等比数列概念PPT课件
合集下载
高一数学 等比数列(课件) ppt课件
n1
(a1 0, q 0)
3、探究等比数列的图像
等差数列的图像可以看成是直线上一群孤立的点 构成的,观察等比数列的通项公式,你能得出什 么结果?它的图像如何?
a n a1 q
n 1
(n≥2)
y a1 q q x (x N )
指数函数
由此可知等比数列 an 的图象是函数
07年广西高考(文科): 1.(第16题)等比数列{an}的前n项和为Sn,已知S1, 2S2,S3成等差数列,则{an}的公比为 __ 。 2. (第21题)设{an}是等差数列, {bn}是等比数列, 且a1=b1=1 , a3+b5=21 , a5+b3=13. (Ⅰ)求{an}、 {bn}的通项公式; (Ⅱ)略
a1q 2 12 ① 3 a1q 18 ②
a4 18 2 q ① a1q 12 ② 方法2: a3 12 变式1.等比数列 , a1 1, q 3, 求a8与an a中 n
变式2.等比数列
(3)思考消元方法。
, a中 n
a1 2, a9 32, 求q
5.看看高考(课后练习)
.
10
2.5 10 10 所以到第5代大约可以得到种子2.5 10 粒。
a1 120, q 120, a5 120120
51
例2(见教材例2):一个等比数列第三项与第四项 分别是12与18,求它的第1项和第2项。
分析:方法1:
(1)如何将已知条件与要求的a1与q联系起来? (2)列出方程:
等 比 数 列
第一课时
一、温故而知新
1、等差数列的定义: 2、等差数列性质:
温馨提示: 您是否还记得?
《等比数列的概念》课件
03
等比数列的应用
等比数列在数学中的应用
解题技巧
等比数列是数学中常见的数列类型, 它在解决数学问题时具有广泛的应用 。例如,在求解一些复杂数学问题时 ,可以利用等比数列的性质简化计算 过程。
公式推导
等比数列的通项公式和求和公式在数 学中经常被用来推导其他公式或解决 一些复杂的数学问题。这些公式是等 比数列应用的基石,能够提供解决问 题的有效途径。
等比数列的公比
总结词
表示等比数列中任意两项的比值
详细描述
等比数列的公比是任意两项的比值,通常用字母 q 表示。公比是等比数列中相 隔一项的两个数的比值,即 a_n/a_(n-1)。公比反映了等比数列中每一项与前一 项的比值。
等比数列的项数与项的关系
总结词
表示等比数列中项数与项的关系
详细描述
在等比数列中,任意一项的值可以用首项、公比和项数来表 示。例如,第 n 项的值可以用 a_n=a_1×q^(n-1) 来表示, 其中 a_1 是首项,q 是公比,n 是项数。这个公式揭示了等 比数列中项数与项的关系。
《等比数列的概念》ppt课件
目录 Contents
• 等比数列的定义 • 等比数列的性质 • 等比数列的应用 • 练习题与答案
01
等比数列的定义
等比数列的文字定义
总结词:简洁明了
详细描述:等比数列是一种特殊的数列,其中任意两个相邻项之间的比值都相等 。
等比数列的数学符号定义
总结词:专业严谨
详细描述:等比数列通常表示为 a_n,其中 a 是首项,r 是公比,n 是项数。其数学定义是 a_n = a * r^(n-1),其中 r ≠ 0。
等比数列与等差数列的区别
总结词:对比分析
等比数列(公开课课件)
教师备选
已知各项都为正数的数列{an}满足an+2=2an+1+3an. (1)证明:数列{an+an+1}为等比数列;
an+2=2an+1+3an, 所以an+2+an+1=3(an+1+an), 因为{an}中各项均为正数, 所以 an+1+an>0,所以aan+n+2+1+aan+n 1=3,
第六章
考试要求
1.理解等比数列的概念. 2.掌握等比数列的通项公式与前n项和公式. 3.了解等比数列与指数函数的关系.
落实主干知识 探究核心题型
课时精练
LUOSHIZHUGANZHISHI
落实主干知识
知识梳理
1.等比数列的有关概念 (1)定义:一般地,如果一个数列从第 2 项起,每一项与它的前一项的比 都等于同一个常数 (不为零),那么这个数列叫做等比数列.这个常数叫做 等比数列的 公比 ,通常用字母q表示,定义的表达式为 aan+n1=q (n∈N*, q为非零常数). (2)等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那 么 G 叫做a与b的等比中项,此时,G2=ab.
方法二 设等比数列{an}的公比为q,
则aa34qq22- -aa34= =1224, ,
① ②
②①得aa34=q=2.
将q=2代入①,解得a3=4. 所以 a1=aq32=1,下同方法一.
(2)(2019·全国Ⅰ)记 121
Sn
为等比数列{an}的前
n
项和.若
a1=31,a24=a6,则
S5
=___3_____.
假设存在常数λ,使得数列{Sn+λ}是等比数列, ∵S1+λ=λ+1,S2+λ=λ+4,S3+λ=λ+13, ∴(λ+4)2=(λ+1)(λ+13),解得 λ=12, 此时 Sn+12=12×3n,则SSn+n+1+1212=1212××33n+n1=3,
等比数列的概念及基本运算ppt课件
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
点评:(1)解决等比数列问题,关键是抓住首项 a1 和 公比 q,求解时,要注意方程思想的运用.
(2)运用等比数列求和公式时,要注意公比 q 是否为 1.当 n 较小时,直接利用前 n 项和的意义展开,不仅可避 开公比 q 的讨论,还可使求解过程简捷.
q3=-2, 所以a1=1,
或q3=-12, a1=-8.
所以 a1+a10=a1(1+q9)=-7.
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
a111--qq10=10, (2)(方法一)设公比为 q,则a111--qq20=30, 得 1+q10=3,所以 q10=2. 所以 S30=a111--qq30=a111--qq10(1+q10+q20) =10(1+2+22)=70. (方法二)因为 S10,S20-S10,S30-S20 仍成等比数列, 又 S10=10,S20=30, 所以 S30-30=30-10102=40,所以 S30=70. 答案:(1)D (2)70
A.8
B.9
C.10
D.11
解:因为 a5a7=a62,a7a9=a82, 所以 a5a7+2a6a8+a7a9=a62+2a6a8+a28=(a6+a8)2=100.又 an> 0,所以 a6+a8=10.
答案:C
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
2.(2015·新课标卷Ⅱ)已知等比数列{an}满足 a1=3,a1+a3
等比数列定义及性质PPT课件
a1 首项为 a 1,公比为 q 的等比数 列的通项公式:
a n= a 1 q n-1 (a 1 ≠0 且 q ≠0
n ∈N +)
练习:写出下列等比数列通项公式
(1) 2,4,8,16,… a n =2n
(2) 2,2
2 , 4, 4
2…
n 1
a n= 2 2
(3)
1,
1 2
,Байду номын сангаас
1 4
,
1 8
,
…
.
1
一、温故知新:
1、等差数列定义: an-an-1=d(d为常数) 2、等差数列单调性:d>0单调递增
d<0单调递减 d=0常数列
3、 等 差 数 列 的: 通an项 a1公 (n式 1)d
用什么方法推出的呢?
.
2
观察以上数列各有什么特点:
1, 2, 4, 8, … (1) 1.对于数列(1),从第2项起,每一项 与前一项的比都等于___2_
an q(n 2) a n 1
或 a n 1 q ( n 1) an
(2)既是等比数列又是等差数列的数列存在吗? 如果存在,你能举出例子吗?
非零的常数数列既是等差数列又是等比数列
.
5
探究: (1)等比数列的各项能等于0吗?为什么?
(2)公比q能等于0吗?
等差数列
由于等差数列是 作差 故a n , d 没 有要求
的前一项的差等于同 的前一项的 _比等于 _
一个常数,那么这个数 同一个常数,那么这个
列就叫做等差数列. 数列就叫做 等比数列
这个常数叫做等差数 这个常数叫做等 比 数
列的公差
列的 _公__比__
a n= a 1 q n-1 (a 1 ≠0 且 q ≠0
n ∈N +)
练习:写出下列等比数列通项公式
(1) 2,4,8,16,… a n =2n
(2) 2,2
2 , 4, 4
2…
n 1
a n= 2 2
(3)
1,
1 2
,Байду номын сангаас
1 4
,
1 8
,
…
.
1
一、温故知新:
1、等差数列定义: an-an-1=d(d为常数) 2、等差数列单调性:d>0单调递增
d<0单调递减 d=0常数列
3、 等 差 数 列 的: 通an项 a1公 (n式 1)d
用什么方法推出的呢?
.
2
观察以上数列各有什么特点:
1, 2, 4, 8, … (1) 1.对于数列(1),从第2项起,每一项 与前一项的比都等于___2_
an q(n 2) a n 1
或 a n 1 q ( n 1) an
(2)既是等比数列又是等差数列的数列存在吗? 如果存在,你能举出例子吗?
非零的常数数列既是等差数列又是等比数列
.
5
探究: (1)等比数列的各项能等于0吗?为什么?
(2)公比q能等于0吗?
等差数列
由于等差数列是 作差 故a n , d 没 有要求
的前一项的差等于同 的前一项的 _比等于 _
一个常数,那么这个数 同一个常数,那么这个
列就叫做等差数列. 数列就叫做 等比数列
这个常数叫做等差数 这个常数叫做等 比 数
列的公差
列的 _公__比__
等比数列的概念优秀课件
n a S 3 c, (1)、设数列 n 的前项和为 n 若a n 是等比数列,求 c 。
(2)、已知 a n 是无穷等比数列,公比 a a , a a , a a , 1 2 3 4 5 6 为q ,在数列 a n 中, , 组成一个新数列,这个数列是等比数列 吗?如果是,它的公比是多少?结论可 以推广吗?
a n
复习数列的有关概念2 如果数列 a n 的第n项 a n 与n之间的
关系可以用一个公式来表示,这个公式就叫 做这个数列的通项公式。
S a a a a a n 1 2 3 n 1 n 叫做数列 a n 的前n项和。
n1 ) S 1( a n S n2 ) n S n 1(
为0.
等比数列、等差数列定义比较
等比数列:如果一个数列从第2项起,每一项与它 的前一项的比等于同一个常数(指与n无关的数), 这个数列就叫做等比数列,这个常数叫做等比数 列的公比,公比通常用字母q表示。 等差数列:如果一个数列从第2项起,每一项与它的 前一项的差等于同一个常数,那么这个数列就叫 做等差数列.这个常数叫做等差数列的公差,公差通 常用字母d来表示.
等比数列(一) --等比数列概念
等比数列的概念
复习数列的有关概念1
按一定的次序排列的一列数叫做数列。 数列中的每一个数叫做这个数列的项。 数列中的各项依次叫做这个数列的 第1项(或首项)用 a 1 表示,
第2项用 a 2表示 …,第n项用 a n 表示, …, 数列的一般形式可以成: a 1 , a 2 , a 3 , …, a n , … , 简记:
a a ( 是与 n 无关的数或式子 n 1 n d
a n 的前n项和
A
(2)、已知 a n 是无穷等比数列,公比 a a , a a , a a , 1 2 3 4 5 6 为q ,在数列 a n 中, , 组成一个新数列,这个数列是等比数列 吗?如果是,它的公比是多少?结论可 以推广吗?
a n
复习数列的有关概念2 如果数列 a n 的第n项 a n 与n之间的
关系可以用一个公式来表示,这个公式就叫 做这个数列的通项公式。
S a a a a a n 1 2 3 n 1 n 叫做数列 a n 的前n项和。
n1 ) S 1( a n S n2 ) n S n 1(
为0.
等比数列、等差数列定义比较
等比数列:如果一个数列从第2项起,每一项与它 的前一项的比等于同一个常数(指与n无关的数), 这个数列就叫做等比数列,这个常数叫做等比数 列的公比,公比通常用字母q表示。 等差数列:如果一个数列从第2项起,每一项与它的 前一项的差等于同一个常数,那么这个数列就叫 做等差数列.这个常数叫做等差数列的公差,公差通 常用字母d来表示.
等比数列(一) --等比数列概念
等比数列的概念
复习数列的有关概念1
按一定的次序排列的一列数叫做数列。 数列中的每一个数叫做这个数列的项。 数列中的各项依次叫做这个数列的 第1项(或首项)用 a 1 表示,
第2项用 a 2表示 …,第n项用 a n 表示, …, 数列的一般形式可以成: a 1 , a 2 , a 3 , …, a n , … , 简记:
a a ( 是与 n 无关的数或式子 n 1 n d
a n 的前n项和
A
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)1, 2, 4, 8, 12,16,20, … ×
(3)数列{an}的通项公式为
an=3n/2, (n∈N*) √
q=3
(4)1,1,1,… ,1
√ q=1
(5)a,a,a,…,a
不一定,当a≠0时是等比数列,当a=0时非等比数列。
8
自主学习(5分钟左右)
时间:5分钟 要求:1、保持安静,独立思考
8组B
1组B PK 书面
3组B
黑板 黑板
要求: (1)一分钟准备,展示同
学迅速展示工整简练。(可 两人合作) (2)其他同学:在A层同学 带领下,继续站立讨论剩余 题目。完成的小组迅速坐下 记忆公式。 (3)分层目标:A层把握 做题思想,总结做题方法; B层熟记公式与运算。
精彩点评
内容 展示 方式 点评
方法1:利用通项公式
设等比数列第1项为a1,公比为q,则
a q 18
a
1 1
q
3
18
q2
18 8
9 4
, q
3 2
(1)若q 3,则a a q 8 3 12
2
3
2
2
(2)若q 3,则a a q 8( 3) 12
2
Байду номын сангаас
3
2
2
22
方法2:利用定义
设等比数列为an ,
由定义 a3 a4 , a2 a3
请拿出你的课本、导学案、双色笔和练 习本,还有你的激情!
全力投入会使你与众不同 你是最优秀的,你一定能做的更好!
学习目标
1、理解等比数列的定义,掌握等比数列的通项公 式;会解决知道公式中的任意三个,求另一个的 问题。
2、在具体的情境中,通过自主、合作、探究的方 式,灵活运用所学公式解决相应的问题。
3、让我们激情投入、充分感受数列是反映现实生 活的模型,体会数学学习丰富多彩、兴趣无穷。
一、复习与预习检查(8分钟)
基础知识抢答: 1、等差数列定义:
如果一个数列从第二项开始,每一项与前一项的 差等于同一个常数,这个数列叫做等差数列。 数学表达式:an-an-1=d(n≥2且n∈N*) 或an+1-an=d(n∈N*) 2、等差数列的通项公式:
快乐之旅
——巩固训练(8分钟)
7个金蛋你可以任选一个,如果出现“恭喜你”的字样, 你将直接过关;否则将有考验你的数学问题,当然你可以 自己作答,也可以求助你周围的老师或同学.
快乐之旅
3
5
7
1
2
4
6
快乐之旅
训练1: 求出下列
等比数列中的未知 项.
• (1) 2. a, 8 1 (2) -4 , b, c, 2
26
作业: 优化方案31页跟踪训练第2题和第4题
27
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
则a32 a2a4 144, a3 12
23
总结
1.定义
2.公比(差)
等比数列(G P)
an1 q an
q不可以是0,
等差数列(A P)
an1 an d
d可以是0
3.等比(差) 中项
等比中项
G ab
4.通项公式
an a1q n1
an amqnm
5.性质
?
(若m+n=p+q)
等差中项
2A a b
an a1 (n 1)d an am (n m )d
am an ap aq 24
达标检测(5分钟)
1在等比数列an 中, 1a4 27, q 3, 求a7 ; 2a5 4, a7 6, 求a9 .
2已知数列an 中,a1 1, an1 2an 1. 1求证:数列an 1是等比数列; 2求数列an 的通项公式.
注意※公比是等比数列,从第2项起,每一项与前一项的比,
不能颠倒。
6
等比中项
如果在a与b中间插入一个数G,使a,G,b成 等比数列,那么G叫做a与b的等比中项。
G2 ab
G ab
an2 an1 an1(n 2)
7
基础练习(抢答):
判断下列数列是否是等比数列,是等比数列的求出公比。
(1)1,-1/3, 1/9 ,-1/27,…√ q=-1/3
an=a1+(n-1)d (n∈N*)
3、等差数列通项公式的推导公式: an=am+(n-m)d (n,m∈N*)
4
二、预习作业(抢答)
(1) 1, 2, 22 , 23 , ……
(2)
1, 2
1, 4
1, 8
1 16
,
……
, 263
(3) 1, 20, 202 , 203 , ....
(4) 36,36×0.9,36×0.92, 36×0.93,…
2、将你的疑点用彩色笔记下来,以便在小 组讨论时解决。
合作探究(10分钟左右)
内容:
导学案“合作探究”中的题目。
要求:
1.在小组长的安排下,先一对一讨论,明确答案。 2.小组长主持跨层交流,明确本小组意见。
精彩展示
内容 展示 方式 地点
探究1 探究2 探究3
2组B PK 书面
7组B
5组B PK 口头
解: (1)根据题意,得
解得 a=4或a=-4
(2)根据题意,得
b
-
4
c b
1 解得
2
c
c b
b 2 c 1
快乐之旅
恭喜你,过关了!
快乐之旅
训通练项2:公求式等及比第数6项列。1,12 ,14 ,…的
解:an
a1
qn1
1
1 2
n1
1 2
n1
a6
1
6 1
2
1 32
快乐之旅
2组B 探究1 PK 书面 3组
7组B 5组B 探究2 PK 口头 4组 8组B 1组B 探究3 PK 书面 6组 3组B
要求: (1)点评同学教态自然, 声音洪亮,语速适中,上下 互动。 (2)目标达成:A层同学要 注重质疑、补充以及监督本 组同学做好记录;B层同学 准备展示和补充。 (3)小组长注意安排、检 查、落实,力争全部达标。 (4)本组质疑补充拓展情 况,将在小组评价中占有重 要地位。
恭喜你,过关了!
快乐之旅
训练3:等比数列
的第几项是625?
解:设第n项是625.
an
a1 qn1
1 5n1 25
5n3
625
n 7
快乐之旅
训练4:已知在等比数列中,a3 8, q 2
求 a8
答案:-256
小结
快乐之旅
恭喜你,过关了!
拓展提升
一个等比数列的第2项与第4项分别是8与18, 求它的第3项。
共同特点? 从第2项起,每一项与前一项的比
都等于同一常数。
5
定义: 一般的,如果一个数列从第2项起,每一项
与它前一项的比等于同一个常数,这个数列就叫 做等比数列。这个常数叫做等比数列的公比,公 比通常用字母q表示。(q≠0)
数学表达式:
an q n 2且n N
an1
或
an1 q(n N * ) an