数值分析(2011)试题A卷 参考答案
2011级数值分析试卷
菏泽学院数学系2011级 2013-2014学年第一学期数学与应用数学专业《数值分析和计算方法》期末试卷(A )(110分钟)题号 一 二 三 四 五 总分得分 阅卷人一.选择题(将正确选项前的代号写在题号前的括号内,每小题3分,共15分)( )1.若用最小刻度为0.5mm 的刻度尺测量物体,其误差限为( )A.0.25mmB.1.0mmC.0.5mmD.0mm ( )2.下列具有最高代数精度的求积公式是( )A.龙贝格求积公式B.复合辛普森求积公式C.牛顿-科特斯求积公式D.高斯求积公式( )3.已知2,1,0,,1)(==-=i i x x x f i i i 。
则函数)(x f 的插值多项式为( )A. 145412-+x x B.1-xC.-145412-+x x D.2+-x( )4.下列给出的是用不动点迭代法求032=-x 的根3*=x 的迭代函数,则相应的迭代方法局部收敛的是A.x x 3=)(ϕ B.3)(2-+=x x x ϕC.2321)(2-+=x x x ϕD.)3(21)(xx x +=ϕ( )5.线性方程组AX=b 能用高斯消元法求解的充要条件是( )A.A 为对称矩阵B.A.为实矩阵C.A 的各阶顺序主子式不为零D.0≠A得分 阅卷人二.填空题(请将正确答案填写在每小题的横线上,每空4分,共20分)1.计算积分⎰b adx x f )(的梯形公式为 。
2.设向量T n x )2,1,0( =,则=∞x 。
3.用牛顿法求方程0)(=x f 的根的公式为 。
4.已知n=3时的牛顿-科特斯系数83,83,81)3(2)3(1)3(0===C C C ,则=)3(3C 。
5.已知点,5,4,3,2,1,1=-=i i x i 则二阶差分=∆32x 。
三.判断题(对的在题前括号内划√,错的划×,每题2分,共10分)( )1.高斯求积公式的系数都是正的,故计算总是稳定的。
《数值分析》A卷期末考试试题及参考答案
一、单项选择题(每小题3分,共15分) 1、用Simpson 公式求积分1401x dx +⎰的近似值为 ( ).A.2924 B.2429C.65D. 562、已知(1)0.401f =,且用梯形公式计算积分2()f x dx ⎰的近似值10.864T =,若将区间[0,2]二等分,则用递推公式计算近似值2T 等于( ). A.0.824 B.0.401 C.0.864 D. 0.8333、设3()32=+f x x ,则差商0123[,,,]f x x x x 等于( ).A.0B.9C.3D. 64的近似值的绝对误差小于0.01%,要取多少位有效数字( ). A.3 B.4 C.5 D. 25、用二分法求方程()0=f x 在区间[1,2]上的一个实根,若要求准确到小数 点后第四位,则至少二分区间多少次( ).A.12B.13C.14D. 15二、填空题(每小题4分,共40分)1、对于迭代函数2()=(3)ϕ+-x x a x ,要使迭代公式1=()ϕ+k k x x则a 的取值范围为 .2、假设按四舍五入的近似值为2.312,则该近似值的绝对误差限为 .3、迭代公式212(3)=,03++>+k k k k x x a x a x a收敛于α= (0)α>. 4、解方程4()530f x x x =+-=的牛顿迭代公式为 . 5、设()f x 在[1,1]-上具有2阶连续导数,[1,1]x ∀∈-,有1()2f x ''≤,则()f x 在[1,1]-上的线性插值函数1()L x 在点0处的误差限1(0)R ≤______.6、求解微分方程初值问题2(0)1'=-⎧⎨=⎩y xy yy ,0x 1≤≤的向前Euler 格式为 .7、设310131013A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,则A ∞= .8、用梯形公式计算积分112-⎰dx x 的近似值为 . 9、设12A 21+⎡⎤=⎢⎥⎣⎦a 可作Cholesky 分解,则a 的取值范围为 . 10、设(0)1,(0.5) 1.5,(1)2,(1.5) 2.5,(2) 3.4f f f f f =====,若1=h ,则用三点公式计算(1)'≈f .三、解答题(共45分) 1、给定数据用复化Simpson 公式计算1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛. (5分)4、已知数据试对数据用最小二乘法求出形如=+y x b的拟合曲线. (8分) 5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (8分) 6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦一、单项选择题(每小题3分,合计15分) 1、A 2、D 3、C 4、C 5、D 二、填空题(每小题3分,合计30分) 1、0<<a ; 2、31102-⨯; 3;4、4135345++-=-+k k k k k x x x x x ; 5、14; 6、1(2)+=+-n n n n n y y h x y y ; 7、5;8、34-; 9、3>a ;10、1.2;三、计算题(合计55分) 1、给定数据用复化Simpson 公式计算 1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)解: 401024S [()4()()]6-=++x x f x f x f x ………… 1分 1.38 1.30(3.624 4.20 5.19)6-=+⨯+ 0.341= ………… 2分20422012234S [()4()()][()4()()]66--=+++++x x x xf x f x f x f x f x f x =0.342 ………… 6分2211[]15-≈-I S S S =-⨯40.6710 ………… 8分 2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 解:设111213212223313233u u u 123100135l 100u u 136l l 100u ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦………… 1分 111=u ,212=u ,313=u ,121=l ,131=l 122=u ,223=u ,132=l133=u ,133=l …………6分所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011001L ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100210321U …………7分 由b Ly =得Ty )1,1,2(=;由y Ux =得Tx )1,1,1(-=. ………… 8分3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛.(6分)解:要使迭代序列具有平方收敛,则()0ϕ'*=x ………… 2分 而()()()ϕλ=+f x x x x ,即 ………… 3分 2()()()()10()λλλ''**-**+=*f x x x f x x …………4分 而()0*=f x 则有()1()λ'*=-*f x x ………… 5分所以()()23λ'=-=--x f x x ………… 6分4、已知数据试对数据用最小二乘法求出形如=+ay x b的拟合曲线. (8分) 解:因为11=+b x y a a ,令0111,,,====b a a y x x a a y……2分 则有法方程01461061410⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭a a ……5分解出014,1==-a a ,则1,4=-=-a b ……7分 所以1=4-y x……8分5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (7分)解:01()(2)8l x x x =- …………2分 211()(4)4l x x =-- …………4分21()(2)8l x x x =+ …………6分 2012()()(2)()(0)()(2)L x l x f l x f l x f =-++24=+x …………7分6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦解:100010001D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,00010021002L ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,10021002000U ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………3分1100211()0221002J B D L U -⎡⎤⎢⎥⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………5分 2102111()0222102J E B λλλλλλ⎡⎤-⎢⎥⎢⎥⎢⎥-=--=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦…………6分()2J B ρ=…………7分 所以用Jacobi 迭代法求解方程组Ax b =收敛 …………8分。
福州大学2010-2011年数值分析考题及答案1
1、若向量 x (4, 2,3) ,则
T
x 2 =___ 29 _________
=____ 6 ____,A 的
2、
1 1 A , 则 A 的谱半径 -5 1
=____6____
3、 确定求积公式 尽量高,则 A0=_
1
1
f ( x)dx A0 f (1) A1 f (0) A2 f '(1) 中的待定参数,使其代数精度
0 2 0 5、设 B 2 1 2 ,试用平面旋转矩阵对矩阵 A 进行 QR 分解,其中 Q 为正交 0 2 1
矩阵,R 为上三角阵(8 分)
4
记A1 A, 先将A的第一列变得与e1平行 cos = 0 2 0,sin = 1 04 04 0 1 0 0 1 0 0 P A 2 P A1 1 12 12 0 0 0 1
3、
h 用二步法 yn1 yn [ f ( xn , yn ) f ( xn1 , yn1 )] 求解一阶常微分方程初值问题 2
y f ( x, y ) 问:如何选择参数 , 的值,才使该方法的阶数尽可能地高?写出 y ( x0 ) y0
此时的局部截断误差主项,并说明该方法是几阶的。 证明:局部截断误差为:
( x x )l ( x) 等于
i 0 i i
4
( a ) 1 (c) 2 (d) 4
(a)
0
(b)
3、设 f ( x) 3x5 4 x 4 x 2 1 和节点 xk k / 2, k 0,1 则差商 f [ x0 , x1 x5 ] (a) 4 (b) 2 (c) 3 (d) 1 ( ( c ) c )
《数值分析》所有参考答案
等价三角方程组
, ,
11.设计算机具有4位字长。分别用Gauss消去法和列主元Gauss消去法解下列方程组,并比较所得的结果。
解:Gauss消去法
回代
列主元Gauss消去
15.用列主元三角分解法求解方程组。其中
A= ,
解:
等价三角方程组
回代得
, , ,
16.已知 ,求 , , 。
解:
, ,
17.设 。证明
,(II)
,
当 时
当 时
迭代格式(II)对任意 均收敛
3) ,
构造迭代格式 (III)
,
当 时
当 时
迭代格式(III)对任意 均收敛
4)
取格式(III)
, , ,
4.用简单迭代格式求方程 的所有实根,精确至有3位有效数。
解:
当 时, ,
1 2
当 时
,
,
, ,
1)
迭代格式 ,
,
当 时, ,
任取 迭代格式收敛于
是中的一种向量范数。
解:
当 时存在 使得
,
,
所给 为 上的一个范数
18.设 。证明
(1) ;
(2) ;
(3) 。
解:(1)
(2)
(3)
19.设
A=
求 , , 及 , 。
解: ,
Newton迭代格式
,
20.设 为 上任意两种矩阵(算子)范数,证明存在常数
, 使得
对一切 均成立。
解:由向量范数的等价性知道存在正常数 使得
,
=0.187622
[23.015625 , 23.015625+0.187622]
数值分析试卷及答案
数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
中国石油大学《数值分析》2011年考试试题A卷及答案
f (4)(x)
1 2880
1 n
4
6
1 2
104
,
仅要 n 4 1 101 2.54 ,取 n 3 即对将[1,2] 作 6 等分,则有 240
(8 分)
2
1 ln xdx
1 [0 4(ln 7 ln 3 ln 11) 2(ln 4 ln 5) ln 2] 0.38628716327880 .
0.000040074
( 4 分)
七、(10 分)(1)牛顿迭代格式
x(k 1)
x(k)
f f
(x(k ) ) '(x(k) )
x(k)
x(k) 1 (2
(x(k) )2 )(x(k) )1
1
(1 (2
)(
x( )(
)k ) 2 x(k ) )1
(2)
x(k 1)
lim
k
x(k)
1 1
fgdx
,取( x) ax bx3 , f ( x) sin x ,则法方程为
(0 ,0 )
(1
,
0
)
(0 ,1) (1 , 1 )
a b
( (
f f
,0 ,1
) )
( 4 分)
其中 0,0
1
x xdx
1
2, 3
0 ,1
(1 )(x(k) )2
lim
k
1
(2
)(x(k ) )1
c0
2
c 1
(5 分) (5 分)
1
x(k) 2
x(k) 3
1
x(k) 1
x(k) 3
/2
x3( k
1)
上海大学2011-2012第二学期数值方法试卷(A含答案)
六、名词解释(共 9 分) (答案仅供参考,允许表述形式不一致) 1. (3 分)迭代法:
答:一般采用迭代法求解方程组,因为迭代法则能保持矩阵的稀疏性,具有计算简单, 编制程序容易的优点,并在许多情况下收敛较快。故能有效地解一些高阶方程组
是一种逐次逼近法,从一个假设解开始,通过一系列的迭代求解,最后产生满足精度要 求的近似解 的方法。如 Jacobi 迭代法,GaussSeidel 迭代法 4. (5 分)写出雅可比迭代法和高斯-赛德尔迭代法的迭代公式,并比较它们的优缺点。(10 2. (3 分)绝对误差 分) 一个准确值与其在运算中的近似值的差,称为绝对误差。 雅可比迭代法: (4 分) n 1 x ( k 1) D 1 (b ( L U ) x ( k ) ) ; 3. (3 分)绝对误差限 xi( k 1) (bi aij x (jk ) ) , 或 aii j 1 绝对误差的绝对值小于等于某个常数 ,该常数称为绝对误差限 j i 高斯-赛德尔迭代法: (4 分)
计算得
命題紙使用說明:1、字迹必須端正,以黑色碳素墨水書寫在框線內,文字與圖均不得剪貼,以保證“掃描”質量; 2、命題紙只作考試(測驗)命題所用,不得移作他用。
第 3 页 (共 3 页)
sin(0.34) L2 (0.34) 0.333336
(注至少保留到小数点四位) 3. (5 分)对于线性方程组 Ax b , 已知 A 是高维稀疏矩阵, 则一般采用什么方法求解?为什 么?
n n 1 (bi aij x (jk 1) aij x (jk ) ) aii j i j i , 或
xi( k 1)
七、简答题(共 23 分): 1. (8 分)试写出数值积分中的梯形公式、辛普森公式、辛普森 3/8 公式和布尔公式,且给出 它们各自的精度值。 设 xk=x0+kh 为等距节点,且 fk=f(xk), 则四个数值积分公式分别为: x1 h 梯形公式精度为 1, 具体公式为: f ( x)dx ( f 0 f1 ) x0 2 x2 h 辛普森公式精度为 3,具体公式为: f ( x)dx ( f 0 4 f1 f 2 ) x0 3 辛普森 3/8 公式精度为 3,具体公式为: f ( x)dx
(完整)数值分析学期期末考试试题与答案(A),推荐文档
期末考试试卷(A 卷)2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟学号 姓名 年级专业一、判断题(每小题2分,共10分)1. 用计算机求1000100011n n=∑时,应按照n 从小到大的顺序相加。
( )2. 为了减少误差,进行计算。
( )3. 用数值微分公式中求导数值时,步长越小计算就越精确。
( )4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。
( )5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。
( )二、填空题(每空2分,共36分)1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________.2. 设1010021,5,1301A x -⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦则1A =_____,2x =______,Ax ∞=_____.3. 已知53()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= .4. 为使求积公式11231()((0)f x dx A f A f A f -≈++⎰的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。
5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 .6. 用迭代法解线性方程组AX B =时,使迭代公式(1)()(0,1,2,)k k XMX N k +=+=K 产生的向量序列{}()k X收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即.A LU = 若采用高斯消元法解AX B =,其中4221A -⎡⎤=⎢⎥⎣⎦,则L =_______________,U =______________;若使用克劳特消元法解AX B =,则11u =____;若使用平方根方法解AX B =,则11l 与11u 的大小关系为_____(选填:>,<,=,不一定)。
2011年秋研究生数值分析试题A卷答案
2011年秋研究生数值分析期末考试试题答案一、单选题(4*5=20分)1、B;2、D ;3、D ;4、B ;5、C 。
二、填空题(4*5=20)1、2;2、()()1k k k k f x x x f x +=-',平方收敛;3、8,8;4、9; 5、a <。
三、(10分)解:构造3次Lagrange 插值多项式3001001201()()(,)()(,,)()()L x f x f x x x x f x x x x x x x =+-+--0123012(,,,)()()()f x x x x x x x x x x +--- 3’利用待定系数法,令430123()()()()()()H x L x A x x x x x x x x =+----, 5’同时, '''14131101213()()()()()()f x H x L x A x x x x x x ==+--- 7’解出A 即可。
8’ 考虑余项4()()()E x f x H x =-,如果5()[,],,0,1,2,3i f x C a b a x b i ∈≤≤=,那么,当a x b ≤≤时()()5240123()()()()()()()5!f E x f x H x x x x x x x x x ξ=-=----. 0 10’ 四、(10分)解:设所求多项式为23202)(x C x C C x P ++=,10=ϕ,x =1ϕ,22x =ϕ,11),(10++==⎰+k j dx e k j k j ϕϕ,1),(100-==⎰e dx e f x ϕ, 1),(101==⎰dx xe f xϕ,2),(1022-==⎰e dx e x f x ϕ 5’ 所以有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡21151413141312131211210e e C C C ,求解得到 8’ ⎪⎩⎪⎨⎧===83917.085114.001299.1321C C C ,所求最佳平方逼近多项式为:2283917.085114.001299.1)(x x x P ++=。
2011数值分析试题及答案
由于f(x)二si nx的4阶导数在[0,二]上的最大值为:M4=1,所以
5
误差为:|I-S2|::——44=0.006641
2880x24
6.求解初值问题」y=sin(x+2y),0兰x兰2的改进Euler方法是否收敛?为什
.y(0) = 1
么?
解:由于|sin(x 2y)-sin(x 2y)|二| 2cos(x 2 )(y-y) 2 | y-y |
5.设f(x) = 4x33x-5,求差商f[0,1], f[1,2,3,4]和f[1,2,3,4,5]。
f(D…f(0)
解:f[0,1]==2-(-5) = 7
1-0
f [1,2,3,4^4,f[1,2,3,4,5]=0
3.解线性方程组丿X1-2忑=2的Jacobi迭代法是否收敛,为什么?
+9x2=3
即,函数f(x, y)二sin(x•2y)连续,且关于变量y满足Lipschitz条件,所以,改 进Euler方法收敛。
所以,a=0, b=5/6,拟合曲线为:y=5/6x2
3.求满足条件f(0)=1,f(1)=2,f(2) =0,f(1)=0的三次插值多项式Ha(x)
的表达式。
解:设H3(x)二(^2)(ax2bx c),则有:
1213
所以,H3(x) (x-2)(x2x 1) (x-3x-2)。
22
11
4.确定求积公式Jf(x)dx痒三f(-1)+Af(0)+A2f(1)中的待定系数,使其代数精 度尽可能高,并问此公式是不是插值型求积公式.
解:令公式对f(x) = 1,x都精确成立,得:A,・A2= 3/2, A2= 1/2,
o
• • •
(完整)数值分析学期期末考试试题与答案(A),推荐文档
期末考试试卷( A 卷)2007 学年第二学期 考试科目: 数值分析 考试时间: 120 分钟学号 姓名 年级专业100011. 用计算机求11000时,应按照 n 从小到大的顺序相加。
n1n2. 为了减少误差 ,应将表达式 2001 1999 改写为 2进行计算。
( )2001 19993. 用数值微分公式中求导数值时,步长越小计算就越精确。
( )4. 采用龙格-库塔法求解常微分方程的初值问题时, 公式阶数越高,数值解越精确。
( )5. 用迭代法解线性方程组时, 迭代能否收敛与初始向量的选择、 系数矩阵及其演变方式有关,与常数项无关。
( ) 二、填空每空 2 分,共 36 分)1. 已知数 a 的有效数为 0.01 ,则它的绝对误差限为 _______ ,相对误差限为 _1 0 1 02. 设 A0 2 1 ,x 5 ,则 A 1____________________________ _, x 2 ______ ,Ax1 3 0 13. 已知 f (x) 2x 54x 35x,则 f[ 1,1,0] , f[ 3, 2, 1,1,2,3] .14. 为使求积公式 f (x)dx A 1f ( 3) A 2f (0) A 3f ( 3)的代数精度尽量高,应使13 3A 1 , A 2 , A 3,此时公式具有 次的代数精度。
5. n 阶方阵 A 的谱半径 ( A)与它的任意一种范数 A 的关系是 .6. 用迭代法解线性方程组 AX B 时,使迭代公式 X (k 1)MX (k)N (k 0,1,2,K )产 生的向量序列X (k)收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B时,系数矩阵A可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即A LU. 若采用高斯消元法解AX B,其中A 4 2,则21L ___________ ,U ____________ ;若使用克劳特消元法解AX B ,则u11 _______ ;若使用平方根方法解AX B,则l11与u11的大小关系为(选填:>,<,=,不一定)。
数值分析试题及答案
数值分析考试试题纸(A卷)课程名称数值分析专业年纪•计算题(本题满分100分,共5小题,每小题20分)•已知函数表•求f(x)的三次Lagrange型插值多项式及其插值余项(要求化成最简形式).•求f(x)的Newton插值多项式(要求化成最简形式).2. 已知A=,求,A的LU分解.3. 叙述m阶代数精度的定义,写出求的Simpson公式,并验证Simpson公式的代数精度为3阶.4. 设矩阵A=,求当为何值时,解线性方程组Ax=b的Gauss-Seidel迭代法收敛.5. 叙述最小二乘法的基本原理,并举例说明其应用.参考答案•计算题•解:(1)(2) 均差表如下:2、解:由所以3. 解:定义:如果某个求积公式对于次数不超过m的多项式均能准确地成立,但对于m+1次的多项式就不准确成立,则称该求积公式具有m次代数精度。
的Simpson公式:验证代数精度:当时,左边积分=,右边左边当时,左边积分右边左边当时,左边积分右边左边当时,左边积分右边左边当时,左边积分右边左边故Simpson公式对次数不超过三次的多项式均能准确成立,而对四次多项式不成立,所以Simpson公式具有三次代数精度。
4. 解; Ax=b其Gauss-Seidel迭代格式为迭代矩阵该迭代发收敛的充要条件是矩阵B的谱半径, 特征根当时,解线性方程组Ax=b的Gauss-Seidel迭代法收敛。
5. 答:在函数的最佳平方逼近中,如果只在一组离散点集上给定,这就是科学实验中经常见到的实验数据的曲线拟合,这里,要求一个函数与所给数据拟合,若记,是上线性无关函数族,在中找一函数,使误差平方和这里这就是一般的最小二乘逼近,用几何语言说,就成为曲线拟合的最小二乘法。
举例说明:测得铜导线在温度(℃)时的电阻如表6-1,求电阻R与温度 T的近i(℃)故取n=1,拟合函数为列表如下6解方程组得故得R与T的拟合直线为利用上述关系式,可以预测不同温度时铜导线的电阻值。
2011年秋季工学硕士研究生学位课程(数值分析)真题试卷A
2011年秋季工学硕士研究生学位课程(数值分析)真题试卷A(总分:28.00,做题时间:90分钟)一、填空题(总题数:6,分数:12.00)1.填空题请完成下列各题,在各题的空处填入恰当的答案。
(分数:2.00)__________________________________________________________________________________________ 解析:2.已知x 1 =0.724,x 2 =1.25均为有效数,则|e r (x 1 x 2 )|≤______|e(x 1/x 2 )|≤_______.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:0.469×10 -2,0.272×10 -2)解析:3.设∞ =______,cond(A) 2 =______.(分数:2.00)__________________________________________________________________________________________正确答案:()解析:4.超定方程组x 1 =______.x 2 =_______.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:-0.8333或-0.6667)解析:5.用Simpson______.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:1.4757)解析:6.0,1,2为节点的三次样条函数,则a=_____,b=_____.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:3,-3)解析:二、计算题(总题数:3,分数:6.00)7.给定方程e x,分析此方程有几个实根,并用迭代法求此方程的正根,精确至3位有效数字.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:设当x=ln0.5时,f"(x)=0;当x∈(-∞,ln0.5)时,f"(x)<0;当x∈(ln0.5,+∞)时,f"(x)>0.再注意到f(-4)>0,f(-3)<0,f(1)<0,f(2)>0,则该方程存在两个实根,分别在[-4,-3]和[1,2]内.构造迭代格式x *∈[1,2],取x 0 =1.5,计算得x 1 =1.0651,x 2 =0.9116,x 3 =0.8953,x )解析:8.用列主元Guass(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:求得x 1 =-2,x 2 =1,x 3 =-1.)解析:9.给定求解线性方程组Ax=b的迭代格式Bx (k+1) +ωCx k =b,其中ω的值使上述迭代格式收敛.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:方法1:由Bx (k+1) +ωCx (k) =b得x (k+1) =-ωB -1 Cx (k) +B -1 b 上述格式收敛的充要条件为ρ(-ωB -1 C)<1.迭代矩阵-ωB -1 C的特征方程为|λI+ωB -1 C|=0,可变形为|B -1||λB+ωC|=0,即展开得16λ2—8λω)解析:三、综合题(总题数:5,分数:10.00)10.作一个3次多项式H(x),使得H(a)=b 3,H(b)=a 3,H"(a)=6b,H"(b)=6a.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:方法1:根据H"(a)=6b,H"(6)=6a可知(x-a)=6b—6(x-a),两边积分得H(x)=6b(x—a)-3(x-a) 2 +c,H(x)=3b(x-a) 2 -(x—a) 3 +c(x—a)+d.由H(a)=b 3得d=b 3,再由H(b)=a 3有c=-3b 2,所以H(x)=-(x-a) 3 +3b(x-a) )解析:11.求函数y(x)=x 4在区间[0,1]上的一次最佳一致逼近多项式p(x).(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:设p(x)=a+bx.由f"(x)=4x 3,f"(x)=12x 2知,当x∈(0,1)时,f"(x)恒大于零.则f(x)-p(x)在[0,1]上有三个交错偏差点:0,x 1,1,且满足即求解得所以)解析:12.已知函数f(x)∈C 4[a,b],I(f)=∫ a b f(x)dx 1)写出以a,b为二重节点所建立的f(x)的3次Hermite 插值多琐式H(x)及插值余项; 2)根据f(x)≈H(x)建立一个求解I(f)的数值求积公式I H (x),并分析该公式的截断误差和代数精度.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:1)由条件H(a)=f(a),H"(a)=f"(a),H(b)=f(b),H"(b)=f"(b),作差商表:所以2)根据题意,有I(f)≈∫ a b H(x)dx,下面求代数精度.由插值余项知,当f(x)=1,x,x 2,x 3时,插值余项为零,I H (f)精确求积;当f(x)=x 4时此时b 5系数为I H) 解析:13.给定常微分方程初值问题n,并记h=(b—a)/n,x i=a+ih,0≤i≤n.试确定参数A,B,C,使求解公式y i+1 =Ay i +(1-A)y i-1 +h[Bf(x i+1,y i+1 )+Cf(x i,y i )]的局部截断误差R i+1的阶数达到最高,指出所达剑的最高阶数并给出局部截断误差表达式.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:局部截断误差为R i+1=y(x i+1)-Ay(x i)-(1-A)y(x i-1)-h[By"(x i+1)+Cy"(x i)]=y(xi )+hy"(x 1 )+ y"(x i )+ y""(x i y (4) (xi )+O(h5)解析:14.给定如下抛物方程初边值问题:取步长用古典隐格式计算u(x,t)(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:求解该问题的古典隐格式为记则差分格式可写为(1+2r)u i k-r(u i+1k +ui-1k )=uik-1 +τ(3—3xi ),用方程组表示为k=1.2.因为所以,当k=1时,方程为或解得u 11 =0.7870,u 2<) 解析:。
华南农业大学2011-2012第2学期数值分析试题及答案
华南农业大学期末考试试卷(A 卷)2011-2012学年第 2 学期 考试科目: 数值分析 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、 填空题(本大题共5小题,每小题6分,共30分)1、用四舍五入得到的近似数1.55,有___位有效数字,其相对误差限是________。
2、用二分法求方程1x xe =在区间[0,1]内的根,进行一步后根所在区间为____,进行二步后根所在区间为____。
3、采用牛顿迭代法求正实数a 的开平方,迭代公式为________。
4、设有矩阵131211122A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,则A ∞=____,F A =____。
5、非线性方程迭代求解的敛散性与初始值的选取____;(选填:有关或无关)线性方程组迭代求解的敛散性与初始值的选取____。
(选填:有关或无关)试用4[4,4]P 和4[4,4,4]P 计算'(4)f 和''(4)f 的近似值。
(本题共10分)三、给定方程30(0)x e x x --=>(1) 分析方程存在几个解,并找出解的范围;(2) 将方程改为3x x e =-,写出相应的迭代公式,并说明能不能用该公式迭代求原方程的解;(3) 如果不能,试将方程改写为能用迭代法求解的形式,并说明理由。
(本题共15分)四、分别讨论用雅可比迭代法和高斯-赛德尔迭代法解方程AX b =的收敛性,其中122111221A -⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭。
(本题共16分)五、已知函数3y x =的函数表如下:(1) 求3y x =的3次拉格朗日插值多项式;(2) 求3y x =的3次牛顿插值多项式。
(本题共14分)六、采用龙贝格法计算140I x dx =⎰的值。
(本题共15分)华南农业大学期末考试试卷参考答案(A 卷)2010-2011学年第 2 学期 考试科目: 数值分析 一、填空题(本大题共5小题,每小题6分,共30分)1、用四舍五入得到的近似数1.55,有3位有效数字,其相对误差限是0.323%。
2011级硕士研究生《数值分析》试卷(A)
合肥工业大学2011级硕士研究生《数值分析》试卷(A)班级 姓名 学号 成绩一、判断题 (下列各题,你认为正确的,请在题后的括号内打“√ ”,错误的打“×”,每题2分,共10分) 1. 设函数f 具有5阶导数,则(5)[0,1,2,3,4,5]()f f ξ=,其中ξ介于0,1,2,3,4,5之间,[0,1,2,3,4,5]f 是()f x 关于节点0,1,2,3,4,5的5阶差商。
( )2. 若方阵A 是严格对角占优的,则可用Gauss 消去法直接求解方程组=Ax b ,无须选主元素。
( )3. 若()()0f a f b <,则方程()0f x =在区间(,)a b 内至少有一个根。
( )4. 若函数()f x 是多项式,则它的Lagrange 插值多项式()()p x f x ≡. ( )5. 解常微分方程初值问题的四阶Runge-Kutta 方法的局部截断误差是5()O h ,其中h 是步长。
( )二、填空题 (每空2分,共10分)1. 近似数*3.200x =关于准确值 3.200678x =有 位有效数字。
2. 设2435A =⎡⎤⎢⎥⎣⎦,则1Cond()A = . 3. 设函数(2.6)13.4673,(2.7)14.8797,(2.8)16.4446f f f ===, 用三点数值微分公式计算(2.7)f '= 14.8865 .4. 设函数sin 2()x f x =, 2()p x 是()f x 的以1,2,3为节点的二次Lagrange 插值多项式,则余项2()()f x p x -= .5. 二元函数(,)f x y 在区域D 上关于y 满足Lipschitz 条件是:.三 (本题满分12分) 对下列方程组1231231235212,4220,23103x x x x x x x x x ++=-⎧⎪-++=⎨⎪-+=⎩ 建立Jacobi 迭代格式(4分)和Gauss –Seidel 迭代格式(4分),写出Jacobi 迭代格式的迭代矩阵,并用迭代矩阵的范数判断所建立的Jacobi 迭代格式是否收敛(4分)。
数值分析(2011)试题A卷 参考答案
装订线年 级 学 号 姓 名 专 业一、填空题(本题40分, 每空4分)1.设),,1,0()(n j x l j =为节点n x x x ,,,10 的n 次基函数,则=)(i j x l 1,0,1,,0i j i j n i j=⎧=⎨≠⎩ 。
2.已知函数1)(2++=x x x f ,则三阶差商]4,3,2,1[f = 0 。
3.当n=3时,牛顿-柯特斯系数83,81)3(2)3(1)3(0===C C C ,则=)3(3C 1/8 。
4.用迭代法解线性方程组Ax=b 时,迭代格式 ,2,1,0,)()1(=+=+k f Bx x k k 收敛的充分必要条件是 ()1B ρ< 。
5.设矩阵⎥⎦⎤⎢⎣⎡=1221A ,则A 的条件数2)(A Cond = 3 。
6.正方形的边长约为100cm ,则正方形的边长误差限不超过 0.005 cm才能使其面积误差不超过12cm 。
(结果保留小数)7.要使求积公式)()0(41)(111x f A f dx x f +≈⎰具有2次代数精确度,则 =1x23 , =1A 34。
8. 用杜利特尔(Doolittle )分解法分解LUA =,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=1359 45- 279 126 0 945- 0 45 1827- 9 189A 其中,则=L 10002100121023113⎛⎫⎪ ⎪ ⎪-⎪ ⎪- ⎪⎝⎭=U 918927091890281540009-⎛⎫⎪-⎪ ⎪-⎪⎝⎭。
二、计算题(10分)已知由数据(0,0),(0.5,y ),(1,3)和(2,2)构造出的三次插值多项式)(3x P 的3x 的系数是6,试确定数据y 。
2011级数值分析 试题 A 卷 2011 ~ 2012学年,第 1 学期一 二 三 四 五 六 七 八 九 十 总分年 级2011级研究生 份 数 拟题人 王吉波 审核人装 订线年级 学 号 姓 名 专 业三、计算题(15分)试导出计算)0(1>a a的Newton迭代格式,使公式中(对n x )既无开方,又无除法运算,并讨论其收敛性。
数值分析A卷(2011年秋)
三、 (10 分)设 f ( x) 在 [ x0 , x3 ] 上有 5 阶连续导数,且 x0 x1 x2 x3 , (1)试作一个次数不高于 4 次的多项式 H 4 ( x) ,满足条件
H 4 ( x j ) f ( x j ) , j 0,1, 2,3, ' ' H 4 ( x1 ) f ( x1 ) ;
(D)、它不是插值型求积公式。
y f x, y 1、求解常微分方程初值问题 的改进的欧拉法是 y x0 y0
阶方法。 ,其 收 敛 阶
2 、 解 非 线性方程 f x 0 的单根 的牛顿法 格 式为 为 。
4 1 2 2 , x 1 , 则 Ax 3 2 1 1 3 3、设矩阵 A 1 2
(2)写出 E( x) f ( x) H 4 ( x) 的表达式。
四、 (10 分)求 f ( x) e x 在 [0,1] 上的二次最佳平方逼近,权为 1。
3
五、 (10 分)用 n 2, 3 的高斯-勒让德公式计算积分 e x sin xdx
1
六、 (10 分)已知
0 1 2 1 , b , 2 5 8 1 请用 Doolittle 三角分解法求解线性方程组 Ax b 。 1 3 7 7 1 3 9 9
,对于其产生的数列 k 0 , 1, 2 , xk ,下列说法正确的是
(A)、若数列 xk 收敛,则迭代函数 x 唯一; (B)、若对于 x a, b , x 1 ,则 xk 收敛; (C)、若对于 x a, b , x 1 ,则 xk 收敛; (D)、若对于 x a, b , x L 1 ,则 xk 收敛。 3、对矩阵 A 采用幂法迭代,如果该方法收敛,则其收敛速度取决于( (A)、模最大特征值和模次最大特征值的比值; (B)、模最大特征值和模次最大特征值的模的比值; (C)、模次最大特征值和模最大特征值的比值; (D)、模次最大特征值和模最大特征值的模的比值。 ) 。
2011年下学期数值分析考试试卷答案(A)
2011年下学期数值分析考试试卷答案(A)D222223221()()(1)(2)(1)21(45)2P x H x Ax x x x x x x x x =+-=-+-=-+余项为 R(x)=(5)22()(1)(2)5!f x x x ξ-- ……………………………12分解法2:构造带重节点的Newton 差商表 0 0 0 0 0 1 1 1 1 1 1 1 0 -1 2211/2 ………………………8分2222221()00(0)1(0)1(0)(1)(0)(1)21(45)2N x x x x x x x x x x =+-+----+--=-+…………………12分三、 (12分) 求()xf x e -= 在区间[-1,1]上的最佳平方逼近2次多项式. (用勒让德正交多项式2121{(),(),()}{1,,(31)}2P x P x P x x x =-) 解:用勒让德多项式20121{(),(),()}{1,,(31)}2P x P x P x x x =-,2(,)21iiP P i =+ …………………………………………………………………………………..3分计算:11101(,)( 2.3504)x f P e dx e e ---==-≈⎰,1111(,)20.7358x f P xe dx e---==-≈-⎰121211(,)(31)70.143132x f P x e dx e e ---=-=-≈⎰…………………………………………………………………………………..8分111101010011(,)(,)2* 1.1752,*3 1.1036(,)2(,)2/3 f P f P e e e a a e P P P P ----==≈==-=-≈-12222(,)7*0.3578(,)2/5f P e e a P P --==≈故最优平方逼近函数为:11112225351()3(31)22211.1752 1.10360.3758(31)20.5367 1.10360.9963e e e e p x e x x x x x x -----=-+⋅-≈-+⋅-=-+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
装
订
线
年 级 学 号 姓 名 专 业
一、填空题(本题40分, 每空4分)
1.设),,1,0()(n j x l j =为节点n x x x ,,,10 的n 次基函数,则
=)(i j x l 1
,0,1,,0
i j i j n i j
=⎧=⎨
≠⎩ 。
2.已知函数1)(2++=x x x f ,则三阶差商]4,3,2,1[f = 0 。
3.当n=3时,牛顿-柯特斯系数8
3,81
)
3(2)3(1)3(0===C C C ,则=)3(3C 1/8 。
4.用迭代法解线性方程组Ax=b 时,迭代格式 ,2,1,0,)()1(=+=+k f Bx x k k 收敛的充分必要条件是 ()1B ρ< 。
5.设矩阵⎥⎦
⎤
⎢⎣⎡=1221A ,则A 的条件数2)(A Cond = 3 。
6.正方形的边长约为100cm ,则正方形的边长误差限不超过 0.005 cm
才能使其面积误差不超过12
cm 。
(结果保留小数)
7.要使求积公式
)()0(4
1
)(111
x f A f dx x f +≈
⎰
具有2次代数精确度,则 =1x
23 , =1A 3
4。
8. 用杜利特尔(Doolittle )分解法分解
LU
A =,
⎥⎥⎥⎥
⎦
⎤⎢⎢⎢
⎢⎣⎡-=135 9 45- 279 126 0 945- 0 45 1827- 9 18
9A 其中,则=L 10002100121023113⎛⎫
⎪ ⎪ ⎪-
⎪ ⎪-
⎪⎝⎭
=U 918927
09
18
902815400
09-⎛⎫
⎪-
⎪ ⎪-
⎪⎝⎭。
二、计算题(10分)已知由数据(0,0),(0.5,y ),(1,3)和(2,2)构造出的三次插值多项式)(3x P 的3
x 的系数是6,试确定数据y 。
2011级数值分析 试题 A 卷 2011 ~ 2012学年,第 1 学期
一 二 三 四 五 六 七 八 九 十 总分
年 级2011级
研究生 份 数 拟题人 王吉波 审核人
装 订
线
年
级 学 号 姓 名 专 业
三、计算题(15分)试导出计算
)0(1>a a
的Newton
迭代格式,使公式中(对n x )既
无开方,又无除法运算,并讨论其收敛性。
数值分析书P239 课后习题12类似
四、计算题(15分)已知4
3,21,41210===
x x x 。
(1)推导出以这3个点作为求积节点在[0,1]上的插值型求积公式; (2)指明求积公式所具有的代数精确度;(3)用所求公式计算
⎰
1
2dx x 。
装 订
线
年
级 学 号 姓 名 专 业
五、计算题(10分)给定方程组⎪⎩⎪
⎨⎧=+-=++=++30
153212824
3220321
321321x x x x x x x x x
判定Jacobi 和Gauss-Seidel 方法的收敛性。
因系数矩阵按行严格对角占优,故Jacobi 和
Gauss-Seidel 方法都收敛
或求迭代矩阵 利用()1B ρ<判断收敛
六、计算题(10分)定义内积⎰
-=
1
1
)()(),(dx x g x f g f ,试在},,1{421x x span H =中寻求
对于||x f(x)=的最佳平方逼近多项式)(x p 。