AC.(注意证明过程要写依据)(2)如图②,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.(ⅰ)求∠EOC的度数;(ⅱ)求∠OCB:∠OFB的比值;(ⅲ)如图③,若∠OEB=∠OCA.此时∠OCA度数等于.(在横线上填上答案即可)23.(10分)如图,直线AB∥CD,直线MN与AB,CD分别交于点M,N,ME,NE分别是∠AMN 与∠CNM的平分线,NE交AB于点F,过点N作NG⊥EN交AB于点G.(1)求证:EM∥NG;(2)连接EG,在GN上取一点H,使∠HEG=∠HGE,作∠FEH的平分线EP交AB于点P,求∠PEG的度数.24.(12分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE2C=∠BEC;(3)猜想:若∠E n=α度,那∠BEC等于多少度?(直接写出结论).参考答案与试题解析1.【解答】解:如图所示,,共有12对,故选D.2.【解答】解:A、能通过其中一个菱形平移得到,不符合题意;B、能通过其中一个正方形平移得到,不符合题意;C、能通过其中一个平行四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选:D.3.【解答】解:l1、l2被l3所截,有两对同旁内角,其它同理,故一共有同旁内角2×8=16对.故选:D.4.【解答】解:∵CD∥OB,∠AOB=50°,∴∠AOB=∠CEO=50°,∵∠AEC+∠CEO=180°,∴∠AEC=180°﹣50°=130°.故选:B.5.【解答】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选:A.6.【解答】解:A、∠1=∠2不能判断直线l1∥l2,故此选项错误;B、∠1=∠5不能判断直线l1∥l2,故此选项错误;C、∠3=∠5不能判断直线l1∥l2,故此选项错误;D、∠1+∠3=180°,能判断直线l1∥l2,故此选项正确.故选:D.7.【解答】解:①错误,﹣1的平方是1;②正确;③错误,方程右应还为1.2;④错误,只有每任意三点不在同一直线上的四个点才能画6条直线,若四点在同一直线上,则只有画一条直线了.故选:A.8.【解答】解:(1)当两斜边重合的时候可组成一个矩形,此时x=2,y=3,x+y=5;(2)当两直角边重合时有两种情况,①短边重合,此时x=2,y=3,x+y=5;②长边重合,此时x=2,y=5,x+y=7.综上可得:x+y=5或7.故选:B.9.【解答】解:从图中发现平面图上的∠CAB=∠1+∠2=115°.故选A.10.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.11.【解答】解:要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短.故答案为:垂线段最短.12.【解答】解:∵OE⊥AB,∴∠EOB=90°,∵∠EOD=26°,∴∠AOC=∠BOD=90°﹣26°=64°,∴∠BOC=180°﹣∠AOC=180°﹣64°=116°,故答案为:64°,116°.13.【解答】解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x﹣60°,又∵6°<∠BAE<15°,∴6°<3x﹣60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°﹣23°=37°或∠C=60°﹣24°=36°,故答案为:36°或37°.14.【解答】解:根据折叠的特性,G、H、D共线,∠DEF=∠FEG=∠EFG=19°,根据三角形的外角等于不相邻的内角的和,如图②,∠DGF=2∠E=2×19°=38°,如图③,同理∠DHF=38°+19°=57°.故答案为:57.15.【解答】解:如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC.∵∠ABE1和∠DCE1的平分线交点为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n=∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n .16.【解答】解:设∠EFC=x,∠1=y,则∠BFC′=x﹣y,∵∠BFC′比∠BFE多6°,∴x﹣2y=6,∵x+y=180°,可得x=122°故答案为122°.17.【解答】解:(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.18.【解答】解:如图所示,直线CD即为所求.19.【解答】解:(1)∵∠BOD=∠AOC=76°,又∵OE平分∠BOD,∴∠DOE=∠BOD=×76°=38°.∴∠COE=180°﹣∠DOE=180°﹣38°=142°,∵OF平分∠COE,∴∠EOF=∠COE=×142°=71°,∴∠BOF=∠EOF﹣∠BOE=71°﹣38°=33°.(2)∵OE平分∠BOD,OF平分∠COE,∴∠BOE=∠EOD,∠COF=∠FOE,∴设∠BOE=x,则∠DOE=x,故∠COA=2x,∠EOF=∠COF=x+36°,则∠AOC+∠COF+∠BOF=2x+x+36°+36°=180°,解得:x=36°,故∠AOC=72°.(3)设∠BOE=x,则∠DOE=x,则∠COA=2x,∠BOF=90°﹣x,∵|∠AOC﹣∠BOF|=α°,∴|2x﹣(90°﹣x)|=α°,解得:x=()°+α°或x=()°﹣α°,当x=()°+α°时,∠AOC=2x=()°+α°,∠BOF=90°﹣x=()°﹣α°;当x=()°﹣α°时,∠AOC=2x=()°﹣α°,∠BOF=90°﹣x=()°+α°.20.【解答】解:(1)∵OM∥CN,∴∠AOC=180°﹣∠C=180°﹣108°=72°,∠ABC=180°﹣∠OAB=180°﹣108°=72°,又∵∠BAM=∠180°﹣∠OAB=180°﹣108°=72°,∴与∠AOC相等的角是∠AOC,∠ABC,∠BAM;(2)∵OM∥CN,∴∠OBC=∠AOB,∠OFC=∠AOF,∵OB平分∠AOF,∴∠AOF=2∠AOB,∴∠OFC=2∠OBC,∴∠OBC:∠OFC=;(3)设∠OBA=x,则∠OEC=2x,在△AOB中,∠AOB=180°﹣∠OAB﹣∠ABO=180°﹣x﹣108°=72°﹣x,在△OCE中,∠COE=180°﹣∠C﹣∠OEC=180°﹣108°﹣2x=72°﹣2x,∵OB平分∠AOF,OE平分∠COF,∴∠COE+∠AOB=∠COF+∠AOF=∠AOC=×72°=36°,∴72°﹣x+72°﹣2x=36°,解得x=36°,即∠OBA=36°,此时,∠OEC=2×36°=72°,∠COE=72°﹣2×36°=0°,点C、E重合,所以,不存在.21.【解答】解:由已知,根据两直线平行,同位角相等得:∠1=∠A=67°,所以,∠CBD=23°+67°=90°,根据同旁内角互补,两直线平行,当∠ECB+∠CBD=180°时,可得CE∥AB,所以∠ECB=90°,此时CE与BC的位置关系为垂直,故答案为:两直线平行,同位角相等,90,同旁内角互补,两直线平行,180,90,垂直.22.【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°,(两直线平行,同旁内角互补)∵∠A=∠B,∴∠A+∠O=180°,(等量代换)∴OB∥AC.(同旁内角互补,两直线平行)(2)(ⅰ)∵∠A=∠B=100°,由(1)得∠BOA=180°﹣∠B=80°;∵∠FOC=∠AOC,并且OE平分∠BOF,∴∠EOF=∠BOF,∠FOC=∠FOA,∴∠EOC=∠EOF+∠FOC=(∠BOF+∠FOA)=∠BOA=40°.(ⅱ)∵BC∥OA,∴∠FCO=∠COA,又∵∠FOC=∠AOC,∴∠FOC=∠FCO,∴∠OFB=∠FOC+∠FCO=2∠OCB,∴∠OCB:∠OFB=1:2.(ⅲ)∵OB∥AC,∴∠OCA=∠BOC,设∠BOE=∠EOF=α,∠FOC=∠COA=β,∴∠OCA=∠BOC=2α+β,∠OEB=∠EOC+∠ECO=α+β+β=α+2β,∵∠OEB=∠OCA,∴2α+β=α+2β,∴α=β,∵∠AOB=80°,∴α=β=20°,∴∠OCA=2α+β=40°+20°=60°.故答案是:60°.23.【解答】解:(1)∵AB∥CD,∴∠AMN+∠CNM=180°,∵ME,NE分别是∠AMN与∠CNM的平分线,∴∠EMN=∠AMN,∠ENM=∠MNC,∴∠EMN+∠ENM=90°,即∠MEN=90°,又∵NG⊥EN,∴∠MEN+∠ENH=180°,∴EM∥NG;(2)设∠HEG=x,则∠HGE=∠MEG=x,∠NEH=90°﹣2x,∵EP平分∠FEH,∴∠FEH=2∠PEH=2(∠PEG+x),又∵∠FEH+∠HEN=180°,∴2(∠PEG+x)+90°﹣2x=180°,解得∠PEG=45°.24.【解答】解:(1)如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;(2)如图2,∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC;∵∠ABE1和∠DCE1的平分线交点为E2,∴由(1)可得,∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;(3)如图2,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n =∠BEC,∴当∠E n=α度时,∠BEC等于2nα度.第11 页共11 页。

河北省邯郸市永年区2020-2021学年七年级上学期第一次月考数学试题(含解析)

河北省邯郸市永年区2020-2021学年七年级上学期第一次月考数学试题(含解析)
7.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,则a-b-c=( )
A. 1B. 0C. 2D. 2或0
8.若两个有理数的和为负数﹐则这两个有理数( )
A.一定都是负数
B.一定是一正一负,且负数的绝对值大
C.一定 一个为零,另一个为负数
D.至少有一个是负数,且仅有一个负数时该负数绝对值最大
A. 表示收入1. 00元B. 表示支出1. 00元
C. 表示支出 元D.收支总和为6. 20元
2.有下列各数,0.01,10,-6.67, ,0,-(-3), , ,其中属于非负整数的共有( )
A. 1个B. 2个C. 3个D. 4个
3. 实数a在数轴上对应的点如图所示,则a、-a、1的大小关系正确的是( )
A. 1个B. 2个C. 3个D. 4个
【答案】D
【解析】
【详解】试题解析:10,0,-(-3),-(-42)是非负整数,共有4个.
故选D.
3. 实数a在数轴上对应的点如图所示,则a、-a、1的大小关系正确的是( )
七年级数学试题
本试卷满分120分,时间90分钟.分选择题、填空题、解答题三部分
一、选择题:本大题共16个小题,每小题3分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.小戴同学的微信钱包账单如图所示, 表示收入5. 20元.下列说法正确的是()
A. 表示收入1. 00元B. 表示支出1. 00元
25.阅读下列料:计算
解法一:原式= .
解法二:原式= .
解法三:原式的倒数为
故原式=300.
上述得出的结果不同,肯定有错误的解法,你认为解法是错误的.
请你选择合适的解法解答下列问题:计算:

河北省廊坊市第六中学2023-2024学年七年级上册月考数学试题(含解析)

河北省廊坊市第六中学2023-2024学年七年级上册月考数学试题(含解析)

A.3个、7个B.4个、6个C.5个、5个D.6个、4个
15.嘉淇同学在某月的月历上圈出了相邻的三个数,并求出了三个数的和为39.这三个数在月历中的分布不可能是()
..
..
.某幼儿园(位师生,购买了y个苹果.若每人发
个,则最后还缺
(1)若输入的x 的值为-1,求输出的值;
(2)若输出的是“”,请求出输入x 的值.
21.淇淇在解一元一次方程“”时,一不小心将墨水洒在作业本上,其中未知数了,他便问嘉嘉,嘉嘉想考考他,于是用手遮住了解题过程,只露出最后一步:(1)求前四个台阶上数的和;
(2)求第五个台阶上的数x 的值;
(3)求从下到上,前23个台阶上数的和;
(4)试用含m (m 为正整数)的式子表示出数again 329x x -=+
(1)点A表示的数为,点C表示的数为
4-
()。

2022年冀教版七年级上册数学第一次月考试卷 (1)

2022年冀教版七年级上册数学第一次月考试卷 (1)

七年级上册数学第一次月考试卷一、单选题(1-10每题3分,11-16每题2分,共计42分)1.(3分)是﹣2的( )A.相反数B.绝对值C.倒数D.以上都不对2.(3分)数轴上到点﹣2的距离为4的点有( )A.2B.﹣6或2C.0D.﹣63.(3分)计算﹣1﹣1﹣1的结果是( )A.﹣3B.3C.1D.﹣14.(3分)已知|a+2|+|b﹣3|=0,则a﹣b的值是( )A.﹣1B.1C.﹣5D.55.(3分)下列说法正确的是( )A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零6.(3分)邢台市某天的最高气温是17℃,最低气温是﹣2℃,那么当天的温差是( )A.19℃B.﹣19℃C.15℃D.﹣15℃7.(3分)若a是最小的自然数,b是最小的正整数,c是绝对值最小的有理数,则a﹣bc 的值为( )A.﹣1B.1C.0D.28.(3分)计算3.14﹣(﹣π)的结果为( )A.6.28B.2πC.3.14﹣πD.3.14+π9.(3分)某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是( )A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃10.(3分)实数a在数轴上对应的点如图所示,则a,﹣a,﹣1的大小关系是( )A.﹣a<a<﹣1B.﹣a<﹣1<a C.a<﹣1<﹣a D.a<﹣a<﹣1 11.(2分)把(+5)﹣(+3)﹣(﹣1)+(﹣5)写成省略括号的和的形式是( )A.﹣5﹣3+1﹣5B.5﹣3﹣1﹣5C.5+3+1﹣5D.5﹣3+1﹣5 12.(2分)若a<0,则|a|=( )A.a B.﹣a C.﹣|a|D.013.(2分)日历中竖列上相邻三个数的和一定是( )A.3的倍数B.4的倍数C.7的倍数D.不一定14.(2分)如果a<0,b<0,且|a|<|b|,那么a﹣b的值一定是( )A.正数B.负数C.0D.不确定15.(2分)在,1.2,﹣π,0,﹣(﹣2)中,负数的个数有( )A.2个B.3个C.4个D.5个16.(2分)小虎在学习有理数的运算时,做了如下5道题:①(﹣2)+2=0;②﹣5﹣3=﹣8;③(﹣3)×(﹣4)=﹣7;④+=1;⑤.你认为他做对了( )道题.A.5B.4C.3D.2二、填空题(17-18每题3分,19题每小题3分,共计10分)17.(3分)比较大小:﹣﹣.(填“>”,“<”号)18.(3分)若a、b互为相反数,c、d互为倒数,m的绝对值是1,则3a+3b﹣mcd= .19.(4分)(1)定义“*”是一种运算符号,规定a*b=2a﹣b+2015,则1*(﹣2)= .(2)宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如图所示,则买地毯至少需要 元.三、解答题(共计68分)20.(16分)计算:(1)﹣12+5+(﹣16)﹣(﹣17)(2)×(﹣)×÷.(3)(+﹣)×24.(4)9×35(用简便方法进行计算)21.(8分)把下列各数填入它所属的集合内:3,﹣200%,,|﹣2|,0,﹣5.32,2..(1)整数集合{…};(2)分数集合{…}.(3)非负数集合{…}.22.(8分)在数轴标出表示下列各数的点,并用“<”把它们连接起来.﹣3,3.5,0,﹣1.5,﹣1.23.(8分)若|a|=3,|b|=6,且a,b异号,求a+b的值.24.(8分)某商店现有8袋大米,以每袋50千克为准,超过的千克数记作正数,记录如下:+4,﹣3,+5,﹣2,+1,﹣3,+4,﹣6.问:8袋大米共重多少?25.(10分)快递配送员王叔叔一直在一条南北走向的街道上送快递,如果规定向北为正,向南为负,某天他从出发点开始所行走的路程记录为(长度单位:千米):+3,﹣4,+2.+3.﹣1,﹣1,﹣3(1)这天送完最后一个快递时,王叔叔在出发点的什么方向,距离是多少?(2)如果王叔叔送完快递后,需立即返回出发点,那么他这天送快递(含返回)共耗油多少升(已知每千米耗油0.2升)?26.(10分)如图,在数轴上有A,B,C三个点,请回答:(1)如果将A点向右移动4个单位长度,表示什么数?(2)如果将点C向左移动3个单位长度,三个点中哪个点表示的数最大?是多少?(3)如果点A、点B同时向右运动,点A的速度是2个单位/秒,点B的速度是1个单位/秒,问经过多长时间两点重合?参考答案与试题解析一、单选题(1-10每题3分,11-16每题2分,共计42分)1.【分析】根据倒数、相反数、绝对值的定义进行解答即可.【解答】解:是﹣2的倒数的相反数,故选:D.2.【分析】根据数轴的特点,数轴上与表示﹣2的点的距离为4的点有两个:一个在表示﹣2的点的左边,一个在表示﹣2的点的右边,分两种情况讨论即可求出答案.【解答】解:该点可能在﹣2的左侧,则为﹣2﹣4=﹣6;也可能在﹣2的右侧,即为﹣2+4=2.综上所述,符合条件的点所表示的数为﹣6或2,故选:B.3.【分析】原式利用减法法则计算即可求出值.【解答】解:原式=﹣(1+1+1)=﹣3,故选:A.4.【分析】首先根据非负数的性质可求出a、b的值,进而可求出a、b的差.【解答】解:∵|a+2|+|b﹣3|=0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3;因此a﹣b=﹣2﹣3=﹣5.故选:C.5.【分析】利用有理数的定义判断即可得到结果.【解答】解:A、带正号的数不一定为正数,例如+(﹣2);带负号的数不一定为负数,例如﹣(﹣2),故错误;B、一个数的相反数,不是正数,就是负数,例如0的相反数是0,故错误;C、倒数等于本身的数有2个,是1和﹣1,正确;D、零除以任何数(0除外)等于零,故错误;故选:C.6.【分析】根据题意列出算式,利用减法法则计算即可求出值.【解答】解:根据题意得:17﹣(﹣2)=17+2=19,则当天的温差是19℃,故选:A.7.【分析】根据a是最小的自然数,b是最小的正整数,c是绝对值最小的有理数,可以得到a、b、c的值,从而可以求得a﹣bc的值.【解答】解:∵a是最小的自然数,b是最小的正整数,c是绝对值最小的有理数,∴a=0,b=1,c=0,∴a﹣bc=0﹣1×0=0﹣0=0,故选:C.8.【分析】直接利用去括号法则计算得出答案.【解答】解:3.14﹣(﹣π)=3.14+π.故选:D.9.【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案.【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃,温度范围:﹣20℃至﹣16℃,A、﹣20℃<﹣17℃<﹣16℃,故A不符合题意;B、﹣22℃<﹣20℃,故B符合题意;C、﹣20℃<﹣18℃<﹣16℃,故C不符合题意;D、﹣20℃<﹣19℃<﹣16℃,故D不符合题意;故选:B.10.【分析】由数轴上a的位置可知a<﹣1<0,由此即可求解.【解答】解:依题意得a<﹣1<0,设a=﹣2,则﹣a=2.∵﹣2<﹣1<2,∴a<﹣1<﹣a.故选:C.11.【分析】先把加减法统一成加法,再省略括号和加号.【解答】解:原式=(+5)+(﹣3)+(+1)+(﹣5)=5﹣3+1﹣5.故选:D.12.【分析】根据一个负数的绝对值等于它的相反数解答即可.【解答】解:因为a<0,所以|a|=﹣a,故选:B.13.【分析】设中间的数字为x,表示出前一个与后一个数字,求出之和即可做出判断.【解答】解:设日历中竖列上相邻三个数的中间的数字为x,则其他两个为x﹣7,x+7,则三个数之和为x﹣7+x+x+7=3x,即三数之和为3的倍数.故选:A.14.【分析】根据:a<0,b<0,且|a|<|b|,可得:﹣a<﹣b,所以a>b,据此判断出a﹣b 的值一定是什么数即可.【解答】解:∵a<0,b<0,且|a|<|b|,∴﹣a<﹣b,∴a>b,∴a﹣b>0,即a﹣b的值一定是正数.故选:A.15.【分析】根据负数的定义即可得出答案.【解答】解:在﹣1,1.2,﹣π,0,﹣(﹣2)中,负数有﹣1,﹣π,共2个;故选:A.16.【分析】根据有理数加减乘除的运算方法,逐一判断,判断出小虎做对了多少道题即可.【解答】解:∵(﹣2)+2=0,∴选项①符合题意;∵﹣5﹣3=﹣8,∴选项②符合题意;∵(﹣3)×(﹣4)=12,∴选项③不符合题意;∵+=﹣,∴选项④不符合题意;∵(﹣)÷(﹣)=,∴选项⑤不符合题意.∴小虎做对了2道题:①、②.故选:D.二、填空题(17-18每题3分,19题每小题3分,共计10分)17.【分析】先把﹣和﹣化成同分母的分数,再根据两个负数比较大小,绝对值大的反而小进行比较,即可得出答案.【解答】解:∵﹣=﹣,﹣=﹣,又∵,∴﹣<﹣;故答案为:<.18.【分析】根据题意得到a+b=0,cd=1,m=1或﹣1,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,m=1或﹣1,当m=1时,原式=3(a+b)﹣1×1=0﹣1=﹣1;当m=﹣1时,原式=3(a+b)﹣(﹣1)×1=0+1=1.故3a+3b﹣mcd=﹣1或1.故答案为:﹣1或1.19.【分析】(1)原式利用已知的新定义计算即可得到结果.(2)根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【解答】解:(1)∵a*b=2a﹣b+2015,∴1*(﹣2)=2×1﹣(﹣2)+2015=2+2+2015=2019.故答案为:2019;(2)如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为6米,4米,∴地毯的长度为6+4=10(米),地毯的面积为10×2=20(平方米),∴买地毯至少需要20×40=800(元).故答案为:800.三、解答题(共计68分)20.【分析】(1)先化简,再计算加减法即可求解;(2)先算小括号里面的减法,再将括号外面的乘法变为乘法,再约分计算即可求解;(3)根据乘法分配律简便计算;(4)先变形为(10﹣)×35,再根据乘法分配律简便计算.【解答】解:(1)﹣12+5+(﹣16)﹣(﹣17)=﹣12+5﹣16+17=﹣28+22=﹣6;(2)×(﹣)×÷=×(﹣)××=﹣(3)(+﹣)×24=×24+×24﹣×24=3+16﹣18=1;(4)9×35=(10﹣)×35=10×35﹣×35=350﹣1=349.21.【分析】按照有理数的分类填写:有理数.【解答】解:(1)整数集合{ 3,﹣200%,|﹣2|,0…};(2)分数集合{,﹣5.32,2.…}.(3)非负数集合{3,,|﹣2|,0,2.…}.故答案为:3,﹣200%,|﹣2|,0;,﹣5.32,2.;3,,|﹣2|,0,2..22.【分析】用数轴表示各数,然后写出它们得大小关系.【解答】解:用数轴表示为:故它们的大小关系为﹣3<﹣1.5<﹣1<0<|<3.5.23.【分析】计算绝对值要根据绝对值的定义求解,注意在条件的限制下a,b的值剩下2组.a=3,b=﹣6或a=﹣3,b=6,所以a+b=3﹣6=﹣3或a+b=﹣3+6=3.【解答】解:由题意得:a=±3,b=±6,且a,b异号,∴a=3,b=﹣6或a=﹣3,b=6,所以a+b=3﹣6=﹣3或a+b=﹣3+6=3.24.【分析】把所有记录相加,再加上标准质量,计算即可得解.【解答】解:4﹣3+5﹣2+1﹣3+4﹣6,=4+5+1+4﹣3﹣2﹣3﹣6,=14﹣14,=0千克,0+50×8=400千克.答:8袋大米共重400千克.25.【分析】(1)在计算最终位置的时候,既要考虑距离的变化,又要考虑方向的变化,所以包含表示方向的符号一起进行加减运算,即求:+3﹣4+2+3﹣1﹣1﹣3的和.(2)考虑耗油时,只要考虑路程的总变化,不需要考虑方向的变化,所以将上述数值的绝对值相加,并包括回到出发点的距离求总路程,再计算耗油量.【解答】解:(1)由题意得:+3﹣4+2+3﹣1﹣1﹣3=﹣9+8=﹣1答:王叔叔送完最后一个快递时,在出发点的南方,距离出发点是1km.(2)设王叔叔总的行驶路程为S,则S=|+3|+|﹣4|+|+2|+|+3|+|﹣1|+|﹣1|+|﹣3|+|﹣1|=18∵每行驶1千米耗油0.2升,∴耗油量为18×0.2=3.6答:王叔叔这天送快递(含返回)共耗油3.6升.26.【分析】(1)根据数轴得到点A表示的数,结合“将A点向右移动4个单位长度”,即可得到答案,(2)根据数轴得到点C表示的数,结合“将点C向左移动3个单位长度”,得到此时点C表示的数,与点A和点B表示的数进行大小比较,即可得到答案,(3)设经过x秒两点重合,根据“点A、点B同时向右运动,点A的速度是2个单位/秒,点B的速度是1个单位/秒”和数轴上点A和点B的距离,得到关于x的一元一次方程,解之即可.【解答】解:(1)根据题意得:点A表示的数是﹣3,向右移动4个单位长度,﹣3+4=1,即表示的数为1,(2)根据题意得:点C表示的数是3,向左移动3个单位长度,3﹣3=0,即此时点C表示的数为0,点A为﹣3,点B为﹣1,0>﹣1>﹣3,即三个点中C点表示的数最大,是0,(3)设经过x秒两点重合,根据题意得:2x﹣x=2,解得:x=2,即经过2秒两点重合.第11 页共11 页。

2020年七年级上册数学第一次月考测试题

2020年七年级上册数学第一次月考测试题

2020年七年级上册数学第一次月考测试题一、选择题(每道题3分,共30分)1.在下列各数-0.333...,-π,0,3.1415,2.0101001...(相邻两个1之间依7是有理数的有()。

次多1个0),10%,-8A.3个B.4个C.5个D.6个2.下列各图,表示数轴正确的是()。

3.一个点在数轴上移动时,它所对应的数也会有相应的变化。

若点A从原点开始,先向右移动1个单位长度,再向左移动3个单位长度,这时该点所对应的数是()。

A.2B.-2C.8D.-84.下列各组数中,互为相反数的是()。

1 B.+9与+(-9) C.-0.5与-(+0.5) D.2与(-2)A.3与-35.下列各近似数精确到万位的是()。

A.3500B.4亿5干万C.3.5×104D.4×1046.数轴上与原点的距离为3的点表示的数是()。

A.3B.-3C.0或3D.3或-37.下列结论中正确的有()。

①任何数都不等于它的相反数;②符号相反的数互为相反数;③数轴上互为相反数的两个数对应的点到原点的距离相等;④a与-a 互为相反数∶⑤若有理数a、b 互为相反数,则它们一定异号()。

A.2个B.3个C.4个D.5个8.若a是最小的正整数,b是最大的负整数,则a-b的值为()。

A.0B.2C.-2D.±29.下列各对数的数值相等的是()。

A.-27与(-2)7B.-32与(-3)2C.23与32D.-(-3)2与-(-2)310.若a,b互为相反数,c,d互为倒数,且|m|=3,则2a-4m²+2b-( cd )2018=()。

A.-2054B.-35C.-36D.-37二、填空题(每道题3分,共30分)1按从小到大的顺序排列是_______________________。

11.把-22,(-2)2,-|2|,-212.乘积是6的两个负整数之和为_______________。

13.已知甲地的海拔高度是300m,乙地的海拔高度是-50m,那么甲地比乙地高_______________。

河北省保定市第一中学分校2023-2024学年七年级上学期第一次月考数学试题

河北省保定市第一中学分校2023-2024学年七年级上学期第一次月考数学试题

河北省保定市第一中学分校2023-2024学年七年级上学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .3B .47.如图,数轴上O 是原点,A 的位置,下列比较大小正确的是(A .a c >-B .a <-8.设20182019a =,20192020b =,c A .a b c <<B .<<b cA .4-B .11.若7x =,9y =,且A .2-或16-B .12.有理数a ,b 在数轴上的对应点的位置如图所示,则下面式子中正确的是(A .1a >-B .a b<13.一跳蚤在一直线上从O 点开始,第位,第3次向右跳3个单位,第4次向左跳100次落下时,落点处离点A .49B .14.对于任意实数x ,通常用的是()①[]33-=-②[]2.9-=-A .①②B .②③15.已知整数1a 、2a 、3a 、434a a =-+,…,1n a +=A .-1009B .-16.如图所示,圆的周长为先将圆周上的字母A 对应的点与数轴上的原点重合,再将圆沿着数轴向右滚动,那么数轴上的1949所对应的点与圆周上字母A.A B.B C.C D.D 二、填空题18.有理数a在数轴上对应的点如图所示,则a,19.现在有三个仓库1A、2A、3A,分别存有7吨、材料运往三个加工厂1B、2B、3B,每个加工厂都需要材料到每个加工厂的成本如下表所示(单位:元/三、解答题20.计算.(++(-+(-;(1)7)6)7)+-++-;(2)13(12)17(18)(1)求出线段AB的长度;(2)动点P从A出发沿数轴向右运动,速度为每秒沿数轴向左运动,速度为每秒2个单位长度,当所表示的数;(3)在(2)的条件下,设两点运动时间为t秒,t为何值时,点O、点Q到点P的距离相等.26.如图所示,一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动5-,已知A、B是数轴上的点,请参照如图并思考,个单位长度,可以看到终点表示是3完成下列各题.(1)如果点A表示的数是1-,将点A向右移动4个单位长度,那么终点B表示的数是___________.AB两点间的距离是___________.(2)如果点A表示的数是2,将点A向左移动6个单位长度,再向右移动3个单位长度,那么终点B表示的数是___________.AB两点间的距离是___________.(3)如果点A表示的数m,将点A向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示的数是___________.AB两点间的距离是___________.。

河北省衡水市第七中学2024-2025学年七年级上学期10月月考数学试题(无答案)

河北省衡水市第七中学2024-2025学年七年级上学期10月月考数学试题(无答案)

2023-2024学年度七年级数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题(每题3分,共36分)1.微信钱包收入200元时在微信账单中显示为,那么支出50元将显示为( )A .B .C .D .2.已知数轴上的点到原点的距离是3,那么在数轴上到点的距离是3的点所表示的数有( )。

A .4个B .3个C .2个D .1个3.下列各组数中,值相等的一组是( )A .和B .和C .和D .和4.如图所示,点在数轴上,则将从小到大排列正确的是( )A .B .C .D .5.计算,比较合适的做法是( )A .把第一、三两个加数结合,第二、四两个加数结合B .把第一、二两个加数结合,第三、四两个加数结合C .把第一、四两个加数结合,第二、三两个加数结合D .把第一、二、四这三个加数结合6.若,且,那么的值是( )A .5或1B .5或C .或13D .或7.定义一种新运算:,例如:.则的值为( )A .3B .9C .15D .278.下列计算正确的是( )A .B .C .D .9.若,则的值是( )A .B .1C .0D .210.下列结论:①一个数跟它的倒数相等,则这个数是和0;②若,则;③若,200+50+50-200+200-A A ()3+-3++()3+-3+-()3--3--()3--3+-0m n m n --、、、、0m n m n -<-<<<0m n m n <<<-<-0n m m n -<-<<<0m n n m<<<-<-()772032099⎛⎫-+++- ⎪⎝⎭9,4x y ==0x y +<x y -13-5-5-13-*a b ab b =-1*21220=⨯-=()*(4)2*3⎡⎤--⎣⎦11122⎛⎫⎛⎫+÷-=- ⎪ ⎪⎝⎭⎝⎭1313⎛⎫-÷-= ⎪⎝⎭()5015-⨯÷=-12323⎛⎫÷⨯-=- ⎪⎝⎭22024(2023)20220y x z ++-+-=()zx y +1-1±10m -<<21m m m<<0a b +<且,则;④若是有理数,则是非负数;⑤若,则,其中正确的有()A .1个B .2个C .3个D .4个11.下列计算正确的是( )A .B .C .D .12.已知非零实数,满足,则等于( )A .B .C .0D .1二、填空题(每题3分,共12分)13.体育课上全班女生进行了50米测试,达标成绩为10.6,下面是某小组8名女生的成绩记录:,,其中“+”号表示成绩大于,“”号表示成绩小于10.6s ,该小组女生的达标率为__________.14.若,求代数式__________.15.定义:对于一个有理数,我们把称为的有缘数.若,则;若,则.计算的结果为__________.16.设为不超过的最大整数,如.填空:__________,__________.三、解答题17.(每题3分,共12分).计算:(1);(2);(3);0ba>22a b a b +=--m m m +0c a b <<<()()()0a b b c c a --->331503020777⎛⎫-⨯-⨯-= ⎪⎝⎭111111323344510⎛⎫⎛⎫⎛⎫-÷-⨯-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44805527⎛⎫⎛⎫-÷+⨯-= ⎪ ⎪⎝⎭⎝⎭24123515⎛⎫⎛⎫-+÷-=- ⎪ ⎪⎝⎭⎝⎭a b c ,,1b a ca b c++=-abc abc 1±1-0.1,0.8-+0, 1.6,0.8,0.3, 1.5,0.6---+-10.6s -12x <<2121x x x x xx---+=--[]x x 0x ≥[]113x x =-0x <[]122x x =-+][31⎡⎤+-⎣⎦[]x x ][2.82, 2.53⎡⎤=-=-⎣⎦[]9.2=[]3.14-=()311484612⎛⎫--⨯-⎪⎝⎭32991110.251282⎛⎫⎛⎫-÷-+-⨯ ⎪ ⎪⎝⎭⎝⎭()()6665373123777⎛⎫⎛⎫⎛⎫-⨯-+-⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(4);18.(10分)综合与实践:【概念学习】定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如,等.类比有理数的乘方.我们把记作,读作“2的下3次方”,作“的下次方”记作,读作“的下4次方”,一般地,把记作,读作“的下次方”(1)直接写出计算结果:__________,__________.【深入探究】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:.(2)仿照上面的算式,将下列运算写成幂的形式:__________,__________;【结论应用】(3)计算:19(6分).每年的4月23日为世界读书日,为激发同学们的阅读兴趣,学校要为同学们购买60套《十万个为什么》课外书,现有甲、乙、丙三个书店可以选择,三个书店中每套书的定价都是25元,但三个书店的优惠方式不同,甲书店:打八五折;乙书店:买五送一;丙书店购书每满200元,返还现金30元.该学校要到哪个书店买书更划算?请用计算说明20.(8分)(1)比较下列各式的大小:①与;②与;③与;(2)请你由(1)归纳总结出与(为有理数)的大小关系,并用文字语言叙述此关系;(3)根据(2)中的结论,求当时,的取值范围.21(8分).一列队伍长,行进速度,为了传达一个命令,通讯员从队伍排尾跑步赶到位值排头,其速度然后又立即以大小为的速度返回排尾.问:(1)通讯员从离开排尾到重新回到排尾共需多少时间?(2)通讯员归队处与离队处相距多远?()221313(5)24042354⎡⎤⎛⎫-⨯--⨯--÷-⨯- ⎪⎢⎥⎝⎭⎣⎦222÷÷()()()()3333-÷-÷-÷-222÷÷32a n ()()()()3333-÷-÷-÷-4(3)-3-(0)a a a a a ÷÷÷≠…n a a n 32=2312⎛⎫= ⎪⎝⎭2411112222222222⎛⎫=÷÷÷=⨯⨯⨯= ⎪⎝⎭62=713⎛⎫-= ⎪⎝⎭236461112(2)333⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪⎝⎭⎝⎭23|-+|23-+∣23-+-23--20-+20-+a b +a b +,a b 20172017x x +=-x 120m L =12m /s v =23m /s v =32m /s v =22(8分).如图数轴上三点对应的数分别为.请回答问题:(1)若点先沿着数轴向右移动8个单位长度,再向左移动5个单位长度后所对应的数字是__________;(2)若点到点、点的距离相等,那么对应的值是__________;(3)若点到点、点的距离之和是10,那么对应的值是__________;(4)如果点以每秒4个单位长度的速度向右运动,点以每秒2个单位长度的速度向左运动,点从原点以每秒1个单位长度的速度向左运动,且三点同时出发.设运动时间为秒,请问为何值时点到点、点的距离相等?23.(10《中华人民共和国个人所得税法》规定,公民月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表累进计算:全月应纳税得所额税率不超过800元的部分超过800元至2000元的部分超过2000元至5000元的部分…………如果某人的月工资是4000元,则该人应上交的税款是多少?24(10分).数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为与的距离可表示为(1)数轴上表示3和8的两点之间的距离是__________;数轴上表示和的两点之间的距离是__________;(2)数轴上表示和的两点和之间的距离是__________;如果,则为__________;(3)当代数式取最小值时,的值为__________.,,A B C 6,2,x -A C A B x C A B x A B C t t C A B 5%10%15%231,2-=3-()235--=3-9-x 2-A B 4AB =x 123x x x ++-+-x。

河北省唐山市2020年七年级上学期数学第一次月考试卷B卷

河北省唐山市2020年七年级上学期数学第一次月考试卷B卷

河北省唐山市2020年七年级上学期数学第一次月考试卷B卷姓名:________ 班级:________ 成绩:________一、选择题(每题3分,共30分) (共10题;共30分)1. (3分) (2018七上·建昌期末) 下面几种图形:①三角形;②长方体;③正方形;④圆;⑤圆锥;⑥圆柱.其中立体图形有()A . 6个B . 5个C . 4个D . 3个2. (3分)下列几何体中,可以组成如图所示的陀螺的是()A . 长方体和圆锥B . 长方形和三角形C . 圆和三角形D . 圆柱和圆锥3. (3分) (2018七上·崆峒期末) 如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是()A . 丽B . 连C . 云D . 港4. (3分) (2016高一下·天津期中) 设a是最小的自然数,b是最大负整数的相反数,c是绝对值最小的有理数,则a、b、c三数之和为()A . -1B . 0C . 1D . 25. (3分) (2019七上·昌平期中) -5的绝对值等于()A . -5B .C . 5D . ±56. (3分) (2019七上·新疆期中) 下列说法正确的是()A . 两个有理数相加,和一定大于每一个加数B . 异号两数相加,取较大数的符号C . 同号两数相加,取相同的符号,并把绝对值相加D . 异号两数相加,用绝对值较大的数减去绝对值较小的数7. (3分)(2017·濮阳模拟) 如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“友”相对的面上的汉字是()A . 爱B . 国C . 善D . 诚8. (3分) (2019七上·海港期中) 下列各式计算正确的是().A . 4÷ =1B . =9C . -5÷(-5)=1D . -1-1=09. (3分)下列说法错误的是()A . 长方体和正方体都是四棱柱B . 棱柱的侧面都是四边形C . 柱体的上下底面形状相同D . 圆柱只有底面为圆的两个面10. (3分) (2018七上·西城期末) 实数a,b,c,d在数轴上对应点的位置如图所示,正确的结论是()A . a > cB . b +c > 0C . |a|<|d|D . -b<d二、填空题(每题3分,共18分) (共6题;共18分)11. (3分) (2019七上·灌南月考) 比较大小: ________ .12. (3分) (2018七上·邓州期中) 把(+4)-(-6)-(+7)写成省略加号和的形式为________.13. (3分)(2011·来宾) ﹣2011的相反数是________.14. (3分) (2017七上·乐清期中) 乐清某公司2017年3月盈利了3万元,记做+3万元,那么该公司2017年4月亏损了5万元,记做________.15. (3分)如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是________16. (3分)(2019·北京) 在如图所示的几何体中,其三视图中有矩形的是________.(写出所有正确答案的序号)三、解答题(共72分) (共7题;共72分)17. (6分)如图为7个正方体堆成的一个立体图形,分别画出从正面、左面、上面看这个几何体所看到的图形.18. (7.0分)观察如图所示的直四棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为20cm,侧棱长为8cm,则它的侧面积为多少?19. (25分) (2020七上·云梦月考) 计算:(1)(2)(3)– + +(–)(4)-2.4++(- )+(-1.6)20. (8分) (2019七上·柳州期中) 请在数轴上表示以下各数,并用“>”把这些数连接起来.-1 ,0, 2, ,-3.521. (8分) (2017七上·余姚期中) 在一次数学测验中,七年级(4)班的平均分为86分,•如果把高于平均分的部分记作正数,不足平均分的部分记作负数(1)李洋得了90分,应记作多少?(2)刘红的成绩记作-5分,她实际得分是多少?(3)李洋和刘红相差多少分?22. (8分) (2019七上·洪湖月考) 已知多项式,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.23. (10分) (2018七上·衢州期中) 在数轴上,点A,B,C表示的数分别是-6,10,12.点A以每秒3个单位长度的速度向右运动,同时线段BC以每秒1个单位长度的速度也向右运动.(1)运动前线段AB的长度为________;(2)当运动时间为多长时,点A和线段BC的中点重合?(3)试探究是否存在运动到某一时刻,线段AB= ?若存在,求出所有符合条件的点A表示的数;若不存在,请说明理由.参考答案一、选择题(每题3分,共30分) (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(每题3分,共18分) (共6题;共18分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(共72分) (共7题;共72分)17-1、18-1、18-2、18-3、19-1、19-2、19-3、19-4、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、。

河北省石家庄市长安区石家庄市第八十九中学2023-2024学年七年级上学期月考数学试题

河北省石家庄市长安区石家庄市第八十九中学2023-2024学年七年级上学期月考数学试题

河北省石家庄市长安区石家庄市第八十九中学2023-2024学
年七年级上学期月考数学试题
学校:___________姓名:___________班级:___________考号:___________
..
..
.下图是某地十二月份某一天的天气预报,则该天的温差是(
A.7℃B.
5.对于多项式2x2﹣3x﹣5
A.它是二次三项式
A.如图甲所示,直线AB不经过点P
B.如图乙所示,直线a与直线b交于点O
C.如图丙所示,点C在线段AB上
A .以点C 为圆心,OD 为半径的弧A .如果a b =,那么22ac bc =
B .如果
C .如果a b =,那么22a c b c
+=+D .如果A .0b a ->B .a b >
A.45︒
16.有一列数按一定规律排列:
2n
(1)当点Q 在DA 边上运动时,(2)当t 为
s 时,20.小明在黑板上书写了一个正确的运算过程,小亮不小心擦掉了一个二次三项式.形
请你借助三角板完成以下操作,并在所画图形上标注所使用三角板的相应角度:(1)设计用一副:三角板画出135︒角的画图方案,并画出相应的几何图形;(2)用一副三角板能画出115︒的角吗?______(23.如图,延长线段AB 到C ,使3BC AB =(1)若3CD =.求线段AC 的长度.
(1)该用户共需材料的长度为______米(用含
(2)若1米铝合金材料的平均费用为50元,求当料的总费用为多少元?
25.制作一种木床要用一个床板和4条床腿,
如图1,当
1
3
AOD AOB
∠=∠时,求∠BOE
如图2,若OD在AOB
∠的内部运动,且。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9题图
河北省 第二学期月考试卷
七年级数学试题
本试卷分卷I 和卷II 两部分;卷I 为选择题,卷II 为非选择题. 本试卷满分为120分,考试时间为90分钟.
卷I (选择题,共36分)
一、选择题:(本大题共12个小题,每小题3分,共36分) 1. 用科学记数法表示123 000 000正确的是( )
A. 1.23×106
B. 123×106
C. 1.23×108
D. 0.123×108
2. 下列运算正确的是( )
A. x 3
+x 2
=5 B. x 2
·x 3
=x 6
C. (x 2)3
=x
5
D. x 5÷x 3=x 2
3. 如图,AB ∥CD ,∠A=20°,∠C=30°,则∠APC 的度数为( ) A. 40° B.45° C.50° D.60°
4. 如图,直线a 和b 相交于点O ,若∠1=40°,则∠2的度数为( ) A. 50° B. 60° C. 140° D. 160°
5. 下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )
A. 1,2,6
B. 2,2,4
C. 1,2,3
D. 2,3,4 6. 一个三角形的三个内角度数比为4:5:9,则它是( )
A. 钝角三角形
B. 直角三角形
C. 锐角三角形
D. 无法确定 7. 下列不等式中,属于一元一次不等式的是( ) A. x+y>3 B. 2x 2
>0 C.
211
-<+x
D. x-1≤3x+4 8. 方程组⎩⎨
⎧=+=-4
22
y x y x 的解是( )
A. ⎩⎨
⎧==21y x B. ⎩⎨⎧==13y x C. ⎩⎨⎧-==20y x D. ⎩
⎨⎧==02
y x
9. 如右图,AB ∥CD ,AD 平分∠BAC ,若∠BAD=70°,那么∠ACD 的度数为( )
A. 40°
B.35°
C.50°
D.45° 10. 不等式x+5≤3的解集在数轴上表示为( )
11. 某班为奖励在校运会上取得较好成绩的运动员,花400元钱购买了甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元。

若设购买两甲种奖品x 件,乙种奖品y 件,则正确的方程组是( ) A.⎩⎨
⎧=+=+400161230y x y x B. ⎩⎨⎧=+=+400
121630y x y x
C. ⎩⎨⎧=+=+400301612y x y x
D. ⎩
⎨⎧=+=+400301216y x y x
12. 在边长为a 的正方形中挖去一个边长为b 的小正方形(a>b ),再沿虚线剪开,如图1,然后拼成一个梯形,如图2,根据这两个图形的面积关系,下列式子成立的是( )
考 号
姓 名
学 校
班 级
考 场
密 封 线
第3题图 第4题图
A. a2-b2=(a+b)(a-b)
B. (a+b)2=a2+2ab+b2
C.(a-b)2=a2-2ab×b2
D. a2- b2=(a-b)2
第三次月考试卷
七年级数学试题
卷II (非选择题,共84分)
注意:1、答卷Ⅱ前,将密封线左侧的项目填写清楚.
2、答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上. 二、填空题(本大题共8个小题,每小题2分,共16分) 13. 2-2=____________ (π-3.14)0______________
14. 已知2x-y-3=0, 若用含x 的代数式表示y ,则y=______________ 15. 等腰三角形的两边长分别为4和9,则它的周长是_________ 16. 如图∠A+∠B+∠C+∠D+∠E 的度数为___________ 17. 不等式2(x-2)+1≤0的非负整数解是________.
18. 如图,在△ABC 中,CD ⊥AB ,∠ACB=96°,∠B=20°,则∠ACD=__________。

19. 某次知识竞赛试卷有20道题,评分办法是答对一题记5分,答错一题扣2分,不答 记0分。

小明有3道题没答,但成绩超过60分,小明最少答对了_______道题。

20. 三角 表示3abc,方框 表示-4x y w z
,求 =_________. 三、解答题(共68分)
21. (16分)解下列方程组和不等式
(1)⎩⎨⎧=+=-7321n m n m (2)⎩
⎨⎧=-=+35
y x y x
(3)2x+2<6(解集在数轴上表示出来) (4)3
1
-221x x ≥
+
22.(12分)计算
(1)3x 2·(-x )2
÷x (2)(x+2)(x-3)
(3)(3a+b )2 (4)(a+1)(a-1)-(a+1)
2
23. (6分)先化简,再求值
(2x+1)2
-4(x+2)(x-2),其中x=-5
24. (6分)如图,已知D ,E 分别在△ABC 的边上,且DE ∥BC,∠B=60°, ∠AED=40°,求∠A 的度数。

第16题图
第18题图
考 号
姓 名
学 校
班 级
考 场
密 封 线
精品资料


线
25.(6分)小军家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用
水不超过5m 3,则每立米收费1.8元,若每户每月用水超过5m 3
,则超过部分每立方米收费2元,小军家每月用水量至少是多少立方米?
26. (7分)如图,AD 平分∠EAC ,且AD ∥BC ,请说明∠B=∠C 的理由。

27.(7分)如图,OE 是∠AOB 的平分线,CD ∥OB 交OE 于点D ,∠ACD=70°, (1)求∠DOB 的度数(3分) (2)求∠CDE 的度数(4分)
28.(8分)以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省外境内投资合作项目多51个。

(1)湖南省签订的境外、省外境内的投资合作项目分别有多少个?
(2)若境外、省外境内投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,在这次“中博会”中,东道主湖南省共引进资金多少亿元?
A C D
E B O F。

相关文档
最新文档