基于参数自修正的永磁同步电机最大转矩电流比控制
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于参数自修正的永磁同步电机最大转矩电流比控制
随着电力电子器件和功率变换技术的发展,永磁同步电机被广泛应用于电动汽车、新能源发电以及工业伺服驱动等领域。
内置式永磁同步电机永磁体内埋于转子,其q轴电感要明显大于d轴电感,具有较高的凸极率和较大的磁阻转矩。
在电机运行过程中,为了充分利用磁阻转矩,通常采用最大转矩电流比控制(Maximum Torque Per Ampere,MTPA)。
然而,d-q轴电感,永磁磁链等电机参数会随电机运行工况和运行环境的改变发生非线性变化,导致直接使用传统公式计算法得到MTPA角度并不能满足高性能电机传动系统需求,因此,如何有效抑制参数变化,精确快速地获取MTPA角度一直是国内外学者的研究热点。
本文首先阐述了永磁同步电机变频技术的发展和MTPA控制的研究现状,通过对现有MTPA控制方法的优缺点进行分析,发现了现有方法存在的动态响应和稳态精度无法兼顾的问题。
其次,建立了内置式永磁同步电机数学模型,分析了永磁同步电机的参数变化特性,并通过分析最大转矩电流比控制原理,揭示了 MTPA 角度公式计算法和虚拟信号注入法中存在的问题。
在此基础上,借鉴二者思想,提出了一种动态性能良好的基于参数自修正的永磁同步电机最大转矩电流比控制方法,即通过电流环PI调节器及前馈解耦控制环节得到电机电感、永磁磁链等参数标称值和实际值之间的误差信息,并对转矩模型进行实时补偿,进而利用包含参数误差信息的转矩模型直接计算得到MTPA角度。
在此基础上,通过Matlab/Simulink对所提出的控制方法进行仿真分析来验证理论分析的正确性。
并以DSP控制系统为基础,编写控制算法代码,在20kW内置式永磁同步电机实验平台上对该方法进行稳态精度及动态响应等实验,进一步验证该方法的有效
性。
结果表明,本方法算法简单,可移植性好,能够在保证MTPA控制准确性的同时,提升系统的动态响应能力。