spss的数据分析案例精选文档

合集下载

spss的数据分析报告范例

spss的数据分析报告范例

spss的数据分析报告范例一、引言数据分析是科学研究过程中不可或缺的一部分。

针对一项研究项目,本报告将借助SPSS软件对收集的数据进行详尽分析,并提供相关结果和结论。

本报告的目的是帮助读者更好地理解数据,提供决策和制定战略所需的支持。

二、研究方法本研究的数据来源于一份问卷调查,共收集了500份有效问卷。

在问卷设计中,我们采用了随机抽样的方法,以保证样本的代表性。

该问卷包括了参与者的基本背景信息、满意度评价等方面的问题。

三、数据分析1. 受访者基本背景首先,我们对受访者的基本背景信息进行了统计分析。

其中包括性别、年龄、教育水平和职业等因素。

以下是相关结果的总结:(1)性别分布:男性占65%,女性占35%。

(2)年龄分布:年龄在18-24岁的受访者占40%;25-34岁的占30%;35-44岁的占20%;45岁及以上的占10%。

(3)教育水平:高中或以下占20%;本科占50%;研究生及以上占30%。

(4)职业:学生占25%;职员占40%;自由职业者占20%;其他占15%。

2. 满意度评价为了了解受访者对某产品的满意度,我们设计了一套评价体系。

通过SPSS软件进行数据分析,得到以下结果:(1)整体满意度:根据赋分制度,平均满意度得分为4.2(满分为5),表明受访者对该产品整体上持较高满意度。

(2)各项指标:通过因子分析,我们得到了几个影响满意度的关键因素。

其中,产品质量、价格和售后服务被认为是受访者最关注的方面。

3. 相关性分析在数据分析过程中,我们还进行了一些相关性分析,以探究不同变量之间的关系。

以下是一些值得关注的相关性结果:(1)性别与满意度之间的关系:经过卡方检验,我们发现性别与满意度之间存在一定的相关性(p < 0.05),女性对产品的满意度略高于男性。

(2)年龄与满意度之间的关系:通过相关系数分析,我们发现年龄与满意度呈现出弱相关关系(r = 0.15,p < 0.05),年龄越小,满意度越高。

spss案例分析报告(精选)

spss案例分析报告(精选)

spss案例分析报告(精选)本文通过分析一份 SPSS 数据,展示 SPSS 在统计分析中的应用。

数据概述本数据为一家咖啡馆的销售数据,共有 200 条记录,包括 7 个变量:日期、时间、收银员、商品名、销售价格、数量和总价。

SPSS 分析1. 描述性统计使用 SPSS 的描述性统计功能,可以获取数据的基本信息,如均值、标准偏差、最大值、最小值等。

其中,销售价格的均值为 44.71 元,标准偏差为 13.29 元,最小值为 23 元,最大值为 78 元。

数量的均值为 1.62 个,标准偏差为 0.51 个,最小值为 1 个,最大值为3 个。

总价的均值为 73.25 元,标准偏差为 21.89 元,最小值为 23 元,最大值为 156 元。

2. 单样本 t 检验假设一杯咖啡的平均售价为 50 元,我们可以使用单样本 t 检验对这个假设进行检验。

首先,我们需要用 SPSS 的数据透视表功能,计算出每杯咖啡的平均售价。

然后,使用单样本 t 检验功能,输入样本均值、假设的总体均值(50 元)、样本标准差、样本大小以及置信度水平。

在这个数据集中,单样本 t 检验得出的 t 值为 -2.36,P 值为 0.019,显著性水平为 0.05,因此我们可以拒绝原假设,认为该咖啡馆的咖啡售价不是 50 元。

4. 相关分析假设我们想要了解商品数量和销售额之间的关系,我们可以使用 SPSS 的相关分析功能来进行分析。

首先,我们需要使用数据透视表功能,计算出每个订单的总价和数量。

然后,使用相关分析功能,输入这两个变量的值,得出相关系数和显著性水平。

在这个数据集中,商品数量和销售额之间的相关系数为 0.749,P 值为 0,显著性水平非常显著。

因此,我们可以认为商品数量和销售额之间存在极强的正相关关系。

结论本文通过 SPSS 对一份咖啡馆销售数据进行分析,展示了 SPSS 在统计分析中的应用。

通过描述性统计、单样本 t 检验、双样本 t 检验和相关分析等功能,我们可以获得数据的基本信息,检验假设,分析变量之间的关系,从而帮助企业更好地决策和管理。

SPSS数据分析实例

SPSS数据分析实例
第二章 SPSS数据分析实例
• 例2.1:某克山病区测得11例克山病患者与13名健康人 的血磷值(mmol)如下,问该地急性克山病患者与健康人 的血磷值是否相同
患者:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80
1.87 2.07 2.11
健康人:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20
t检验的假设如下: H0:两总体均数相同,μ1 =μ2
H1:两总体不均数相同,μ1 ≠μ2
两样本t检验对数据的要求: 1.小样本时要求分布不太偏 2.小样本时要求方差齐
∴应该先判断该数据是否符合t检验要求,即对数据进行简单描述
2.2.1 数据的简单描述
选择菜单项 分析
பைடு நூலகம்
描述统计
描述
,
系统弹出对话框
选择描述变量
取消文件拆分,不然会影响以后的统计分析
选择菜单项 数据 拆分文件 ,选择 分析所有个案,不创建组
2.2.2 绘制直方图
选择菜单项 Graph Histogram ,系统弹出对话框
将变量x选入Variable选择框内,单击ok,结果浏览窗口绘制出直方图
数据的分布不是特别偏, 没有十分突出的离群值 t检验具有一定的耐受性,稍稍偏离要求一点不 会影响统计分析结果
∴可以直接采用参数分析方法来分析,因是两样本均数的比较,确定采用 成组设计两样本均数比较的t检验来分析
2.3 按题目要求进行统计分析
用SPSS来做两样本均数比较的t检验,选择
分析
均值比较
独立样本T检验
出现t检验对话框
将变量x选入test对话框, 变量group选入grouping Variable对话框,Define Groups钮变黑,在Define Group两个框内分别输入1 和2,在这ok

大学生spss数据分析案例

大学生spss数据分析案例

大学生spss数据分析案例大学生SPSS数据分析案例。

在大学教育中,数据分析是一个非常重要的环节,尤其是对于社会科学和商业管理专业的学生来说。

SPSS(Statistical Package for the Social Sciences)是一个专业的统计分析软件,广泛应用于学术研究和商业决策中。

本文将以一个大学生SPSS数据分析案例为例,介绍如何使用SPSS进行数据分析。

案例背景:某大学社会科学专业的学生对大学生活满意度进行了调查,并收集了相关数据,包括学生的性别、年级、专业、宿舍类型、课程质量、宿舍环境、社交活动等方面的信息。

现在需要对这些数据进行分析,以了解不同因素对大学生活满意度的影响。

数据准备:首先,需要将调查所得的数据录入SPSS软件中,确保数据的准确性和完整性。

在录入数据时,要注意将不同的变量分别录入不同的列中,以便后续的分析和处理。

数据分析:1. 描述统计分析。

首先,可以对各个变量进行描述统计分析,包括计算均值、标准差、频数分布等。

通过描述统计分析,可以直观地了解各个变量的分布情况,为后续的分析提供基础。

2. 相关性分析。

接下来,可以进行各个变量之间的相关性分析,通过相关系数的计算来了解不同变量之间的关联程度。

例如,可以分析学生的性别、年级、专业与大学生活满意度之间的相关性,以及宿舍类型、课程质量、社交活动等因素对大学生活满意度的影响程度。

3. 方差分析。

针对分类变量,可以进行方差分析,比较不同组别之间的均值差异是否显著。

例如,可以分析不同年级、不同专业的学生对大学生活满意度的差异情况,以及不同宿舍类型对大学生活满意度的影响是否显著。

4. 回归分析。

最后,可以利用回归分析来探讨不同因素对大学生活满意度的影响程度。

通过建立回归模型,可以了解各个自变量对因变量的影响情况,以及它们之间的关系强度和方向。

结论与建议:通过以上的数据分析,可以得出不同因素对大学生活满意度的影响程度,为学校和相关部门提供决策建议。

SPSS统计分析分析案例

SPSS统计分析分析案例

SPSS统计分析案例一、我国城镇居民现状近年来;我国宏观经济形势发生了重大变化;经济发展速度加快;居民收入稳定增加;在国家连续出台住房、教育、医疗等各项改革措施和实施“刺激消费、扩大内需、拉动经济增长”经济政策的影响下;全国居民的消费支出也强劲增长;消费结构发生了显著变化;消费结构不合理现象得到了一定程度的改善..本文通过相关数据分析总结出了我国城镇居民消费呈现富裕型、娱乐教育文化服务类消费攀升的趋势特点..二、我国居民消费结构的横向分析第一;食品消费支出比重随收入增加呈现出明显的下降趋势;这与恩格尔定律的表述一致..但最低收入户与最高收入恩格尔系数相差太过悬殊;城镇最低收入户刚刚解决了温饱问题;而最高收入户的生活水平按照恩格尔系数的评价标准早已达到了富裕型;甚至接近最富裕型..第二;衣着消费支出比重随收入增加缓慢上升;到高收入户又有所下降;但各收入组支出比重相差不大..衣着支出比重没有更多的递增且最高收入户的支出比重有所下降;这些都符合恩格尔定律关于衣着消费的引申..随着收入的增加;衣着支出比重呈现先上升后下降的走势..事实上;在当前的价格水平和服装业的发展水平下;城镇居民的穿着是有一定限度的;而且居民对衣着的需求也不是无限膨胀的;即使收入水平继续提高;也不需要将更大的比例用于购买服饰用品了..第三;家庭设备用品及服务、交通通讯、娱乐教育文化服务和杂项商品与服务的支出比重呈逐组上升趋势;说明居民的生活水平随收入的增加而不断提高和改善..第四;医疗保健支出比重随收入水平提高呈现一种两端高、中间低的走势..这是因为医疗保健支出作为生活必须支出;不论居民生活水平高低;都要将一定比例的收入用于维持自身健康;而且由于医疗制度改革;加重了个人负担的同时;也减小了旧制度可能造成的不同行业、不同体制下居民医疗保健支出的差别;因而不同收入等级的居民在医疗保健支出比重上差别不大..第五;居住支出比重基本上呈先上升后下降的趋势;这与我国居民消费能级不断提升;住宅商品正在越来越成为城镇居民关注的热点是相吻合的;同时与恩格尔定律的引申也是一致的..可以看出;城镇居民的消费状况虽然受价格水平、消费习惯、消费环境、消费心理预期等诸多因素的影响;但归根结底仍取决于居民的收入水平;要提高城镇居民的消费支出;必须增加居民收入..因此;采取切实有效的措施增加城镇居民的可支配收入;不仅可以提高全国城镇居民的总体消费水平;促进消费结构向着更加健康、合理的方向发展;而且在启动内需;促进我国的经济发展方面有着重大的现实意义..三、我国居民消费结构的纵向分析进入21世纪以来;随着经济体制改革的深入;国民经济的迅速发展;我国城乡居民的消费水平显著提高;居民的各项支出显著增加..随着消费水平的提高;我国城乡居民消费从注重量的满足到追求质的提高;从以衣食消费为主的生存型到追求生活质量的享受型、发展型;消费质量和消费结构都发生了明显的变化..城镇居民在食品、衣着、家庭设备用品三项支出在消费支出中的比重呈现明显的下降趋势;其中食品类支出比重降幅最大;衣着类有所下降;家庭设备用品类下降幅度不是很大..与此同时;医疗保健、交通通讯、文化娱乐教育服务、居住及杂项商品支出在消费支出中的比例均有上升;富裕阶段的消费特征开始显现..四、我国城镇居民消费结构及趋势的统计分析下图是出自中国统计年鉴—2009这一资料性年刊;它系统收录了全国和各省、自治区、直辖市2008年经济、社会各方面的统计数据;以及近三十年和其他重要历史年份的全国主要统计数据..此年鉴正文内容分为24个篇章;本文选取其中的第九篇章-人民生活;用以探究我国城镇居民消费结构及其趋势..表1 中国统计年鉴—2009统计表9-5 城镇居民家庭基本情况可支配收入1510.16 4282.95 6279.98 13785.81 15780.76平均每人消费性支出元1278.89 3537.57 4998.00 9997.47 11242.85 食品693.77 1771.99 1971.32 3628.03 4259.81衣着170.90 479.20 500.46 1042.00 1165.91居住60.86 283.76 565.29 982.28 1145.41 家庭设备用品及服务108.45 263.36 374.49 601.80 691.83 医疗保健25.67 110.11 318.07 699.09 786.20交通通信40.51 183.22 426.95 1357.41 1417.12 教育文化娱乐服务112.26 331.01 669.58 1329.16 1358.26 杂项商品与服务66.57 114.92 171.83 357.70 418.31 平均每人消费性支出构成人均消费性支出=100食品54.25 50.09 39.44 36.29 37.89衣着13.36 13.55 10.01 10.42 10.37居住 6.98 8.02 11.31 9.83 10.19 家庭设备用品及服务10.14 7.44 7.49 6.02 6.15 医疗保健 2.01 3.11 6.36 6.99 6.99交通通信 1.20 5.18 8.54 13.58 12.60 教育文化娱乐服务11.12 9.36 13.40 13.29 12.08 杂项商品与服务0.94 3.25 3.44 3.58 3.72注:1.本表至9-17表为城镇住户抽样调查资料..2.从2002年起;城镇住户调查对象由原来的非农业人口改为城市市区和县城关镇住户;本篇章相关资料均按新口径计算;历史数据作了相应调整..五、SPSS统计分析图一给出了基本的描述性统计图;图中显示各个变量的全部观测量的Mean均值、Std.Dev iation标准差和观测值总数N..图2给出了相关系数矩阵表;其中显示3个自变量两两间的Pearson相关系数;以及关于相关关系等于零的假设的单尾显著性检验概率..图1 描述性统计表图2 相关系数矩阵从表中看到因变量家庭设备用品及服务与自变量食品、衣着之间相关关系数依次为0.869、0.684;反映家庭设备用品及服务与食品、衣着之间存在显著的相关关系..说明食品与衣着对于家庭设备用品及服务条件的好转有显著的作用..自变量居住于因变量家庭设备用品及服务之间的相关系数为-0.894;它于其他几个自变量之间的相关系数也都为负;说明它们之间的线性关系不显著..此外;食品与衣着之间的相关系数为0.950;这也说明它们之间存在较为显著的相关关系..按照常识;它们之间的线性相关关系也是符合事实的..图3给出了进入模型和被剔除的变量的信息;从表中我们可以看出;所有3个自变量都进入模型;说明我们的解释变量都是显著并且是有解释力的..图3 变量进入/剔除信息表图4给出了模型整体拟合效果的概述;模型的拟合优度系数为0.982;反映了因变量于自变量之间具有高度显著的线性关系..表里还显示了R平方以及经调整的R值估计标准误差;另外表中还给出了杜宾-瓦特森检验值DW=2.632;杜宾-瓦特森检验统计量DW是一个用于检验一阶变量自回归形式的序列相关问题的统计量;DW在数值2到4之间的附近说明模型变量无序列相关..图4 模型概述表图4给出了方差分析表;我们可以看到模型的设定检验F统计量的值为9.229;显著性水平的P值为0.236..图5 方差分析表图6给出了回归系数表和变量显著性检验的T值;我们发现;变量居住的T值太小;没有达到显著性水平;因此我们要将这个变量剔除;从这里我们也可以看出;模型虽然通过了设定检验;但很有可能不能通过变量的显著性检验..图6 回归系数表图7给出了残差分析表;表中显示了预测值、残差、标准化预测值、标准化残差的最小值、最大值、均值、标准差及样本容量等;根据概率的3西格玛原则;标准化残差的绝对值最大为1.618;小于3;说明样本数据中没有奇异值..图7 残差统计表图8给出了模型的直方图;由于我们在模型中始终假设残差服从正态分布;因此我们可以从这张图中直观地看出回归后的实际残差是否符合我们的假设;从回归残差的直方图于附于图上的正态分布曲线相比较;可以认为残差的分布不是明显地服从正态分布..尽管这样也不能盲目的否定残差服从正态分布的假设;因为我们用了进行分析的样本太小;样本容量仅为5..图8 残差分布直方图从上面图4的分析结果看;我们的模型需要剔除居住这个变量;用本次实验中的方法和步骤重新令家庭设备用品及服务对食品和衣着回归;得到的主要结果如图9、图10和图11所示;跟上面的分析类似;从中可以看出;剔除居住这个变量后;模型拟合优度为0.964;比原来有所降低;而方差分析的F检验为27.071;新模型与原来的模型相比;各个系数都通过了显著性T检验;因此更加合理;从而我们可以得出结论:剔除居住这个变量后的模型更加合理;因此在做预测过程中要使用剔除不显著变量后的模型..图9 模型概述图10 方差分析表图11 回归系数表六、我国居民消费变化的趋势特点1食品消费质量提高;衣着消费支出比重下降..食品消费水平由过去简单的吃饱吃好;转变为品种更加丰富;营养更加全面..一方面由于食品供应的日益充足..另一方面由于在外饮食的增加;粮食消费比重减小;购买量大幅度下降..衣着是两项基本生存资料之一;衣着消费向时装化、名牌化、个性化发展的倾向更加明显;成衣化倾向成为主流..从衣着和食品消费比重的下降可以看出城镇居民满足基本生活的支出并没有随着收入水平的提高而提高;这表明我国城镇居民满足吃、穿为主的生存型消费需求阶段已经结束;逐步向以发展型和享受型消费的阶段过渡..2 居民收入迅速增长;消费水平大幅度提高;消费结构呈现明显的富裕型特征消费是收入的函数;收入的增加是消费水平提高和消费结构变化的前提..随着我国经济的发展;我国居民的收入水平不断提高;特别是21世纪以来;我国居民的收入水平迅速提高..伴随着收入水平的提高;城乡居民各项支出全面增加;消费性支出大幅度增长..今后5—10年以至更长时间;我国经济保持一个较高的增长速度是完全可能的;城乡居民的消费水平将大幅度提高..3消费能级不断提高;消费内容日益丰富;住房与轿车消费同时升温;可望提前成为消费热点在消费水平提高和消费结构改善的同时;城乡居民的消费能级不断提高....4以教育为龙头的娱乐教育文化服务类消费继续攀升随着人们对知识认知程度的提高和自我完善意识的增强;对教育的投入仍会保持增长..目前从子女教育在人们储蓄目的位居前列的情况看;对教育及教育产品的投入仍是今后一个时期的消费热点..大力发展教育事业;特别是高等教育、成人教育、职业教育应是政府长期坚持和倡导的提高城镇居民收入水平;缩小收入差距;应做到:1.进一步强化收入分配的宏观调控力度采取切实措施努力提高低收入群体的收入水平..2.加快西部大开发步伐;做好扶贫开发工作..3.进一步完善社会保障制度;改善居民整体尤其是社会弱势群体的生存环境..4.通过完善税收制度来缩小部分不合理的高低收入阶层差距..5.对不动产、金融资产收益以及财产的继承与赠与;要通过合理设置税种税率;征收房产税、利息税以及遗产与赠与税等税种来进行调节..参考文献1 吕振通张凌云spss统计分析与应用机械工程出版社;2009年2 Nancy L.Leech Karen C.Barrett Ceorge A.Morgan SPSS for Intermediate Statistics Use and InterpretationThird Edition PUBLISHING HOUSE OF ELECTRONICS INDUSTRY;2009年。

统计学课SPSS数据分析实战案例

统计学课SPSS数据分析实战案例

统计学课SPSS数据分析实战案例SPSS(统计分析系统)是一款常用的统计软件,被广泛应用于社会科学、商业、医学等领域的数据分析工作中。

通过这个案例,我们将运用SPSS软件进行数据分析,以展示统计学课的实战应用。

案例背景假设你是一位市场研究员,你的公司正在调查消费者对某产品的满意度。

你已经收集了一份随机抽样的数据集,包含了消费者的满意度评分以及他们的一些个人信息。

你的任务是对这些数据进行分析,以了解消费者满意度与个人信息之间是否存在关联。

数据集说明数据集包括了500个消费者的信息,具体变量如下:1. 变量1:满意度评分(连续变量,取值范围从1到10);2. 变量2:性别(分类变量,取值为男性和女性);3. 变量3:年龄(连续变量);4. 变量4:收入水平(分类变量,取值为低、中、高三个层次);5. 变量5:购买次数(连续变量,表示过去一年内购买该产品的次数)。

数据分析步骤以下是对这份数据集进行分析的步骤:1. 数据清洗和准备首先,我们需要检查数据集中是否存在缺失值或异常值,并进行数据清洗。

在SPSS中,我们可以使用数据查看和数据清洗的功能来完成这一步骤。

确保数据集中的每一列都没有缺失值,并且所有的异常值已经得到恰当的处理。

2. 描述性统计分析接下来,我们可以使用SPSS的描述性统计分析功能,对数据集进行描述性统计分析。

我们可以计算满意度评分、年龄和购买次数的平均值、标准差、最小值、最大值,并生成频数分布表和柱状图。

3. 相关性分析为了确定满意度评分与其他个人信息变量之间的关联性,我们可以使用SPSS的相关性分析功能。

通过计算满意度评分与性别、年龄、收入水平和购买次数之间的相关系数,我们可以评估它们之间的相关性。

4. 单因素方差分析我们可以使用SPSS进行单因素方差分析,以了解不同收入水平的消费者在满意度评分上是否存在显著差异。

通过观察方差分析表和显著性水平,我们可以得出初步结论。

5. 多元线性回归分析最后,我们可以使用SPSS的多元线性回归分析功能来建立一个回归模型,以预测满意度评分。

spss数据分析报告案例

spss数据分析报告案例

SPSS数据分析报告案例1. 研究背景本研究旨在调查大学生是否存在晚睡现象,并探究晚睡与健康问题之间的关系。

通过采集大学生的睡眠时间、就寝时间以及健康状况等数据,利用SPSS软件进行数据分析,进一步了解大学生的睡眠状况与健康问题的关联。

2. 数据概况本研究共收集了200名大学生的数据,其中包括性别、年级、每晚睡眠时间、平均就寝时间、是否存在健康问题等变量。

下面是对数据的描述统计分析结果:•性别分布:男性占50%,女性占50%。

•年级分布:大一占25%,大二占30%,大三占25%,大四占20%。

•每晚睡眠时间:平均睡眠时间为7.8小时,标准差为1.2小时。

最小值为5小时,最大值为10小时。

•平均就寝时间:平均就寝时间为23:30,标准差为0.5小时。

最早就寝时间为22:00,最晚就寝时间为01:00。

•健康问题:共有45%的大学生存在健康问题。

3. 数据分析结果3.1 性别与睡眠时间的关系首先,我们探究性别与睡眠时间之间的关系。

利用独立样本T检验,得出以下的结果:•假设检验:男性和女性的睡眠时间是否存在显著差异?•结果:独立样本T检验显示,男性平均睡眠时间为7.6小时,女性平均睡眠时间为8.0小时。

T值为-2.14,P值为0.034,意味着男性和女性的睡眠时间存在显著差异。

3.2 年级与睡眠时间的关系我们进一步探究年级与睡眠时间的关系。

使用单因素方差分析(ANOVA),得出以下结果:•假设检验:各年级的睡眠时间是否存在显著差异?•结果:单因素方差分析显示,大一、大二、大三和大四的平均睡眠时间分别为7.7小时、7.9小时、8.1小时和7.6小时。

F值为2.75,P值为0.043,说明各年级之间的睡眠时间存在显著差异。

3.3 睡眠时间与健康问题的关系最后,我们分析睡眠时间与健康问题之间的关系。

利用相关分析,得出以下结果:•假设检验:睡眠时间与健康问题之间是否存在相关性?•结果:相关分析结果显示,睡眠时间和健康问题之间存在显著负相关(r = -0.25,P值 = 0.001),即睡眠时间越少,存在健康问题的可能性越大。

spss案例分析报告精选文档

spss案例分析报告精选文档

s p s s案例分析报告精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-S p s s分析身高与体重的相互影响一、案例介绍:这是某幼儿园学生的身高体重数据,数据中主要包括编号,学生姓名,性别,学生年龄,每个学生的体重以及身高数值。

主要是看下幼儿园学生体重与身高的相互关系。

二、研究案例的目的:分析幼儿园学生身高体重的相互关系和影响。

三、下面是数据来源:四、研究的方法:主要是使用spss中的描述统计分析和线性回归分析;在描述统计分析中主要是分析出身高体重的最大值和最小值、均值,在图表中可以看出身高的最大值;在线性回归分析中主要是采用身高为自变量,体重为因变量来进行分析的。

五、研究的结果:1)描述分析:打开文件“某班23名同学的身高、体重、年龄数据”,通过菜单兰中的分析选项,进行描述性分析,选择体重和身高,求最大值最小值和均值,得到如下结果:从结果看出,该班学生样本数为23,体重最小值为13.7kg,最大值为23kg,平均体重为17.7167kg。

身高最小值为105cm,最大值为116cm,平均身高为108.85cm。

以身高为例子,选择描述中的频率选项可以得出分布,在频率对话框的图形选项中,选择条形图,即可用图形直观看到结果。

从图形中可以很直观的看出不同身高段的人数分布情况,其中108cm左右的人数最多。

从表格中则可以清楚地看到具体数目。

2)线性回归分析:选择分析——回归——线性,在弹出的对话框中,以身高作为自变量,体重作为因变量,结果如下:从表中可以得出。

R=0.223,即两者具有弱相关性。

从图表中,可以看出它们之间的线性关系大概可以表示为y=-0.139x+2.617 六、研究结论:从描述分析和回归分析可以身高和体重的相关性是相对比较弱的,也就是弱相关性。

【精品文档】spss案例集-精选word文档 (11页)

【精品文档】spss案例集-精选word文档 (11页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==spss案例集篇一:SPSS案例分析SPSS-单因素方差分析(ANOVA) 案例解析一.问题雌性老鼠和雄性老鼠,在注射毒素后,经过一段时间,观察老鼠死亡和存活情况。

研究的问题是:老鼠在注射毒液后,死亡和存活情况,会不会跟性别有关?二.解决方案1.首先输入数据,样本数据如下所示:(a代表雄性老鼠b代表雌性老鼠 0代表死亡 1 代表活着 tim 代表注射毒液后,经过多长时间,观察结果)2.点击“分析”——比较均值———单因素AVOVA, 如下所示:从上图可以看出,只有“两个变量”可选, 对于“组别(性别)”变量不可选,这里可能需要进行“转换”对数据重新进行编码,具体操作步骤如下:(1)点击“转换”—“重新编码为不同变量”,选择组别到字符串变量中,得到以下界面:(2)点击旧值和新值,将a,b分别用8,9进行替换,如下所示(3)点击继续,在输出变量名称中输入性别,如下图所示:最终得到如下结果:3.此时的8 代表a(雄性老鼠) 9代表b雌性老鼠,我们将“生存结局”变量移入“因变量列表”框内,将“性别”移入“因子”框内,点击“两两比较”按钮,.如下所示:勾选“将定方差齐性”下面的 LSD 选项和“未假定方差齐性”下面的Tamhane's T2选项,点击继续4.点击“选项”按钮,勾选“描述性”和“方差同质检验” 以及均值图等选项.如下所示:得到如下结果:单向附注创建的输出注释输入活动的数据集过滤器权重拆分文件工作数据文件中的 N 行缺失值处理缺失定义使用的案例用户定义的缺失值以缺失对待。

每个分析的统计量都基于对于该分析中的任意变量都没有缺失数据的案例。

数据集0 <none> <none> <none> 20 07-6月-201X 09时04分01秒篇二:SPSS案例分析《SPSS统计基础分析》作业应用案例:某地区1984——201X年出口总额及其影响因素模型分析案例简介下表给出了某地区1984——201X年出口总额及国内生产总值、进口额、储蓄的数据资料。

spss数据分析案例

spss数据分析案例

spss数据分析案例SPSS数据分析案例。

在实际的数据分析工作中,SPSS(Statistical Product and Service Solutions)是一个非常常用的统计分析软件。

它提供了强大的数据处理和分析功能,可以帮助研究人员快速、准确地进行数据处理和分析。

本文将通过一个实际的案例,介绍如何使用SPSS进行数据分析,并展示分析结果。

案例背景:某公司想要了解员工满意度与工作绩效之间的关系,为了达到这个目的,他们进行了一项调查,收集了员工的满意度评分和绩效评分数据。

现在,他们希望通过这些数据,利用SPSS进行分析,找出员工满意度和工作绩效之间的关系。

数据收集:首先,我们收集了100名员工的满意度评分和绩效评分数据。

满意度评分采用了1-5的五级评分制,绩效评分采用了1-100的百分制评分。

数据导入:将收集到的数据导入SPSS软件中,创建一个新的数据集,并将员工的满意度评分和绩效评分数据分别录入到不同的变量中。

数据描述统计分析:首先,我们对数据进行描述性统计分析,包括计算满意度评分和绩效评分的均值、标准差、最大值、最小值等。

这些统计量可以帮助我们更好地了解数据的分布情况。

相关性分析:接下来,我们使用SPSS进行相关性分析,探索员工满意度评分和绩效评分之间的相关关系。

通过相关性分析,我们可以计算出两个变量之间的相关系数,进而判断它们之间是否存在显著的相关性。

回归分析:在确定了员工满意度评分和绩效评分之间存在相关性的基础上,我们可以进一步进行回归分析,建立员工满意度评分对绩效评分的预测模型。

通过回归分析,我们可以得到员工满意度评分对绩效评分的影响程度,以及其他可能影响绩效评分的因素。

结论:通过SPSS数据分析,我们发现员工满意度评分与绩效评分之间存在显著的正相关关系,即员工满意度评分越高,其绩效评分也越高。

这为公司提高员工绩效提供了重要的参考依据,可以通过提升员工满意度来提高整体绩效水平。

总结:在本案例中,我们利用SPSS软件进行了员工满意度和绩效之间的数据分析。

spss案例分析

spss案例分析

1、某班共有28个学生,其中女生14人,男生14人,下表为某次语文测验的成绩,请用描述统计方法分析女生成绩好,还是男生成绩好。

方法一:频率分析(1) 步骤:分析→描述统计→频率→女生成绩、男生成绩右移→统计量设置→图表(直方图)→确定 (2) 结果:统计量女生成绩男生成绩N有效 1515 缺失73 73 均值 69.9333 67.0000 中值 71.0000 72.0000 众数 76.00a48.00a标准差 8.91601 14.53567 方差 79.495 211.286 全距 30.00 46.00 极小值 54.00 43.00 极大值 84.00 89.00 和1049.001005.00a. 存在多个众数。

显示最小值(3)分析:由统计量表中的均值、标准差及直方图可知,女生成绩比男生成绩好。

方法二:描述统计(1)步骤:分析→描述统计→描述→女生成绩、男生成绩右移→选项设置→确定(2)结果:(3)分析:由描述统计量表中的均值、标准差、方差可知,女生成绩比男生成绩好。

2、某公司经理宣称他的雇员英语水平很高,现从雇员中随机随出11人参加考试,得分如下:80、81、72、60、78、65、56、79、77、87、76,请问该经理的宣称是否可信?(1)方法:单样本T检验H 0:u=u,该经理的宣称可信H 1:u≠u,该经理的宣称不可信(2)步骤:①输入数据:(80,81,…76)②分析→比较均值→单样本T检验→VAR00001右移→检验值(75)→确定(3)结果:单个样本统计量N 均值标准差均值的标准误VAR00001 11 73.73 9.551 2.880(4)分析:由单个样本检验表中数据知t=0.668>0.05,所以接受H,即该经理的宣称是可信的。

3、某医院分别用 A 、B 两种血红蛋白测定仪器检测了16名健康男青年的血红蛋白含量(g/L ),检测结果如下。

问:两种血红蛋白测定仪器的检测结果是否有差别?仪器A :113,125,126,130,150,145,135,105,128,135,100,130,110,115,120 ,155仪器B :140,150,138,120,140,145,135,115,135,130,120,133,147,125,114,165(1)方法:配对样本t 检验H 0:u 1=u 2,两种血红蛋白测定仪器的检测结果无差别 H 1:u 1≠u 2,两种血红蛋白测定仪器的检测结果有差别(2)步骤:①输入两列数据:A 列(113,125,…155);B 列(140,125,…165);②分析→比较均值→配对样本t 检验→仪器A 、仪器B 右移→确定(3)结果:成对样本统计量均值 N标准差 均值的标准误对 1仪器A 126.38 16 15.650 3.912 仪器B134.501613.7703.442(4)分析:由成对样本检验表的Sig 可见t =0.032小于0.05,所以拒绝H 0,即两种血红蛋白测定仪器的检测结果有差别。

spss的数据分析案例

spss的数据分析案例

精心整理关于某公司474名职工综合状况的统计分析报告一、数据介绍:本次分析的数据为某公司474名职工状况统计表,其中共包含^一变量,分别是:id (职工编号),gender(性别),bdate(出生日期),edcu (受教育水平程度),jobcat (职务等级),salbegin (起始工资),salary (现工资),jobtime(本单位工作经历<月>),prevexp(以前工作经历<月>),minority(民族类型),age(年龄)<通过运用spss统计软件,对变量进行频数分析、描述性统计、方差分析、相关分析、I ■以了解该公司职工上述方面的综合状况,并分析个变量的分布特点及相互间的关系。

二、数据分析■■ ] I ■.1、频数分析。

基本的统计分析往往从频数分析开始。

通过频数分析能够了解变量的取值状况,对把握数据的分布特征非常有用。

此次分析利用了某公司474名职工基本状况的统计数据表,在gender(性别)、edcu (受教育水平程度)、不同的状况下的频数分析,从而了解该公司职工的男女职工数量、受教育状况的基本分布。

精心整理上表说明,在该公司的474名职工中,有216名女性,258名男性,男女比例分别为45.6%和54.4%,该公司职工男女数量差距不大,男性略多于女性。

/ 「’--了/其次对原有数据中的受教育程度进行频数分析,结果如下表:Educati on alLevel(years).4 .4 99.8 20 2上表及其直方图说I I明,被调查的474名职工中,受过12年教育的职工是该组频数最高的,为190人,占 总人数的40.1%,其次为15年,共有116人,占中人数的24.5%。

且接受过高于20年的 教育的人数只有1人,比例很低。

2、描述统计分析。

再通过简单的频数统计分析了解了职工在性别和受教育水平• J ' P t ,- J上的总体分布状况后,我们还需要对数据中的其他变量特征有更为精确的认识, 这就需要通过计算基本描述统计的方法来实现。

(完整版)SPSS分析报告实例

(完整版)SPSS分析报告实例

SPSS与数据统计分析期末论文影响学生对学校服务满意程度的因素分析一、数据来源本次数据主要来源自本校同学,调查了同学们年级、性别、助学金申请情况、生源所在地、学院、毕业学校、游历情况、家庭情况、升高、体重、近视程度、学习时间、经济条件、兴趣、对学校各方面的评价、与对学校总评价以及建议等共41条信息,共收集数据样本724条。

我们将运用SPSS,对变量进行频数分析、样本T检验、相关分析等手段,旨在了解同学们对学校提供的满意程度与什么因素有关。

二、频数分析可靠性统计克隆巴赫 Alpha项数.98562对全体数值进行可信度分析本次数据共计724条,首先从可靠性统计来看,alpha值为0。

985,即全体数据绝大部分是可靠的,我们可以在原始数据的基础上进行分析与处理。

其中,按年级来看,绝大多数为大二学生填写(占了总人数的67。

13%),之后分别依次为大二(23.76%)、大四(4。

14%)、大一(4。

97%)。

而从专业来看,占据了数据绝大多数样本所在的学院为机械、材料、经管、计通。

三、数据预处理拿到这份诸多同学填写的问卷之后,我们首先应对一些数据进行处理,对于数据的缺失值处理,由于我们对本份调查的分析重点方面是关于学生的经济情况的,因此对于确实的部分数据,升高、体重、近视度数、感兴趣的事等无关项我们均不需要进行缺失值的处理,而我们可能重点关注的每月家里给的钱、每月收入以及每月支出,由于其具有较强主观性,如果强行处理缺失值反而会破坏数据的完整性,因此我们筛去未填写的数据,将剩余数据当作新的样本进行分析.而对于一些关键的数据,我们需要做一些必要的预处理,例如一些调查项,我们希望得到数值型变量,但是填写时是字符型变量,我们就应该新建一个数字型变量并将数据复制,以便后续分析。

同时一些与我们分析相关的缺省值,一些明显可以看出的虚假信息,我们都需要先进行处理。

而具体预处理需要怎么做,这将会在其后具体分析时具体给出。

四、相关分析通过这份数据,我们可以直观地看到,最终同学给出了对学校总体的评价,而到底是什么影响了同学们的评价呢?我们小组打算从同学们的总体评价入手,分析同学们的家庭经济情况、学习成绩以及学校的各类资源完备程度是否会对同学们的评价造成影响。

spss的数据分析报告范例

spss的数据分析报告范例

spss的数据分析报告范例SPSS数据分析报告范例一、引言数据分析是现代科学研究的重要环节,在统计学中,SPSS作为一种广泛应用的数据分析软件,为研究人员提供了丰富的功能和工具。

本报告旨在使用SPSS对某项研究的数据进行分析,并整理并呈现结果,以帮助读者深入了解数据的含义,并得出有关数据的结论。

二、研究背景与目的在这一部分,我们将简要介绍研究的背景和目的。

本次研究旨在调查大学生的学习焦虑水平与其学业成绩之间的关系。

通过收集相关数据并使用SPSS进行分析,我们希望能够揭示大学生学习焦虑对学业成绩的影响程度,并为教育管理者和辅导员提供数据支持。

三、研究设计与方法在这一部分,我们将介绍研究的设计和采用的方法。

本研究采用问卷调查的形式,使用了由专家设计的学习焦虑量表和学业成绩评估表。

我们在某大学的三个院系中选取了500名大学生作为样本,并通过邮件方式发送问卷,并以匿名方式收集数据。

四、数据分析与结果本节将展示SPSS分析后的数据结果。

首先,我们将进行数据清洗和描述性统计分析。

然后,我们将使用相关性分析和回归分析来探究学习焦虑与学业成绩之间的关系。

1.数据清洗和描述性统计针对收集到的数据,我们进行了数据清洗,包括去除不完整或无效数据。

然后,我们进行了描述性统计分析,包括计算样本量、均值、标准差和分布情况。

2.相关性分析为了探究学习焦虑与学业成绩之间的关系,我们进行了相关性分析。

根据SPSS的输出结果,我们发现学习焦虑与学业成绩之间存在显著的负相关关系(r=-0.35, p<0.05),表明学习焦虑水平越高,学业成绩越低。

3.回归分析为了更深入地了解学习焦虑对学业成绩的影响程度,我们进行了回归分析。

回归分析结果显示,学习焦虑是预测学业成绩的显著因素(β=-0.25, p<0.05)。

这表明学习焦虑对学业成绩有着一定的负向影响。

五、讨论与结论根据数据分析的结果,我们得出以下结论:1.学习焦虑与学业成绩之间存在显著的负相关关系,即学习焦虑水平越高,学业成绩越低。

SPSS分析实例

SPSS分析实例

[例1]一个品牌的方便面面饼的标称重量是80克,标准差应该小于2克。

现从生产线包装前的传送带上随机抽取部分面饼,称重数据记录在数据文件data中。

问这批面饼重量是否符(1)检验方法:(2)原假设和备择假设:(3)通过上面两个表格中数据分析所得出的结论:[例2]为评价两个培训中心的教学质量,对两个培训中心学员进行了一次标准化考试,分析(1)检验方法:(2)原假设和备择假设:(3)通过上面两个表格中数据分析所得出的结论:[例3]某康体中心的减肥班学员入班时的体重数据和减肥训练一个月后的体重数据记录在数据文件data中,试分析一个月的训练是否有效。

(1)检验方法:(2)原假设和备择假设:(3)通过上面两个表格中数据分析所得出的结论:(4)可以绘制_________图,直观显示前后体重的变化趋势。

[例4]为了解非计算机专业对计算机课程教学的意见,在金融系和统计系本科生中进行了一次抽样调查,得到了390名学生的调查数据。

试据此推断两系本科生对计算机课程教学的意见是否一致。

(1)检验方法:(2)原假设和备择假设:(3)通过上面两个表格中数据分析所得出的结论:(4)可以通过_________图直观地比较不同系别的满意度。

[例5]为了试验某种减肥药物的性能,测量11个人在服用该药以前以及服用该药1个月后、2个月后、3个月后的体重。

那么请问在这4个时期,11个人的体重有无发生显著的变化?(1)通过上面输出结果表格,可判断使用的检验方法:(2)原假设和备择假设:(3)结论:[例6]数据文件“Employee data.sav”记录了474名职工的基本信息(1)绘制复式条形图来表示不同性别的雇佣类别情况;(2)对起始薪金绘制茎叶图,说明图中信息;(3)通过箱图描绘不同雇佣类别的职工当前薪金情况,得出结论;(4)分析起始薪金的确定与什么因素有关,说明下面两表分别用的分析方法,并比较两表的结果。

控制变量起始薪金教育水平(年)雇佣类别 & 经验(以月计)起始薪金相关性 1.000 .461显著性(双侧). .000df 0 470 教育水平(年)相关性.461 1.000显著性(双侧).000 .df 470 0[例7]考察数码相机成像元器件像素数是否会对产品销量产生显著影响(设显著性水平α=0.05)。

用spss对数据进行分析【可编辑】

用spss对数据进行分析【可编辑】

1.某轮胎厂的质量分析报告中说明,该厂某轮胎的平均寿命在一定的载重负荷与正常行驶条件下会大于25000公里。

平均轮胎寿命的公里数近似服从正态分布。

现对该厂的这种轮胎抽取一容量为15个的样本如下,能否作出结论:该产品与申报的质量标准是否相符?21000,19000,33000,31500,18500,34000,29000,26000,25000,28000,30000,28500,27500,28000,26000表一表示有15个变量,平均值为27000,样本数据分布的标准差为4636.809,样本均值分布的标准误差为1197.219.表二表示即在假设总体轮胎的寿命为25000公里的情况下,计算T统计量为1.671,自由度为14,双侧检验为0.117,样本均值与假设的差为20000,样本均值与原假设的差的95%的置信区间为[-567.78,4567.78]。

也就是说,在总体均值为25000公里的情况下,抽出的样本均值为27000平方米的概率大于等于0.117,2.某物质在处理前与处理后分别抽样分析其含脂率如下:处理前:0.19,0.18,0.21,0.30,0.41,0.12,0.27处理后:0.15,0.13,0.07,0.24,0.19,0.06,0.08,0.12假定处理前后的含脂率都服从正态分布,且方差相同。

问:处理前后的含脂率的是否有显著变化?表1是分1,2进行的描述统计。

其内容的解释与单个样本描述统计的解释完全相同表2是两组平均数差异的T检验结果。

下面对表中各项的内容解释如下:①等方差假定。

也就是检验的原假设为两总体分布的方差相等。

②方差齐性检验。

采用T检验的方法对两个总体的均值差进行检验的前提条件是两个总体分布的方差必须相等。

但如果是大样本,则对方差齐性不作要求。

从该题的检验结果看,F值为1.193,显著性水平为0.295〉0.05,可以接受两总体为等方差的假设。

③均值相等的T检验。

spss的数据分析报告范例1

spss的数据分析报告范例1

关于某地区361个人旅游情况统计分析报告一、数据介绍:本次分析的数据为某地区361个人旅游情况状况统计表,其中共包含七变量,分别是:年龄,为三类变量;性别,为二类变量(0代表女,1代表男);收入,为一类变量;旅游花费,为一类变量;通道,为二类变量(0代表没走通道,1代表走通道);旅游的积极性,为三类变量(0代表积极性差,1代表积极性一般,2代表积极性比较好,3代表积极性好 4代表积极性非常好);额外收入,一类变量。

通过运用spss统计软件,对变量进行频数分析、描述性统计、方差分析、相关分析,以了解该地区上述方面的综合状况,并分析个变量的分布特点及相互间的关系。

二、数据分析1、频数分析。

基本的统计分析往往从频数分析开始。

通过频数分地区359个人旅游基本状况的统计数据表,在性别、旅游的积极性不同的状况下的频数分析,从而了解该地区的男女职工数量、不同积极性情况的基本分布。

统计量积极性性别N 有效359 359缺失0 0首先,对该地区的男女性别分布进行频数分析,结果如下性别频率百分比有效百分比累积百分比有效女198 55.2 55.2 55.2男161 44.8 44.8 100.0合计359 100.0 100.0表说明,在该地区被调查的359个人中,有198名女性,161名男性,男女比例分别为44.8%和55.2%,该公司职工男女数量差距不大,女性略多于男性。

其次对原有数据中的旅游的积极性进行频数分析,结果如下表:积极性频率百分比有效百分比累积百分比有效差171 47.6 47.6 47.6一般79 22.0 22.0 69.6比较好79 22.0 22.0 91.6好24 6.7 6.7 98.3非常好 6 1.7 1.7 100.0合计359 100.0 100.0其次对原有数据中的积极性进行频数分析,结果如下表:其次对原有数据中的是否进通道进行频数分析,结果如下表:Statistics通道N Valid 359Missing 0通道Frequency Percent Valid Percent Cumulative PercentValid 没走通道293 81.6 81.6 81.6通道66 18.4 18.4 100.0Total 359 100.0 100.0这说明,在该地区被调查的359个人中,有没走通道的占81.6%,占绝大多数。

spss的数据分析案例

spss的数据分析案例

关于某公司474名职工综合状况的统计分析报告一、数据介绍:本次分析的数据为某公司474名职工状况统计表,其中共包含十一变量,分别是:id(职工编号),gender(性别),bdate(出生日期),edcu(受(现>),1edcu 首先,对该公司的男女性别分布进行频数分析,结果如下:上表及其直方图说明,被调查的474名职工中,受过12年教育的职工是该组频数最高的,为190人,占总人数的40.1%,其次为15年,共有116人,占中人数的24.5%。

且接受过高于20年的教育的人数只有1人,比例很低。

2、描述统计分析。

再通过简单的频数统计分析了解了职工在性别和受教育水平上的总体分布状况后,我们还需要对数据中的其他变量特征有更为精确的认识,这就需要通过计算基本描述统计的方法来实现。

下面就对各个变量进行描述统计分析,得到它们的均值、标准差、片度峰度作经验、现在工作经验的详细分布状况。

3、Exploratory data analysis。

(1)交叉分析。

通过频数分析能够掌握单个变量的数据分布情况,但是在实际分析中,不仅要了解单个变量的分布特征,还要分析多个变量不同取值下的分布,掌握多个变量的联合分布特征,进而分析变量之间的相互影响和关系。

就本数据而言,需要了解现工资与性别、年龄、受教育水平、起始工资、本单位工作经历、以前工作经历、职务等级的交叉分析。

现以现工资与职务等级的列联表分析为例,读取数据(下面数据分析表为截取的一部分):单因素分析用来研究一个控制变量的不同水平是否对观测变量产生了,4函数关系是指两事物之间的一种一一对应的关系,即当一个变量X取一定值时,另一个变量函数Y可以根据确定的函数取一定的值。

另一种普遍存在的关系是统计关系。

统计关系是指两事物之间的一种非一一对应的关系,即当一个变量X取一定值时,另一个变量Y无法根据确定的函数取一定的值。

统计关系可分为线性关系和非线性关系。

事物之间的函数关系比较容易分析和测度,而事物之间的统计关系却不像函数关系那样直接,但确实普遍存在,并且有的关系强有的关系弱,程度各有差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

s p s s的数据分析案例
精选文档
TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-
关于某公司474名职工综合状况的统计分析报告一、数据介绍:
本次分析的数据为某公司474名职工状况统计表,其中共包含十一变量,分别是:id(职工编号),gender(性别),bdate(出生日期),edcu(受教育水平程度),jobcat(职务等级),salbegin (起始工资),salary(现工资),jobtime(本单位工作经历<月>),prevexp(以前工作经历<月>),minority(民族类型),age(年龄)。

通过运用spss统计软件,对变量进行频数分析、描述性统计、方差分析、相关分析、以了解该公司职工上述方面的综合状况,并分析个变量的分布特点及相互间的关系。

二、数据分析
1、频数分析。

基本的统计分析往往从频数分析开始。

通过频数分
析能够了解变量的取值状况,对把握数据的分布特征非常有用。

此次分析利用了某公司474名职工基本状况的统计数据表,在gender(性别)、edcu(受教育水平程度)、不同的状况下的频数分析,从而了解该公司职工的男女职工数量、受教育状况的基本分布。

Statistics
首先,对该公司的男女性别分布进行频数分析,结果如下:
上表说明,在该公司的474名职工中,有216名女性,258名男性,男女比例分别为%和%,该公司职工男女数量差距不大,男性略多于女性。

其次对原有数据中的受教育程度进行频数分析,结果如下表: Educational Level (years)
16 59 17 11 18 9 19 27
20 2 .4 .4 21 1 .2 .2
Tot al
474

表及其直方图说明,被调查的474名职工中,受过12年教育的职工是该组频数最高的,为190人,占总人数的%,其次为15年,共有116人,占中人数的%。

且接受过高于20年的教育的人数只有1人,比例很低。

2、 描述统计分析。

再通过简单的频数统计分析了解了职工在性别和受教育水平上的总体分布状况后,我们还需要对数据中的其他变量特征有更为精确的认识,这就需要通过计算基本描述统计的方法来实现。

下面就对各个变量进行描述统计分析,得到它们的
均值、标准差、片度峰度等数据,以进一步把我数据的集中趋势和离散趋势。

Descriptive Ststistics
如表所示,以起始工资为例读取分析结果,474名职工的起始工资最小值为$9000,最大值为$79980,平均起始工资为$17016,标准差为$,偏度系数和峰度系数分别为和。

其他数据依此读取,则该表表明474名职工的受教育水平、起始工资、现工资、先前工作经验、现在工作经验的详细分布状况。

3、Exploratory data analysis。

(1)交叉分析。

通过频数分析能够掌握单个变量的数据分布情况,但是在实际分析中,不仅要了解单个变量的分布特征,还要分析多个变量不同取值下的分布,掌握多个变量的联合分布特征,进而分析变量之间的相互影响和关系。

就本数据而言,需要了解现工资与性别、年龄、受教育水平、起始工资、本单位工作经历、以前工作经历、职务等级的交叉分析。

现以现工资与职务等级的列联表分析为例,读取数据(下面数据分析表为截取的一部分):
单因素分析用来研究一个控制变量的不同水平是否对观测变量产生了显着影响。

下面我们把受教育水平和起始工资作为控制变量,现工资为观测变量,通过单因素方差分析方法研究受教育水平和起始工资对现工资的影响进行分析。

分析结果如下:
上表是起始工资对现工资的单因素方差分析结果。

可以看出:F统计量的观测值为,对应的概率P值近似等于0,如果显着性水平为,由于概率值P小于显着性水平q,则应拒绝原假设,认为不同的起始工资对现工资产生了显着影响。

同理,上表是受教育水平对现工资影响的单因素分析结果,其结果亦为拒绝原假设,所以不同的受教育水平对现工资产生显着影响。

4、相关分析。

相关分析是分析客观事物之间关系的数量分析法,
明确客观事物之间有怎
样的关系对理解和运用相关分析是极其重要的。

函数关系是指两事物之间的一种一一对应的关系,即当一个变量X取一定值时,另一个变量函数Y可以根据确定的函数取一定的值。

另一种普遍存在的关系是统计关系。

统计关系是指两事物之间的一种非一一对应的关系,即当一个变量X取一定值时,另一个变量Y无法根据确定的函数取一定的值。

统计关系可分为线性关系和非线性关系。

事物之间的函数关系比较容易分析和测度,而事物之间的统计关系却不像函数关系那样直接,但确实普遍存在,并且有的关系强有的关系弱,程度各有差异。

如何测度事物之间的统计关系的强弱是人们关注的问题。

相关分析正是一种简单易行的测度事物之间统计关系的
有效工具。

上表是对本次分析数据中,现工资、起始工资、本单位工作时间、以前工作时间、年龄五个变量间的相关分析,表中相关系数旁边有两个星号(**)的,表示显着性水平为时,仍拒绝原假设。

一个星号(*)表示显着性水平为是仍拒绝原假设。

先以现工资这一变量与其他变量的相关性为例分析,由上表可知,现工资与起始工资的相关性最大,相关系数为,而与在本单位的工作时间相关性最小,相关系数为。

5、参数检验。

首先对现工资的分布做正态性检验,结果如下:
由上图可知,现工资的分布可近似看作符合正态分布,现推断现工资变量的平均值是否为$3,000,0,因此可采取单样本t检验来进行分析。

分析如下:
One-Sample Statistics
One-Sample Test
由One-Sample Statistics可知,474名职工的现工资平均值为¥34,,标准差为$17,,均值标准误差为$。

图表One-Sample Test 中,第二列是t统计量的观测值为;第三列是自由度为473(n-1);第四列是t统计量观测值的双尾概率值;第五列是样本均值和检验值的差;第六列和第七列是总体均值与原假设值差的95%的置信区间为($2, , 5,)。

该问题的t值等于对应的临界置信水平为0,远远小于设置的,因此拒绝原假设,表明该公司的474名职工的现工资与$3,000,0存在显着差异。

6、非参数检验。

对本数据中的年龄做正态分布检验,结果如下:
由上图两图可知,474名职工的年龄分布并不完全符合正态分布,所以现推断其职工年龄的平均数在40-45岁之间,可对其采用非参数检验的方法进行检验。

检验结果如下:
Chi-Square Test
上面的第一个表为卡方检验的频率表,输出有关频率统计。

从表中可知,职工年龄为40岁的有41名,期望值为,残差为,其余读取方式相同。

第二个表是卡方检验统计表,显示检验的卡方值,自由度和渐进显着性水平分别是、5、0。

因为显着性水平0小于,因此拒绝原假设,即474名职工的平均年龄不在40到45岁之间。

相关文档
最新文档