碲镉汞红外探测器芯片及其制备方法[发明专利]

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(19)中华人民共和国国家知识产权局
(12)发明专利申请
(10)申请公布号 (43)申请公布日 (21)申请号 202011292902.9
(22)申请日 2020.11.18
(71)申请人 中国电子科技集团公司第十一研究

地址 100015 北京市朝阳区酒仙桥路4号
(72)发明人 王经纬 刘铭 宁提 谭振 
王成刚 
(74)专利代理机构 工业和信息化部电子专利中
心 11010
代理人 罗丹
(51)Int.Cl.
H01L 31/18(2006.01)
H01L 31/103(2006.01)
H01L 31/0392(2006.01)
(54)发明名称碲镉汞红外探测器芯片及其制备方法(57)摘要本发明公开了一种碲镉汞红外探测器芯片及其制备方法。

碲镉汞红外探测器芯片的制备方法,包括:对硅基复合衬底材料件依次进行除气处理和束流校正,硅基复合衬底材料件包括层叠设置的硅基衬底层和碲化镉复合衬底层;在束流校正后的硅基复合衬底材料件的碲化镉复合衬底层上外延生长p型掺杂高电导率碲镉汞导电层;在高电导率碲镉汞导电层上外延生长碲镉汞吸收层。

碲镉汞红外探测器芯片,包括:硅基复合衬底材料件,包括层叠设置的硅基衬底层和碲化镉复合衬底层;p型掺杂高电导率碲镉汞导电层,层叠设置于碲化镉复合衬底层上;碲镉汞吸收层,层叠设置于p型掺杂高电导率碲镉汞导电层上。

采用本发明,可以有效提升红外焦平面探测
器芯片的均匀性指标。

权利要求书1页 说明书5页 附图1页CN 112466993 A 2021.03.09
C N 112466993
A
1.一种碲镉汞红外探测器芯片的制备方法,其特征在于,包括:
对硅基复合衬底材料件依次进行除气处理和束流校正,所述硅基复合衬底材料件包括层叠设置的硅基衬底层和碲化镉复合衬底层;
在束流校正后的硅基复合衬底材料件的碲化镉复合衬底层上外延生长p型掺杂高电导率碲镉汞导电层;
在所述高电导率碲镉汞导电层上外延生长碲镉汞吸收层。

2.如权利要求1所述的方法,其特征在于,在对硅基复合衬底材料件进行除气处理之前,对所述硅基复合衬底材料件进行清洗。

3.如权利要求1所述的方法,其特征在于,所述对硅基复合衬底材料件进行除气处理,包括:
将硅基复合衬底材料件置于分子束外延设备中,并将所述分子外延设备的源炉温度调节至预估温度;
对所述硅基复合衬底材料件进行高温除气第一预设时间段后,将所述分子外延设备的源炉温度调节至预估温度;
所述预估温度大于等于18℃且小于等于25℃;
所述第一预设时间段大于等于25分钟且小于等于35分钟。

4.如权利要求1所述的方法,其特征在于,所述在束流校正后的硅基复合衬底材料件的碲化镉复合衬底层上外延生长p型掺杂高电导率碲镉汞导电层,包括:
通过原位掺杂技术,在束流校正后的硅基复合衬底材料件的碲化镉复合衬底层上外延生长p型掺杂高电导率碲镉汞导电层;
所述p型掺杂高电导率碲镉汞导电层的厚度大于等于300纳米且小于等于500纳米;所述p型掺杂高电导率碲镉汞导电层的有效掺杂浓度大于等于7×1016。

5.如权利要求1所述的方法,其特征在于,所述p型掺杂高电导率碲镉汞导电层与所述碲镉汞吸收层一次性完成外延。

6.如权利要求1所述的方法,其特征在于,在束流校正后的硅基复合衬底材料件的碲化镉复合衬底层上外延生长高电导率碲镉汞导电层之前,在所述高电导率碲镉汞导电层上外延生长碲镉汞吸收层之后,间隔第二预设时间段,所述第二预设时间段大于等于5分钟且小于等于15分钟。

7.如权利要求1所述的方法,其特征在于,所述方法还包括:
在所述碲镉汞吸收层上外延生长碲化镉原位钝化层。

8.如权利要求1所述的方法,其特征在于,所述方法还包括:
对所述碲镉汞吸收层进行转p型工艺,同时激活所述p型掺杂高电导率碲镉汞导电层。

9.一种碲镉汞红外探测器芯片,其特征在于,包括:
硅基复合衬底材料件,包括层叠设置的硅基衬底层和碲化镉复合衬底层;
p型掺杂高电导率碲镉汞导电层,层叠设置于所述碲化镉复合衬底层上;
碲镉汞吸收层,层叠设置于所述p型掺杂高电导率碲镉汞导电层上。

10.如权利要求9所述的碲镉汞红外探测器芯片,其特征在于,还包括:
碲化镉原位钝化层,层叠设置于所述碲镉汞吸收层上。

权 利 要 求 书1/1页CN 112466993 A
碲镉汞红外探测器芯片及其制备方法
技术领域
[0001]本发明涉及红外探测器领域,尤其涉及一种碲镉汞红外探测器芯片及其制备方法。

背景技术
[0002]目前,红外焦平面探测器正向着大面阵、双多色的第三代焦平面探测器领域发展。

碲镉汞材料由于其接近100%的量子效率及从近红外到甚长波全波段的极广的应用范围,在该领域的应用中占据绝对的市场份额。

随着其在航天、气象观测等领域应用的不断扩展,对于其性能的要求也在不断地提高。

[0003]在碲镉汞红外探测器的制备过程中,通常采用背照式,即被探测物体所辐射红外线通过衬底材料一侧入射到探测器吸收层,所产生电子-空穴对被p-n耗尽区结所俘获,产生电信号,并被读出电路读出。

芯片p-n结工作在反偏区,芯片表面n型层加正电压,p型层通过芯片四周环形地加负电压。

由于芯片中心区与边缘区域体电阻的差异,导致中心区域与边缘区域相比实际结区电压较小,这会体现在成像信号上面。

对于第二代中、短波组件而言,这个差异在5%以下,通常可以忽略;但对于第三代大面阵、超大面阵碲镉汞红外探测器,这个差异可达10%甚至以上,导致组件非均匀性劣化明显;再叠加红外线照度的影响,导致组件固有非均匀性达到18%~20%以上。

发明内容
[0004]本发明实施例提供一种碲镉汞红外探测器芯片及其制备方法,用以解决现有技术中芯片中心-边缘区域偏压不均匀的问题。

[0005]根据本发明实施例的碲镉汞红外探测器芯片的制备方法,包括:
[0006]对硅基复合衬底材料件依次进行除气处理和束流校正,所述硅基复合衬底材料件包括层叠设置的硅基衬底层和碲化镉复合衬底层;
[0007]在束流校正后的硅基复合衬底材料件的碲化镉复合衬底层上外延生长p型掺杂高电导率碲镉汞导电层;
[0008]在所述高电导率碲镉汞导电层上外延生长碲镉汞吸收层。

[0009]根据本发明的一些实施例,在对硅基复合衬底材料件进行除气处理之前,对所述硅基复合衬底材料件进行清洗。

[0010]根据本发明的一些实施例,所述对硅基复合衬底材料件进行除气处理,包括:[0011]将硅基复合衬底材料件置于分子束外延设备中,并将所述分子外延设备的源炉温度调节至预估温度;
[0012]对所述硅基复合衬底材料件进行高温除气第一预设时间段后,将所述分子外延设备的源炉温度调节至预估温度;
[0013]所述预估温度大于等于18℃且小于等于25℃;
[0014]所述第一预设时间段大于等于25分钟且小于等于35分钟。

[0015]根据本发明的一些实施例,所述在束流校正后的硅基复合衬底材料件的碲化镉复合衬底层上外延生长p型掺杂高电导率碲镉汞导电层,包括:
[0016]通过原位掺杂技术,在束流校正后的硅基复合衬底材料件的碲化镉复合衬底层上外延生长p型掺杂高电导率碲镉汞导电层;
[0017]所述p型掺杂高电导率碲镉汞导电层的厚度大于等于300纳米且小于等于500纳米;
[0018]所述p型掺杂高电导率碲镉汞导电层的有效掺杂浓度大于等于7×1016。

[0019]根据本发明的一些实施例,所述p型掺杂高电导率碲镉汞导电层与所述碲镉汞吸收层一次性完成外延。

[0020]根据本发明的一些实施例,在束流校正后的硅基复合衬底材料件的碲化镉复合衬底层上外延生长高电导率碲镉汞导电层之前,在所述高电导率碲镉汞导电层上外延生长碲镉汞吸收层之后,间隔第二预设时间段,所述第二预设时间段大于等于5分钟且小于等于15分钟。

[0021]根据本发明的一些实施例,所述方法还包括:
[0022]在所述碲镉汞吸收层上外延生长碲化镉原位钝化层。

[0023]根据本发明的一些实施例,所述方法还包括:
[0024]对所述碲镉汞吸收层进行转p型工艺,同时激活所述p型掺杂高电导率碲镉汞导电层。

[0025]根据本发明实施例的碲镉汞红外探测器芯片,包括:
[0026]硅基复合衬底材料件,包括层叠设置的硅基衬底层和碲化镉复合衬底层;[0027]p型掺杂高电导率碲镉汞导电层,层叠设置于所述碲化镉复合衬底层上;[0028]碲镉汞吸收层,层叠设置于所述p型掺杂高电导率碲镉汞导电层上。

[0029]根据本发明的一些实施例,所述碲镉汞红外探测器芯片,还包括:
[0030]碲化镉原位钝化层,层叠设置于所述碲镉汞吸收层上。

[0031]采用本发明实施例,可以有效提升红外焦平面探测器芯片的均匀性指标,与现有技术中的超大面阵红外探测器芯片中心-边缘电平差位于10%-15%范围内,本发明实施例的芯片中心-边缘电平差在5%以下,大大提升了芯片成品率及材料利用率。

[0032]上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。

附图说明
[0033]通过阅读下文实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。

附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。

在附图中:
[0034]图1是本发明实施例中碲镉汞红外探测器芯片的制备方法示意图;
[0035]图2是本发明实施例中碲镉汞红外探测器芯片的结构示意图。

具体实施方式
[0036]下面将参照附图更详细地描述本发明的示例性实施例。

虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。

相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。

[0037]如图1所示,根据本发明实施例的碲镉汞红外探测器芯片的制备方法,包括:[0038]S1,对硅基复合衬底材料件依次进行除气处理和束流校正,所述硅基复合衬底材料件包括层叠设置的硅基衬底层和碲化镉复合衬底层;
[0039]S2,在束流校正后的硅基复合衬底材料件的碲化镉复合衬底层上外延生长p型掺杂高电导率碲镉汞导电层;可以理解的是,在碲化镉复合衬底层远离硅基衬底层的一侧外延生长p型掺杂高电导率碲镉汞导电层。

[0040]S3,在所述高电导率碲镉汞导电层上外延生长碲镉汞吸收层。

可以理解的是,在高电导率碲镉汞导电层远离碲化镉复合衬底层的一侧外延生长碲镉汞吸收层。

[0041]采用本发明实施例,可以有效提升红外焦平面探测器芯片的均匀性指标,与现有技术中的超大面阵红外探测器芯片中心-边缘电平差位于10%-15%范围内,本发明实施例的芯片中心-边缘电平差在5%以下,大大提升了芯片成品率及材料利用率。

[0042]在上述实施例的基础上,进一步提出各变型实施例,在此需要说明的是,为了使描述简要,在各变型实施例中仅描述与上述实施例的不同之处。

[0043]根据本发明的一些实施例,在对硅基复合衬底材料件进行除气处理之前,对所述硅基复合衬底材料件进行清洗。

[0044]根据本发明的一些实施例,所述对硅基复合衬底材料件进行除气处理,包括:[0045]将硅基复合衬底材料件置于分子束外延设备中,并将所述分子外延设备的源炉温度调节至预估温度;
[0046]对所述硅基复合衬底材料件进行高温除气第一预设时间段后,将所述分子外延设备的源炉温度调节至预估温度;
[0047]所述预估温度大于等于18℃且小于等于25℃;例如,预估温度可以设置为20℃。

[0048]所述第一预设时间段大于等于25分钟且小于等于35分钟。

例如,第一预设时间段可以设置为30分钟。

[0049]根据本发明的一些实施例,所述在束流校正后的硅基复合衬底材料件的碲化镉复合衬底层上外延生长p型掺杂高电导率碲镉汞导电层,包括:
[0050]通过原位掺杂技术,在束流校正后的硅基复合衬底材料件的碲化镉复合衬底层上外延生长p型掺杂高电导率碲镉汞导电层;
[0051]所述p型掺杂高电导率碲镉汞导电层的厚度大于等于300纳米且小于等于500纳米;
[0052]所述p型掺杂高电导率碲镉汞导电层的有效掺杂浓度大于等于7×1016。

[0053]根据本发明的一些实施例,所述p型掺杂高电导率碲镉汞导电层与所述碲镉汞吸收层一次性完成外延。

由此,可以实现芯片中心-边缘区域偏压一致性。

[0054]根据本发明的一些实施例,在束流校正后的硅基复合衬底材料件的碲化镉复合衬底层上外延生长高电导率碲镉汞导电层之前,在所述高电导率碲镉汞导电层上外延生长碲
镉汞吸收层之后,间隔第二预设时间段,所述第二预设时间段大于等于5分钟且小于等于15分钟。

例如,第二预设时间段可以设置为10分钟。

[0055]根据本发明的一些实施例,所述方法还包括:
[0056]在所述碲镉汞吸收层上外延生长碲化镉原位钝化层。

可以理解的是,在碲镉汞吸收层远离高电导率碲镉汞导电层的一侧外延生长碲化镉原位钝化层。

[0057]根据本发明的一些实施例,所述方法还包括:
[0058]对所述碲镉汞吸收层进行转p型工艺,同时激活所述p型掺杂高电导率碲镉汞导电层。

[0059]在本发明的一些实施例中,p型掺杂高电导率碲镉汞导电层的组分与碲镉汞吸收层组分相同或者大致相同,以确保杂质掺杂及激活效率。

[0060]根据本发明的一些实施例,碲镉汞红外探测器芯片的制备方法适用于大面阵、双多色的第三代焦平面探测器。

[0061]如图2所示,根据本发明实施例的碲镉汞红外探测器芯片1,包括:
[0062]硅基复合衬底材料件,包括层叠设置的硅基衬底层11和碲化镉复合衬底层12;[0063]p型掺杂高电导率碲镉汞导电层20,层叠设置于所述碲化镉复合衬底层12上;[0064]碲镉汞吸收层30,层叠设置于所述p型掺杂高电导率碲镉汞导电层20上。

[0065]采用本发明实施例,可以有效提升红外焦平面探测器芯片1的均匀性指标,与现有技术中的超大面阵红外探测器芯片中心-边缘电平差位于10%-15%范围内,本发明实施例的芯片1的中心-边缘电平差在5%以下,大大提升了芯片1成品率及材料利用率。

[0066]在上述实施例的基础上,进一步提出各变型实施例,在此需要说明的是,为了使描述简要,在各变型实施例中仅描述与上述实施例的不同之处。

[0067]根据本发明的一些实施例,所述碲镉汞红外探测器芯片,还包括:
[0068]碲化镉原位钝化层,层叠设置于所述碲镉汞吸收层上。

[0069]下面以一个具体的实施例详细描述根据本发明实施例的碲镉汞红外探测器芯片及其制备方法。

值得理解的是,下述描述仅是示例性说明,而不是对本发明的具体限制。

凡是采用本发明的相似结构及其相似变化,均应列入本发明的保护范围。

[0070]通常的解决办法为通过在芯片制备工艺过程中,在材料表面蚀刻几条纵横的深槽,通过电极引出;通过此种方式减小芯片中心区域等效电路分压电阻,进而提升全面阵二极管反偏电压均匀性。

但对于超大面阵探测器,随着像元中心距减小、刻蚀线宽减小及材料面积受限,刻蚀“网格地”的做法显现出诸多弊端:占空比降低、工艺相对复杂、需要更大材料面积等。

[0071]为了解决以上难题,本发明实施例提出一种碲镉汞红外探测器芯片,通过在p型碲镉汞吸收层下面生长p型掺杂高电导率碲化镉导电层、并通过分子束外延设备在材料外延过程中一次性完成外延,实现中心-边缘区域偏压一致性的实现。

[0072]结构设计上,在进行碲镉汞吸收层外延之前,通过原位掺杂技术外延300~500nm 厚p型掺杂高电导率碲化镉导电层,有效掺杂浓度达到(7~10)×1016以上,保证材料体电阻相比探测器二极管等效电阻小一个数量级或者以上。

p型掺杂高电导率碲化镉导电层材料组分与碲镉汞吸收层相同或略小,确保杂质掺杂及激活效率。

[0073]本发明实施例的碲镉汞红外探测器芯片的制备方法包括:
[0074]步骤1:将硅基复合衬底材料件通过标准清洗工艺后装入分子束外延设备中,按照标准工艺进行除气处理;
[0075]步骤2:将各个源炉升高到预估温度+20℃左右,除气约30分钟后降温至预估温度,进行束流校正;
[0076]步骤3:校正束流后,将除气后的硅基复合衬底材料件进入到分子束外延设备中,进行p型掺杂高电导率碲镉汞导电层分子束外延工艺生长,随后关闭掺杂源约10分钟,再进行碲镉汞吸收层分子束外延工艺生长;
[0077]步骤4:进行碲化镉原位钝化层外延,视所需的钝化薄膜厚度调整生长时间;[0078]步骤5:按照标准芯片制备工艺进行材料转p型退火,在碲镉汞吸收层材料转p型同时,进行p型掺杂高电导率碲镉汞导电层激活;
[0079]步骤6:后续组件制备过程同常规工艺相同。

[0080]综上所述,依照本发明专利的方法,即可优化超大面阵焦平面组件中心-边缘电平差问题。

[0081]本发明实施例的有益效果包括:1、与不进行优化的超大面阵组件相比,芯片中心-边缘电平差从10%-15%降低到5%以下;2、与通过芯片制备过程中制备“网格地”优化方案相比,提升了占空比,降低了工艺难度,提升了芯片成品率及材料利用率。

[0082]依照本发明实施例制备碲镉汞超大面阵焦平面组件,工艺过程相对简单,减少了工艺步骤,提高了材料利用率及芯片非均匀性。

[0083]需要说明的是,以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。

凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

[0084]另外,单词“包含”不排除存在未列在权利要求中的元件或步骤。

位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。

本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。

在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。

单词第一、第二、以及第三等的使用不表示任何顺序。

可将这些单词解释为名称。

图1
图2。

相关文档
最新文档