贴片电感和贴片磁珠的区别
电感和磁珠的区别
电感和磁珠的区别1、电感和磁珠都可以用于滤波,但是机理不一样。
电感滤波是将电能转化为磁能,磁能将通过两种方式影响电路:一种方式是重新转换回电能,表现为噪声;一种方式是向外部辐射,表现为EMI(电磁干扰)。
而磁珠是将电能转换为热能,不会对电路构成二次干扰。
2、电感在低频段滤波性能较好,但在50MHz以上的频段滤波性能较差;磁珠利用其电阻成分能充分地利用高频噪声,并将之转换为热能已达到彻底消除高频噪声的目的。
3、从EMC(电磁兼容)的层面说,由于磁珠能将高频噪声转换为热能,因此具有非常好的抗辐射功能,是常用的抗EMI器件,常用于用户接口信号线滤波、单板上高速时钟器件的电源滤波等。
4、电感和电容构成低通滤波器时,由于电感和电容都是储能器件,因此两者的配合可能产生自激;磁珠是耗能器件,与电容协同工作时,不会产生自激。
5、一般,电源用电感的额定电流相对较大,因此,电感常用于需要通过大电流的电源电路上,如用于电源模块滤波;而磁珠一般仅用于芯片级电源滤波(不过,目前市场上已经出现了大额定电流的磁珠)。
6、磁珠和电感都具有直流电阻,磁珠的直流电阻相对于同样滤波性能的电感更小一些,因此用于电源滤波时,磁珠上的压降更小。
另外要注意一些电感和磁珠的共同点:1)额定电流。
当电感的额定电流超过其额定电流时,电感值将迅速减小,但电感器件未必损坏;而磁珠的工作电流超过其额定电流时,将会对磁珠造成损伤。
2)直流电阻。
用于电源线路时,线路上存在一定的电流,如果电感或磁珠本身的直流电阻较大,则会产生一定压降。
因此选型中,都要求选择直流电阻小的器件。
3)频率特性曲线。
电感和磁珠的厂家资料都附有器件频率特性曲线图。
在选型中,需仔细参考这些曲线,以选择合适的器件。
应用时,注意其谐振频率。
全面的磁珠知识——原理、应用选型以及与电感的区别和联系
全面的磁珠知识——原理、应用选型以及与电感的区别和联系一、磁珠工作的基本原理磁珠的主要原料为铁氧体。
铁氧体是一种立方晶格结构的亚铁磁性材料。
铁氧体材料为铁镁合金或铁镍合金,它的制造工艺和机械性能与陶瓷相似,颜色为灰黑色。
电磁干扰滤波器中经常使用的一类磁芯就是铁氧体材料,许多厂商都提供专门用于电磁干扰抑制的铁氧体材料。
这种材料的特点是高频损耗非常大,具有很高的导磁率,它可以是电感的线圈绕组之间在高频高阻的情况下产生的电容最小。
对于抑制电磁干扰用的铁氧体,最重要的性能参数为磁导率μ和饱和磁通密度Bs。
磁导率μ可以表示为复数,实数部分构成电感,虚数部分代表损耗,随着频率的增加而增加,是频率的一个函数如电阻R(f),f代表频率。
这里还要强调一下高频的概念:不仅指周期性变化的信号,也特指快速边沿的脉冲等效频率f= 0.5/tr,tr为信号上升/下降边沿,具体参见《数字高速设计》参考书。
<磁珠等效电路>因此如上,它的等效电路为由电感L和电阻R组成的串联电路,L 和R都是频率f的函数。
当导线穿过这种铁氧体磁芯时,所构成的电感阻抗在形式上是随着频率的升高而增加,但是在不同频率时其机理是完全不同的。
<实际磁珠形式>在低频段,阻抗由电感的感抗构成,低频时R很小,磁芯的磁导率较高,因此电感量较大,L起主要作用,电磁干扰被反射而受到抑制,并且这时磁芯的损耗较小,整个器件是一个低损耗、高品质因数Q特性的电感,这种电感容易造成谐振因此在低频段,有时可能出现使用铁氧体磁珠后干扰增强的现象。
所以实际电路中往往也会串接一个小电阻,消除谐振。
<串联小电阻的磁珠电路>在高频段,阻抗由电阻成分构成,随着频率升高,磁芯的磁导率降低,导致电感的电感量减小,感抗成分减小。
但是,这时磁芯的损耗增加,电阻成分增加,导致总的阻抗增加,当高频信号通过铁氧体时,电磁干扰被吸收并转换成热能的形式耗散掉。
<磁珠滤波损耗原理示意><高频100M表现出的电阻特性>阻抗转折点,两种特性的转折点为X和R曲线的交点,我们称这个转折点为抗阻特性转折点。
磁珠和电感的区别
磁珠和电感的区别简介:磁珠和电感作为两种常见的电子元件,在电子领域使用广泛。
它们都能够在电路中起到储存和释放能量的作用,但是它们的工作原理和特点略有不同。
本文将从磁性特性、工作原理、应用领域等方面探讨磁珠和电感之间的区别。
一、磁性特性1. 磁珠:磁珠是一种由磁性材料制成的小圆球状物体。
它具有良好的磁性,往往适用于高频电路中。
磁珠一般采用铁氧体等材料制成,具有高磁导率和强磁饱和特性,可以在高频电路中提供较低的电感值。
磁珠在电路中起到滤波、隔离和储能的作用。
2. 电感:电感是一种由导体线圈制成的元件,主要使用导体线圈的电磁感应原理。
电感的磁性取决于线圈中的线圈材料和线圈的形状。
线圈中的磁性材料一般采用镍铁合金,具有较高的磁导率和饱和磁感应强度。
电感可以在电路中储存和释放能量,具有阻抗变化和滤波功能。
二、工作原理1. 磁珠:磁珠主要通过磁导率和磁感应强度来调整电路中的电感值。
当电流通过磁珠时,磁珠内部会产生磁场,通过改变磁场强度和方向,可以改变电感的大小和性质。
磁珠可根据不同的工作频率和电流条件选择合适的材料和尺寸。
2. 电感:电感基于电磁感应原理工作。
当电流通过线圈时,产生的磁场会自感应回到线圈中,产生感应电动势,并对电路中的电流起到调节的作用。
线圈的大小和形状以及线圈中的材料都会影响电感的大小和性能。
通过改变线圈的参数,可以实现对电流和电压的调控。
三、应用领域1. 磁珠:磁珠常见于高频电路和无线通信领域。
它们广泛应用于滤波器、隔离器和匹配器等电路中,可提供较低的电感值和较高的频率响应。
磁珠还可用于电源管理电路和射频功率放大器等应用,具有稳定性和可靠性的特点。
2. 电感:电感广泛应用于电源电路、放大器、射频通信和变频器等领域。
在直流电源电路中,电感可用于稳定电流和降低电压波动。
在放大器和射频通信领域,电感可用于匹配和调谐,提高信号转换效率。
电感还常用于变频器中的滤波和电路保护等方面。
结论:磁珠和电感作为常见的电子元件,在电子领域起到重要作用。
贴片功率电感与磁珠的区别
贴片功率电感与磁珠的区别
片式电感及其应用
片式电感与片式磁珠的区别
电感器本身是一个无功元件,它在电路中不消耗能量。电感器之所以能够阻止高频信 号在线路中流通,发挥对电磁干扰的抑制作用,是因为电感器在高频信号作用下体现 了一个高阻抗元件,阻止了高频信号在线路中的流通,而将高频信号反射回干扰源。 就这个应用的频率范围来说,很少有超过50MHz的。
(2)电源线的滤波
在设备的电磁干扰的传播途径中,电源线是最重要的媒介,因为电源线的 长度(包括设备的电源进线和电力传输的架空线延伸)足以构成射频信号的被动天 线。此外,电网内的各种设备开、关和运行中形成的骚动也在电网中肆意流传。 上述干扰对电网内的敏感设备的可靠工作造成威胁。射频信号在电源线上的传输 是以两种模式进行的,一种是共模型式,在线一大地及中线一大地两个路径上出 现;另一种是差模型式,在线一中线里传播。
对磁珠来说,它本身是一个软磁铁氧体磁芯,串联在需要抑制干扰的线路上,诚然在 频率较低时,铁氧体磁珠在串联电路上仍然体现为一个电感。然而对于频率更高的干 扰,由于磁芯的磁导率的降低,导致电感的电感量减小,感抗成分减小,因此磁珠电 感对于高频干扰的阻挡作用在减少。而与此同时,磁芯的损耗(涡流损耗) 却在增加。 后者等效为损耗电阻,电阻成分的增加,导致磁珠在线路上的总阻抗依然在增加,所 以当高频干扰通过铁氧体时,磁珠对高频干扰的阻挡作用依然在增加,不过这次磁珠 不是将高频干扰反射回干扰源,而是将高频干扰转换成热能的形式给耗散掉了。
电源线滤波器则被安插在电源线上,专门用来抑制射频信号传播的器件。 在电源线滤波器设计中往往不用差模电感,而采用共模电感。共模电感 的两个线圈绕在同一磁芯上(同名端在线圈的同一侧),这种绕线方法对于差 模电流(包括电源电流)产生的磁通相互抵消,不会产生磁路饱和;而对共模电 流则体现一个很大的电感,取得大的滤波效果。 应当指出的是,共模电感器的两个线圈绕制不可能完全对称,因此共模 电感器实际上还是残留一定程度的差模电感成分,对于差模干扰仍有一定程 度抑制作用。 这样看来,无论是信号线或者是电源线,从抑制电磁干扰的角度出发, 用得最多的还是共模抑制措施。因此从使用片式电感器的角度出发,用得最 多的还是片式共模电感器。另外,从电磁兼容对策器件生产商提供的电感器 来说也是片式共模电感器。
贴片功率电感和磁珠的选型
片式电感
在需要使用片式电感的场合,要求电感实现以下两个基本功能: 电路谐振和扼流电抗。谐振电路包括谐振发生电路,振荡电路, 时钟电路,脉冲电路,波形发生电路等等。谐振电路还包括高Q带 通滤波器电路。
要使电路产生谐振,必须有电容和电感同时存在于电路中。在电 感的两端存在寄生电容,这是由于器件两个电极之间的铁氧体本 体相当于电容介质而产生的。在谐振电路中,电感必须具有高Q, 窄的电感偏差,稳定的温度系数,才能达到谐振电路窄带,低的 频率温度漂移的要求。
THANKS
谢 谢 聆 听
片式磁珠由软磁铁氧体材料组成,构成高体积电阻率的独石结构。涡流损耗同铁氧体材料的电 阻率成反比。涡流损耗随信号频率的平方成正比。使用片式磁珠的好处: 小型化和轻量化在射频噪声频率范围内具有高阻抗,消除传输线中的电磁干扰。 闭合磁路结构,更好地消除信号的串绕。 极好的磁屏蔽结构。 降低直流电阻,以免对有用信号产生过大的衰减。 显著的高频特性和阻抗特性(更好的消除RF能量)。 在高频放大电路中消除寄生振荡。 有效的工作在几个MHz到几百MHz的频率范围内。
贴片功率电感和磁珠的选型
在电子设备的PCB板电路中会大量使用感性元件和EMI滤 波器元件。这些元件包括片式电感和片式磁珠,以下就 这两种器件的特点进行描述并分析他们的普通应用场合 以及特殊应用场合。 表面贴装元件的好处在于小的封装尺寸和能够满足实际 空间的要求。除了阻抗值,载流能力以及其他类似物理 特性不同外,通孔接插件和表面贴装器件的其他性能特 点基本相同。
高Q电路具有尖锐的谐振峰值。窄的电感偏置保证谐振频率偏差尽 量小。稳定的温度系数保证谐振频率具有稳定的温度变化特性。
磁珠与电感的区别
磁珠与电感的区别磁珠由氧磁体组成,电感由磁心和线圈组成,磁珠把交流信号转化为热能,电感把交流存储起来,缓慢的释放出去。
磁珠对高频信号才有较大阻碍作用,一般规格有100 欧/100mMHZ , 它在低频时电阻比电感小得多。
电感的等效电阻可有Z=2X3.14xf 来求得。
铁氧体磁珠(Ferrite Bead) 是目前应用发展很快的一种抗干扰元件,廉价、易用,滤除高频噪声效果显著。
在电路中只要导线穿过它即可(我用的都是象普通电阻模样的,导线已穿过并胶合,也有表面贴装的形式,但很少见到卖的)。
当导线中电流穿过时,铁氧体对低频电流几乎没有什么阻抗,而对较高频率的电流会产生较大衰减作用。
高频电流在其中以热量形式散发,其等效电路为一个电感和一个电阻串联,两个元件的值都与磁珠的长度成比例。
磁珠种类很多,制造商应提供技术指标说明,特别是磁珠的阻抗与频率关系的曲线。
有的磁珠上有多个孔洞,用导线穿过可增加元件阻抗(穿过磁珠次数的平方),不过在高频时所增加的抑制噪声能力不可能如预期的多,而用多串联几个磁珠的办法会好些。
铁氧体是磁性材料,会因通过电流过大而产生磁饱和,导磁率急剧下降。
大电流滤波应采用结构上专门设计的磁珠,还要注意其散热措施。
铁氧体磁珠不仅可用于电源电路中滤除高频噪声(可用于直流和交流输出),还可广泛应用于其他电路,其体积可以做得很小。
特别是在数字电路中,由于脉冲信号含有频率很高的高次谐波,也是电路高频辐射的主要根源,所以可在这种场合发挥磁珠的作用。
铁氧体磁珠还广泛应用于信号电缆的噪声滤除。
以常用于电源滤波的HH-1H3216-500 为例,其型号各字段含义依次为:HH 是其一个系列,主要用于电源滤波,用于信号线是HB 系列;1 表示一个元件封装了一个磁珠,若为4 则是并排封装四个的;H 表示组成物质,H、C、M 为中频应用(50-200MHz),T 低频应用(<50MHz),S 高频应用(>200MHz);3216 封装尺寸,长3.2mm,宽1.6mm,即1206 封装;500 阻抗(一般为100MHz 时),50 ohm。
陶瓷贴片电容丶贴片电感丶片式磁珠命名规则与基本知识
陶瓷贴片电容、贴片电感.片式磁珠muRuta村田命名规则与基本知识一、村田陶瓷贴片电容知识M名衣示法如卜:片状独们盹瓷电容器GRM 15.3R7K 225KE15D•GRM—农示儀锡电极:卄通貼片期瓷12容•常用的村} 11容就是GRM艸通贴片海瓷电容与GNM卄通贴片搏容:•18——衣示尺寸(长*宽):1.6*0.8mm即内通用尺对衣示是(K*审)1.6*0.8mm (单位为mm:c词阿卜通用尺、J A示是用英寸0603 (单位为inch;,卜J E询常用代码仃03、15、18、21、31、32、42、43、55〕;,II 体的对应值如卜I03-...0.6*0.3mm- (0201)15——1.0*0.5mm~-040218-...1.6*0.8mm- (0603)21-—2.0# 1.25mm——080531一“3.2* 1.6mm—120632-—3.2* 1.5mm一・121042一.5*2.0mm——180843 …45*3・2mm•—181255—5.7 拿5・0mm——2220•8——衣示用度(T:: 0.8mm常用厚度村田代码仃5、6、8、9、B、C、E:'h貝㈱对应值如卜:5-…0.5mm 6-…0.6mm 8-…0.8mm 9-…0.9mm B-…1.25mm C-…1.6mm E -—2.5mm•R7——农示材质:X7R常用材质村t:代码有5C、R6、R7、F5等,R体的对应值如卜:5C--COG/NPO/CHR6——X5RR7——X7RF5・——Y5V5C I仆温度是・55度一+125必温度系敌是0+・30ppm/gR6 I作泪度是・55度一H85度,SH度系数是+-15%:R7 1作温度是・55度一H25度,温度系数好+15%:F5 I作fiU是・30度—85度.温度系数是+22 -82%lOOpfW卜小容fi*L般采比5C材頂,100PF—luf人一般采用R7材质,luf以上一股采用R6材质,櫛S®求不禹的般采用F5材质。
SMT元器件的认识
SMT元器件的认识一.关于SMT元器件1.SMT是英文Surface Mount Technology 的缩写,其中文含义是表面贴装技术,是一种无需在印制线路板上钻插装孔,直接将表面组装元器件贴或焊接到印刷线路板规定位置上的电路联装技术。
2.SMT主要由SMT元器件、组装技术、贴装设备三部分组成。
3.SMT元器件主要有:贴片用印制电路板(PCB:Printed Circuit Board)贴片电阻(Chip Resistor)、贴片电容(Chip Capacitor)、贴片电感(ChipInductor)、贴片磁珠(Chip Bead)、贴片二极管、贴片三极管、贴片集成电路(IC:Integrated Circuit)和贴片插座等。
4.SMT元器件的电脑编号以字母“BD”开头,以字母“T”结尾表示贴片。
二.贴片用印制电路板(PCB)1.印制电路板也叫印刷电路板,即PCB(Printed Circuit Board)。
2.PCB有单层板、双层板和多层板。
3.贴片用PCB与一般PCB从外观上最显而易见的区别就是贴片用PCB上固定插机元件用的插装孔较少,取而代之的是用来焊接SMT元器件的焊盘较多。
4.在贴片用PCB上还可以找到定位光点,其用途是贴装设备,用此来对PCB进行定位,避免元器件贴装在PCB上时发生偏移。
5.PCB上的白色丝印可用来标识该PCB的型号、生产厂家、生产日期、元器件的类型、位置和有方向、极性元件的贴插装要求等。
1)标识元器件的类型是指一般在PCB上用英文字母来表示元器件的类型,如电容表示为C,电阻表示为R,电感表示为L,二极管表示为D,三极管表示为Q,IC表示为U,插座表示为J,变压器表示为T。
2)标识元器件位置与BOM(物料清单,Bill Of Material)相对应,查BOM单即可知对应位置元器件的规格型号。
3)标识有方向、极性元件的插装要求是指如电解电容的正负极会有区别的标识;二极管的极性标识;连接器、插座等插装时应按丝印要求进行插装;集成电路IC进行贴装时所必须确定的第一脚和方向等。
磁珠与电感的区别?
磁珠(磁性珠子)和电感(电感器)是两种不同的物理概念和应用。
1. 磁珠(磁性珠子):磁性珠子是指具有磁性的小颗粒或球状物体。
它们通常由磁性材料如铁、钢或氧化物制成。
当磁场施加在磁珠上时,它们能被吸引或与其他磁性材料产生相互作用。
磁珠常用于磁性材料的处理、分离、适配器和磁性悬浮等应用领域。
2. 电感(电感器):电感是指电路元件中的电学参数,在直流电路和交流电路中都起重要作用。
电感器(电感元件)是一种用来储存电磁能量的器件,它由绕组(通常是线圈)和磁芯组成。
当电流通过绕组时,会在磁芯中产生一个磁场,从而储存电磁能量。
电感器常用于滤波、变压器、电源、驱动器、射频电路等应用中。
综上所述,磁珠主要是指具有磁性的小颗粒或球状物体,而电感是指电路元件中的电学参数,用于储存电磁能量。
它们分别属于不同的物理和应用领域。
电路设计方案磁珠选型与应用知识
电路设计磁珠选型与应用知识使用贴片磁珠和贴片电感的原因:是使用贴片磁珠还是贴片电感主要还在于应用。
在谐振电路中需要使用贴片电感。
而需要消除不需要的EMI噪声时,使用贴片磁珠是最佳的选择。
1。
磁珠的单位是欧姆,而不是亨特,这一点要特别注意。
因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆。
磁珠的 DATASHEET上一般会提供频率和阻抗的特性曲线图,一般以100MHz为标准,比如1000R 100MHz,意思就是在100MHz频率的时候磁珠的阻抗相当于600欧姆。
2。
普通滤波器是由无损耗的电抗元件构成的,它在线路中的作用是将阻带频率反射回信号源,所以这类滤波器又叫反射滤波器。
当反射滤波器与信号源阻抗不匹配时,就会有一部分能量被反射回信号源,造成干扰电平的增强。
为解决这一弊病,可在滤波器的进线上使用铁氧体磁环或磁珠套,利用滋环或磁珠对高频信号的涡流损耗,把高频成分转化为热损耗。
因此磁环和磁珠实际上对高频成分起吸收作用,所以有时也称之为吸收滤波器。
不同的铁氧体抑制元件,有不同的最佳抑制频率范围。
通常磁导率越高,抑制的频率就越低。
此外,铁氧体的体积越大,抑制效果越好。
我爱方案网上某些大牛研究发现:在体积一定时,长而细的形状比短而粗的抑制效果好,内径越小抑制效果也越好。
但在有直流或交流偏流的情况下,还存在铁氧体饱和的问题,抑制元件横截面越大,越不易饱和,可承受的偏流越大。
EMI吸收磁环/磁珠抑制差模干扰时,通过它的电流值正比于其体积,两者失调造成饱和,降低了元件性能;抑制共模干扰时,将电源的两根线(正负)同时穿过一个磁环,有效信号为差模信号,EMI吸收磁环/磁珠对其没有任何影响,而对于共模信号则会表现出较大的电感量。
磁环的使用中还有一个较好的方法是让穿过的磁环的导线反复绕几下,以增加电感量。
可以根据它对电磁干扰的抑制原理,合理使用它的抑制作用。
铁氧体抑制元件应当安装在靠近干扰源的地方。
电感与贴片磁珠的区别
电感与贴片磁珠的区别
1、有一匝以上的线圈习惯称为电感线圈,少于一匝(导线直通磁环)的线圈习惯称之为磁珠;
2、电感是储能元件,而贴片磁珠是能量转换(消耗)器件;
3、电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC对策;
4、贴片磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰.
两者都可用于处理EMC、EMI问题;
5、新晨阳电容电感一般用于电路的匹配和信号质量的控制上.在模拟地和数字地结合的地方用贴片磁珠.
6、贴片磁珠有很高的电阻率和磁导率,他等效于电阻和电感串联,但电阻值和电感值都随频率变化。
他比普通的电感有更好的高频滤波特性,在高频时呈现阻性,所以能在相当宽的频率范围内保持较高的阻抗,从而提高调频滤波效果。
7、作为电源滤波,可以使用电感。
磁珠的电路符号就是电感但是型号上可以看出使用
的是磁珠在电路功能上,磁珠和电感是原理相同的,只是频率特性不同罢了
8、磁珠由氧磁体组成,电感由磁心和线圈组成,磁珠把交流信号转化为热能,电感把交流存储起来,缓慢的释放出去。
9、贴片磁珠对高频信号才有较大阻碍作用,一般规格有100欧/100mMHZ ,它在低频时电阻比电感小得多。
电感和磁珠的联系与区别
电感和磁珠的联系与区别
1、电感是储能元件,而磁珠是能量转换(消耗)器件;
2、电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC对策;
3、磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰,两者都可用于处理EMC、EMI问题;EMI的两个途径,即:辐射和传导,不同的途径采纳不同的抑制方法,前者用磁珠,后者用电感;
4、磁珠是用来汲取超高频信号,象一些RF电路,PLL,振荡电路,含超高频存储器电路(DDRSDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种蓄能元件,用在LC振荡电路,中低频的滤波电路等,其应用频率范围很少超过50MHZ;
5、电感一般用于电路的匹配和信号质量的掌握上,一般地的连接和电源的连接。
在模拟地和数字地结合的地方用磁珠。
对信号线也采纳磁珠。
铁氧体是磁性材料,会因通过电流过大而产生磁饱和,导磁率急剧下降。
大电流滤波应采纳结构上特地设计的磁珠,还要留意其散热措施。
铁氧体磁珠不仅可用于电源电路中滤除高频噪声(可用于直流和沟通输出),还可广泛应用于其他电路,其体积可以做得很小。
特殊是在数字电路中,由于脉冲信号含有频率很高的高次谐波,也是电路高频辐射的主要根源,所以可在这种场合发挥磁珠的作用。
铁氧体磁珠还广泛应用于信号电缆的噪声滤除。
有的磁珠上有多个孔洞,用导线穿过可增加元件阻抗(穿过磁珠次数的平方),不过在高频时所增加的抑制噪声力量不行能如预期的多,而用多串联几个磁珠的方法会好些。
谈一下电感与磁珠的区别.
谈一下电感与磁珠的区别.
前面几篇有关磁珠的博文发表后,有读者留言让谈一下电感与磁珠的区别.。
本人也看了几篇写电感和磁珠的文章,认为还是有必要写一下,使读者对两者的异同有更深入的了解。
(相关阅读:EMC磁珠到底有什么特性?) 磁珠已经在前面的博文里作了较详细的说明,相信大家对磁珠应该有一些了解,这里就先从电感谈起。
电感是由包括电阻、电容在内的三个最常用的无源元件之一。
功能上主要作为电源转换电路中的储能元件、射频电路中感性负载和噪声滤波器元件应用。
电感器从生产工艺上分类主要有绕线式、薄膜和叠层电感;从结构上分为屏蔽和非屏蔽电感;从安装方式主要分为表面贴SMT和穿孔两类;从应用上主要有低频信号、功率和射频电感等;从材料上主要有磁性和非磁性材料,其中磁性材料有铁氧体,铁基磁粉芯等,非磁性材料主要有非磁性陶瓷等,其中铁氧体和铁基磁粉芯电感主要应用于低中高频,非磁性陶瓷电感主要用于射频应用。
电感的技术指标主要包括电感量L,直流电阻DCR,饱和电流Isat和温升电流Irms,自谐振频率SRF和品质因数Q等。
这里需要说明的是饱和电流的定义。
当电感上流过的电流逐渐增大时,磁芯会逐渐进入饱和状态,电感值会逐渐下降。
当磁芯完全饱和时,电感值会下降到相当于空心绕线的很小的感值。
饱和电流通常的定义为当电感下降20% 时的电流值。
如下图所示的电感,饱和电流Isat值为3.6A左右。
有些厂家会把饱和电流定义为电感下降10%或30%。
在选择不同厂家电感进行比较时需要注意这一点。
电感的温升电流Irms是指当电感工作时,电感的温度上升较周围环境温。
磁珠和电感的区别
转自电子制作网:老铎/165v/div/2007-6-27/685-1.htm了解磁珠性能用途和电感的区别-磁珠在高频电路中应用非常广泛,了解磁珠的性能和用途使电路设计更加简洁方便。
电感是储能元件,而磁珠是能量转换(消耗)器件。
电感多用于电源滤波回路,侧重于抑止传导性干扰;磁珠多用于信号回路,主要用于EMI方面。
磁珠用来吸收超高频信号,象一些RF电路,PLL,振荡电路,含超高频存储器电路(DDR,SDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种储能元件,用在LC振荡电路、中低频的滤波电路等,其应用频率范围很少超过50MHz。
1。
片式电感:在电子设备的PCB板电路中会大量使用感性元件和EMI滤波器元件。
这些元件包括片式电感和片式磁珠,以下就这两种器件的特点进行描述并分析他们的普通应用场合以及特殊应用场合。
表面贴装元件的好处在于小的封装尺寸和能够满足实际空间的要求。
除了阻抗值,载流能力以及其他类似物理特性不同外,通孔接插件和表面贴装器件的其他性能特点基本相同。
在需要使用片式电感的场合,要求电感实现以下两个基本功能:电路谐振和扼流电抗。
谐振电路包括谐振发生电路,振荡电路,时钟电路,脉冲电路,波形发生电路等等。
谐振电路还包括高Q带通滤波器电路。
要使电路产生谐振,必须有电容和电感同时存在于电路中。
在电感的两端存在寄生电容,这是由于器件两个电极之间的铁氧体本体相当于电容介质而产生的。
在谐振电路中,电感必须具有高Q,窄的电感偏差,稳定的温度系数,才能达到谐振电路窄带,低的频率温度漂移的要求。
高Q电路具有尖锐的谐振峰值。
窄的电感偏置保证谐振频率偏差尽量小。
稳定的温度系数保证谐振频率具有稳定的温度变化特性。
标准的径向引出电感和轴向引出电感以及片式电感的差异仅仅在于封装不一样。
电感结构包括介质材料(通常为氧化铝陶瓷材料)上绕制线圈,或者空心线圈以及铁磁性材料上绕制线圈。
在功率应用场合,作为扼流圈使用时,电感的主要参数是直流电阻(DCR),额定电流,和低Q值。
[指南]电路图识别之磁珠和电感的区别篇
电路图识别之磁珠和电感的区别篇可能一些新的朋友在刚看维修MP3技术资料时或电路图时常会看到磁珠这个词,可在网上粗略一查,好像他和电感差不多,其实则不然下面我就说一下他们之间的区别:磁珠的作用要从其结构来着手分析,磁珠的结构可以看成一个电阻和电感的串接(许多人容易把它和电感混淆,它和电感的区别就在于多了电阻的分量)。
其作用主要是在高频率下利用电感成分反射噪声,利用电阻成分把噪音转换成热量,由此达到抑制噪声的作用。
使用方法比较简单,直接插入信号线、电源线中就可以通过吸收、反射来实现抑制噪声和执行EMC对策的功能。
电感的作用:储能、滤波、阻抗、扼流、谐振和变压的作用。
电阻器识别电阻电阻,用符号R表示。
其最基本的作用就是阻碍电流的流动。
衡量电阻器的两个最基本的参数是阻值和功率。
阻值用来表示电阻器对电流阻碍作用的大小,用欧姆表示。
除基本单位外,还有千欧和兆欧。
功率用来表示电阻器所能承受的最大电流,用瓦特表示,有1/16W,1/8W,1/4W,1/2W,1W,2W等多种,超过这一最大值,电阻器就会烧坏。
根据电阻器的制作材料不同,有水泥电阻(制作成本低,功率大,热噪声大,阻值不够精确,工作不稳定),碳膜电阻,金属膜电阻(体积小,工作稳定,噪声小,精度高)以及金属氧化膜电阻等等。
根据其阻值是否可变可分为微调电阻,可调电阻,电位器等。
可调电阻(电位器)电路符号如下:电阻在标记它的值的方法是用色环标记法。
它的识别方法如下:色别第一位色环(电阻值的第一位)第二位色环(电阻值的第二位)第三位色环(乘10的倍数)第四位色环(表误差)棕1110--红 2 2 100 --橙 3 3 1000 --黄 4 4 10000 --绿 5 5 100000 --蓝 6 6 1000000 --紫7 7 10000000 --灰8 8 100000000 --白9 9 1000000000 --黑0 0 1 --金-- -- 0.1 +-0.05银-- -- 0.01 +-0.1无色-- -- -- +-0.2电容,用符号C表示。
磁珠与电感的区别
磁珠由氧磁体组成,电感由磁心和线圈组成,磁珠把交流信号转化为热能,电感把交流存储起来,缓慢的释放出去。
磁珠对高频信号才有较大阻碍作用,一般规格有100 欧/100mMHZ , 它在低频时电阻比电感小得多。
电感的等效电阻可有Z=2X3.14xf 来求得。
铁氧体磁珠(Ferrite Bead) 是目前应用发展很快的一种抗干扰元件,廉价、易用,滤除高频噪声效果显著。
在电路中只要导线穿过它即可(我用的都是象普通电阻模样的,导线已穿过并胶合,也有表面贴装的形式,但很少见到卖的)。
当导线中电流穿过时,铁氧体对低频电流几乎没有什么阻抗,而对较高频率的电流会产生较大衰减作用。
高频电流在其中以热量形式散发,其等效电路为一个电感和一个电阻串联,两个元件的值都与磁珠的长度成比例。
磁珠种类很多,制造商应提供技术指标说明,特别是磁珠的阻抗与频率关系的曲线。
有的磁珠上有多个孔洞,用导线穿过可增加元件阻抗(穿过磁珠次数的平方),不过在高频时所增加的抑制噪声能力不可能如预期的多,而用多串联几个磁珠的办法会好些。
铁氧体是磁性材料,会因通过电流过大而产生磁饱和,导磁率急剧下降。
大电流滤波应采用结构上专门设计的磁珠,还要注意其散热措施。
铁氧体磁珠不仅可用于电源电路中滤除高频噪声(可用于直流和交流输出),还可广泛应用于其他电路,其体积可以做得很小。
特别是在数字电路中,由于脉冲信号含有频率很高的高次谐波,也是电路高频辐射的主要根源,所以可在这种场合发挥磁珠的作用。
铁氧体磁珠还广泛应用于信号电缆的噪声滤除。
以常用于电源滤波的HH-1H3216-500 为例,其型号各字段含义依次为:HH 是其一个系列,主要用于电源滤波,用于信号线是HB 系列;1 表示一个元件封装了一个磁珠,若为4 则是并排封装四个的;H 表示组成物质,H、C、M 为中频应用(50-200MHz),T 低频应用(<50MHz),S 高频应用(>200MHz);3216 封装尺寸,长3.2mm,宽1.6mm,即1206 封装;500 阻抗(一般为100MHz 时),50 ohm。
电感和磁珠两兄弟的差别(简单明了)
电感和磁珠两兄弟的差别(简单明了)电感跟磁珠应当说是两兄弟,很多人一直认为它们都是“通直阻交”,很容易混在一起。
正所谓:一母生九子,九子各不同。
其实电感和磁珠还是有很大区别的。
电感的单位是享,型号也是用电感值来命名的,如:GZ2012-100指2012(0805)封装10uH的电感;磁珠的单位是欧,一般磁珠的型号都是用100MHz时的电阻值来命名的,需要注意的是这里是电阻值,而不是等效感抗。
比如:JCB201209-301,是指2012(0805)封装100MHz时阻值为300欧的磁珠。
磁珠本身理论上是耗能元件,电感理论上是不耗能的。
这是两类元件理论上的最大区别。
电感的磁材是不封闭的,典型结构是磁棒,磁力线一部分通过磁材(磁棒),还有一部分是在空气中的;而磁珠的磁材是封闭的,典型结构是磁环,几乎所有磁力线都在磁环内,不会散发到空气中去。
磁环中的磁场强度不断变化,会在磁材里感应出电流,选用高磁滞系数和低电阻率的磁材就能把这些高频能量转换成热能,进而消耗掉。
而电感则相反,要选低磁滞系数和高电阻率的磁材,以尽可能的使电感在整个频带内呈现一致的电感值。
所以,结构和磁材的差异决定了磁珠和电感的本质差异。
电感主要应用在开关电源以及谐振、阻抗匹配及特殊滤波等场合,而磁珠主要用于防止辐射,对EMC的改善要远优于电感。
磁珠把高频消耗掉了,而且没有对外的“磁泄漏”,而电感则因为磁材不封闭,会把大量的高频信号传到外部空间,引起EMI问题...【分享】如果您觉得本文有用,请点击右上角“…”扩散到朋友圈!关注电子工程专辑请搜微信号:“eet-china”或点击本文标题下方“电子工程专辑”字样,进入官方微信“关注”。
贴片电容、电感、磁珠总结
常见电容器有: 铝电解电容器:极性,容量大,能耐受大的脉动电流, 但容量误差大,泄漏电流大,适合于低频旁路、信号耦 合和电源滤波等场合。 胆电解电容:拥有普通电解电容的特性,漏电流极小, 寿命长,容量误差小,体积小,适合小型设备中。
薄膜电容器:是无极性电容器,用于差滤波器、积分、 振荡和定时电路。 瓷介电容器:无极性电容适合于高频旁路。 陶瓷电容器:是无极性电容器,有高频陶瓷电容和低频 陶瓷电容。适用于高、低频电路中,不适合脉冲电路, 否则容易击穿。 另外,在判定电解电容极性时,直插式电解电容器,有 白色标记或者引线较短的一端为负极;如果是贴片电解 电容,有横杆标记的一端为正极。
Байду номын сангаас
在电路中只要导线穿过它即可(我用的都是象普通电阻 模样的,导线已穿过并胶合,也有表面贴装的形式,但 很少见到卖的)。当导线中电流穿过时,铁氧体对低频 电流几乎没有什么阻抗,而对较高频率的电流会产生较 大衰减作用。高频电流在其中以热量形式散发,其等效 电路为一个电感和一个电阻串联,两个组件的值都与磁 珠的长度成比例。磁珠种类很多,制造商应提供技术指 标说明,特别是磁珠的阻抗与频率关系的曲线。有的磁 珠上有多个孔洞,用导线穿过可增加组件阻抗(穿过磁 珠次数的平方),不过在高频时所增加的抑制噪声能力 不可能如预期的多,而用多串联几个磁珠的办法会好些。 铁氧体是磁性材料,会因通过电流过大而产生磁饱和, 导磁率急剧下降。大电流滤波应采用结构上专门设计的 磁珠,还要注意其散热措施。
磁珠电感: 为了滤除电源电路对系统的噪声干扰,往往在电源输出增加一个电感或磁珠, 以滤除电源电路带来的噪声。电感的滤波是反射式滤波,对各种频率的信号 都有衰减,磁珠则是吸收式滤波,只对1KHz信号有大的衰减,对其他信号衰 减较小。磁珠有时需要考虑其散热,否则会影响其导磁性能。标称值:因为 磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧 姆 .一般以100MHz为标准。 额定电流:额定电流是指能保证电路正常工作允许通过电流.电感与磁珠的区 别:有一匝以上的线圈习惯称为电感线圈,少于一匝(导线直通磁环)的线圈 习惯称之为磁珠; 电感是储能元件,而磁珠是能量转换(消耗)器件;电感多用于电源滤波回路, 磁珠多用于信号回路,用于EMC对策;磁珠主要用于抑制电磁辐射干扰,而电感 用于这方面则侧重于抑制传导性干扰.两者都可用于处理EMC、EMI问题;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贴片电感和贴片磁珠的区别
电感是储能元件,而磁珠是能量转换(消耗)器件。
电感多用于电源滤波回路,侧重于抑止传导性干扰;磁珠多用于信号回路,主要用于EMI方面。
磁珠用来吸收超高频信号,象一些RF电路,PLL,振荡电路,含超高频存储器电路(DDR, SDRAM ,AMBUS等)都需要在电源输入部分加磁珠,而电感是一种储能元件,用在LC振荡电路、中低频的滤波电路等,其应用频率范围很少超过50MHz。
1.片式电感:在电子设备的 PCB 板电路中会大量使用感性元件和EMI滤波器元件。
这些元件包括片式电感和片式磁珠,以下就这两种器件的特点进行描述并分析他们的普通应用场合以及特殊应用场合。
表面贴装元件的好处在于小的封装尺寸和能够满足实际空间的要求。
除了阻抗值,载流能力以及其他类似物理特性不同外,通孔接插件和表面贴装器件的其他性能特点基本相同。
在需要使用片式电感的场合,要求电感实现以下两个基本功能:电路谐振和扼流电抗。
谐振电路包括谐振发生电路,振荡电路,时钟电路,脉冲电路,波形发生电路等等。
谐振电路还包括高Q带通滤波器电路。
要使电路产生谐振,必须有电容和电感同时存在于电路中。
在电感的两端存在寄生电容,这是由于器件两个电极之间的铁氧体本体相当于电容介质而产生的。
在谐振电路中,电感必须具有高Q,窄的电感偏差,稳定的温度系数,才能达到谐振电路窄带,低的频率温度漂移的要求。
高Q电路具有尖锐的谐振峰值。
窄的电感偏置保证谐振频率偏差尽量小。
稳定的温度系数保证谐振频率具有稳定的温度变化特性。
标准的径向引出电感和轴向引出电感以及片式电感的差异仅仅在于封装不一样。
电感结构包括介质材料(通常为氧化铝陶瓷材料)上绕制线圈,或者空心线圈以及铁磁性材料上绕制线圈。
在功率应用场合,作为扼流圈使用时,电感的主要参数是直流电阻(DCR),额定电流,和低Q值。
当作为滤波器使用时,希望宽的带宽特性,因此,并不需要电感的高Q特性。
低的DCR可以保证最小的电压降,DCR定义为元件在没有交流信号下的直流电阻。
2.片式磁珠:片式磁珠的功能主要是消除存在于传输线结构( PCB电路)中的RF噪声, RF能量是叠加在直流传输电平上的交流正弦波成分,直流成分是需要的有用信号,而射频R F能量却是无用的电磁干扰沿着线路传输和辐射(EMI)。
要消除这些不需要的信号能量,使用片式磁珠扮演高频电阻的角色(衰减器),该器件允许直流信号通过,而滤除交流信号。
通常高频信号为30MHz以上,然而,低频信号也会受到片式磁珠的影响。
片式磁珠由软磁铁氧体材料组成,构成高体积电阻率的独石结构。
涡流损耗同铁氧体材料的电阻率成反比。
涡流损耗随信号频率的平方成正比。
使用片式磁珠的好处:
小型化和轻量化。
在射频噪声频率范围内具有高阻抗,消除传输线中的电磁干扰。
闭合磁路结构,更好地消除信号的串绕。
极好的磁屏蔽结构。
降低直流电阻,以免对有用信号产生过大的衰减。
显著的高频特性和阻抗特性(更好的消除 RF 能量)。
在高频放大电路中消除寄生振荡。
有效的工作在几个MHz到几百MHz的频率范围内。
要正确的选择磁珠,必须注意以下几点:不需要的信号的频率范围为多少。
噪声源是谁。
需要多大的噪声衰减。
环境条件是什么(温度,直流电压,结构强度)。
电路和负载阻抗是多少。
是否有空间在PCB板上放置磁珠。
前三条通过观察厂家提供的阻抗频率曲线就可以判断。
在阻抗曲线中三条曲线都非常重要,即电阻,感抗和总阻抗。
总阻抗通过ZR22πfL()2+:=fL来描述。
典型的阻抗曲线可参见磁珠的DATASHEET。
通过这一曲线,选择在希望衰减噪声的频率范围内具有最大阻抗而在低频和直流下信号衰减尽量小的磁珠型号。
片式磁珠在过大的直流电压下,阻抗特性会受到影响,另外,如果工作温升过高,或者外部磁场过大,磁珠的阻抗都会受到不利的影响。
使用片式磁珠和片式电感的原因:是使用片式磁珠还是片式电感主要还在于应用。
在谐振电路中需要使用片式电感。
而需要消除不需要的EMI噪声时,使用片式磁珠是最佳的选择。
片式磁珠和片式电感的应用场合:片式电感:射频(RF)和无线通讯,信息技术设备,雷达检波器,汽车电子,蜂窝电话,寻呼机,音频设备,PDAs(个人数字助理),无线遥控系统以及低压供电模块等。
片式磁珠:时钟发生电路,模拟电路和数字电路之间的滤波,I/O输入/输出内部连接器(比如串口,并口,键盘,鼠标,长途电信,本地局域网),射频(RF)电路和易受干扰的逻辑设备之间,供电电路中滤除高频传导干扰,计算机,打印机,录像机(VCRS),电视系统和手提电话中的EMI噪声抑止。