灌南高级中学高三数学复习导学案:直线与圆的综合

合集下载

江苏省灌南高级中学高三数学 直线与方程复习导学案

江苏省灌南高级中学高三数学 直线与方程复习导学案

江苏省灌南高级中学高三数学复习导学案:直线与方程高考要求:C 级导学目标: 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线位置的几何要素,掌握直线方程的几种形式,了解斜截式与一次函数的关系.自主梳理1.直线的倾斜角与斜率(1)在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按__________方向旋转到和直线重合时所转过的____________称为这条直线的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为__________.(2)倾斜角的范围为________________.(3)倾斜角与斜率的关系:α≠90°时,k =________,倾斜角是90°的直线斜率________.(4)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =_____________________.2.直线方程的五种基本形式 名称 方程 适用范围点斜式 不含直线x =x 0斜截式 不含垂直于x 轴的直线两点式 不含直线x =x 1 (x 1≠x 2)和直线y =y 1(y 1≠y 2)截距式 不含垂直于坐标轴和过原点的直线一般式 平面直角坐标系内的直线都适用自主检测1.若A (-2,3),B (3,-2),C ⎝ ⎛⎭⎪⎫12,m 三点共线,则m 的值为________. 2.直线l 与两条直线x -y -7=0,y =1分别交于P 、Q 两点,线段PQ 的中点为(1,-1),则直线l 的斜率为_______________________________________________________.3.下列四个命题中,假命题是________(填序号).①经过定点P (x 0,y 0)的直线不一定都可以用方程y -y 0=k (x -x 0)表示;②经过两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)来表示;③与两条坐标轴都相交的直线不一定可以用方程x a +y b=1表示;④经过点Q (0,b )的直线都可以表示为y =kx +b .4.如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不通过第________象限.5.已知直线l 的方向向量与向量a =(1,2)垂直,且直线l 过点A (1,1),则直线l 的方程为______________.典型例题:例1 已知两点A (-1,-5)、B (3,-2),直线l 的倾斜角是直线AB 倾斜角的一半,求l 的斜率.变式迁移1 直线x sin α-y+1=0的倾斜角的变化范围是______________.探究点二直线的方程例2过点M(0,1)作直线,使它被两直线l 1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M所平分,求此直线方程.变式迁移3 为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪(如图),另外△EFA 内部有一文物保护区不能占用,经测量AB=100 m,BC=80 m,AE=30 m,AF=20 m,应如何设计才能使草坪面积最大?。

高三数学高考一轮复习系列教案第七章 直线和圆的方程

高三数学高考一轮复习系列教案第七章 直线和圆的方程

城东蜊市阳光实验学校第七章直线和圆的方程1.23.4.5.7.1直线的方程1.倾斜角:对于一条与x 轴相交的直线,把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角α叫做直线的倾斜角.当直线和x 轴平行或者者重合时,规定直线的倾斜角为0°.倾斜角的范围为_________.斜率:当直线的倾斜角α≠90°时,该直线的斜率即k =tanα;当直线的倾斜角等于90°时,直线的斜率不存在.2.过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式.假设x1=x2,那么直线的斜率不存在,此时直线的倾斜角为90°.3.直线方程的五种形式【例1】直线(2m2+m -3)x +(m2-m)y =4m -1.①当m =时,直线的倾斜角为45°.②当m =时,直线在x 轴上的截距为1.③当m =时,直线在y 轴上的截距为-23.④当m =时,直线与x 轴平行.⑤当m =时,直线过原点.【例2】假设直线l 过点M(a ,3),N(1,2),(1)求直线l 的斜率和倾斜角;(2)]13,133[++-∈a ,求直线l 的倾斜角α的范围.【例3】△ABC 的顶点分别为A(-3,0),B(9,5),C(3,9),直线l 过点C 且把三角形的面积分成1︰2的两部分,求l 的方程.【例4】定点P(6,4)与直线l1:y =4x ,过点P 的直线l 与l1交于第一象限的Q 点,与x 轴正半轴交于点M .求使△OQM 面积最小的直线l 的方程.1.直线方程是表述直线上任意一点M的坐标x与y之间的关系式,由斜率公式可导出直线方程的五种形式.这五种形式各有特点又互相联络,解题时详细选取哪一种形式,要根据直线的特点而定.2.待定系数法是解析几何中常用的思想方法之一,用此方法求直线方程,要注意所设方程的适用范围.如:点斜式、斜截式中首先要存在斜率,截距式中横纵截距存在且不为0,两点式的横纵坐标不能一样等〔变形后除处〕.3.在解析几何中,设点而不求,往往是简化计算量的一个重要方法.4.在运用待定数法设出直线的斜率时,就是一种默认斜率存在,假设有不存在的情况时,就会出现解题破绽,此时就要补救:较好的方法是看图,数形结合来找差距.一、选择题1.在同一坐标系中,表示直线y=ax与y=x+a正确的〔〕A BCD2.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=0,那么a、b满足〔〕A.a+b=1 B.a-b=1C.a+b=0 D.a-b=03.直线Ax+By+C=0,通过第二、三、四象限,那么系数A、B、C需满足的条件〔〕A.A、B、C同号B.AC<0,BC<0C.C=0,AB<0 D.A=0,BC<04.设2π<α<π,那么直线y=xcosα+m的倾斜角的取值范围是〔〕A.(2π,π)B.(2π,43π)C.(4π,43π) D.(43π,π)5.A(-2,3),B(3,0),直线l过O(0,0)且与线段AB相交,那么直线l的斜率的取值范围是〔〕A.-23≤k<0 B.k≤-23或者者k≥0C.k≤0或者者k≥23D.0≤k≤236.设A、B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,假设直线PA的方程为x-y+1=0,那么直线PB的方程为〔〕A.x+y-5=0 B.2x-y-1=0C.2y-x-4=0 D.2x+y-7=0二、填空题7.直线y=mx+2m+1恒过一定点,那么此点的坐标为.8.假设三点A(2,2),B(a,0),C(0,b)(ab≠0),一一共x线那么ba 11+的值等于. 9.C 是以A(2,3)、B(-1,-2)为端点的线段AB 外一点,且AC =2BC ,那么过C 垂直于AB 的直线方程为.10.实数x 、y 满足3x -2y -5=0(1≤x≤3),那么xy的最大值、最小值分别是.三、解答题11.两点A(-1,-5),B(3,-2),直线l 的倾斜角是直线AB 的倾斜角的一半,求直线l 的斜率.12.如图,在△ABC 中,点B(-1,0),C(1,0),2=ACAB ,AB 边上的高1=CD ,求直线AC的斜率.13.直线l 过点M(2,1),且分别交x 轴y 轴的正半轴于点A 、B ,O 为坐标原点.(1)当△AOB 的面积最小时,求直线l 的方程; (2)当MB MA ⋅取最小值时,求直线l 的方程.14.直线l :(a +2)x +(1-2a)y +4-3a =0.(1)求证直线l 经过第三象限;(2)假设直线l 不经过第二象限,求a 的取值范围.15.过原点O 的一条直线与函数y =log8x 的图象交于A 、B 两点,分别过A 、B 作y 轴的平行线与函数y =log2x 的图象交于C 、D 两点. (1)证明:C 、D 和原点O 在同一直线上.(2)当BC 平行于x 轴时,求点A 的坐标.7.2直线与直线的位置关系〔一〕平面内两条直线的位置关系有三种________. 1.当直线不平行坐标轴时,直线与直线的位置关系可根据下表断定2.当直线平行于坐标轴时,可结合图形断定其位置关系.〔二〕点到直线的间隔、直线与直线的间隔 1.P(x0,y0)到直线Ax +By +C =0的间隔为______________.2.直线l1∥l2,且其方程分别为:l1:Ax +By +C1=0 l2:Ax +By +C2=0,那么l1与l2的间隔为.〔三〕两条直线的交角公式假设直线l1的斜率为k1,l2的斜率为k2,那么 1.直线l1到l2的角θ满足.2.直线l1与l2所成的角(简称夹角)θ满足. 〔四〕两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数.〔五〕五种常用的直线系方程.①过两直线l1和l2交点的直线系方程为A1x +B1y +C1+λ(A2x +B2y +C2)=0(不含l2).②与直线y =kx +b 平行的直线系方程为y =kx +m(m≠b).③过定点(x0,y0)的直线系方程为y -y0=k(x -x0)及x =x0.④与Ax +By +C =0平行的直线系方程设为Ax +By +m =0(m≠C).⑤与Ax +By +C =0垂直的直线系方程设为Bx -Ay +C1=0(AB≠0).【例1】两直线l1:mx +8y +n =0和l2:2x +my -1=0,试确定m 、n 的值,使:(1)l1与l2相交于点p(m ,-1); (2)l1‖l2;(3)l1⊥l2且l1在y 轴上的截距为-1.【例2】直线l 经过两条直线l1:x +2y =0与l2:3x -4y -10=0的交点,且与直线l3:5x -2y +3=0的夹角为4π,求直线l 的方程.【例3】直线y=2x是△ABC中∠C的平分线所在的直线,假设A、B坐标分别为A(-4,2)、B(3,1),求点C的坐标并判断△ABC的形状.【例4】设点A(-3,5)和B(2,15),在直线l:3x -4y+4=0上找一点p,使PBPA+为最小,并求出这个最小值.1.处理两直线位置关系的有关问题时,要注意其满足的条件.如两直线垂直时,有两直线斜率都存在和斜率为O与斜率不存在的两种直线垂直.2.注意数形结合,根据条件画出图形,充分利用平面图形的性质和图形的直观性,有助于问题的解决.3.利用直线系方程可少走弯路,使一些问题得到简捷的解法.4.解决对称问题中,假设是成中心点对称的,关键是运用中点公式,而对于轴对称问题,一般是转化为求对称点,其关键抓住两点:一是对称点的连线与对称轴垂直;二是两对称点的中点在对称轴上,如例4.一、选择题1.点M(a、b),假设点N与M关于x轴对称,点P与N关于y轴对称,点P与点Q关于直线x+y=0对称,那么点Q的坐标为〔〕A.(a、b) B.(b、a)C.(-a、-b) D.(-b、-a)2.过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,那么m的值是〔〕A.0 B.-8C.2 D.103.设a、b、c分别是△ABC中角A、B、C所对的边长,那么直线l1:与sin=++⋅cayxA yBbxl⋅-sin:2sin=+C的位置关系是〔〕A.平行B.垂直C.重合D.相交但不垂直4.假设0≤θ≤2π,当点(1,cosθ)到直线xsinθ+ycosθ-1=0的间隔是41时,这条直线的斜率为〔〕A.1 B.-1C .23 D .-33 5.直线l1的方向向量为a =〔1,3〕,直线l2的方向向量为b =〔-1,k 〕,假设直线l2经过点〔0,5〕,且l1⊥l2,那么直线l2的方程为〔〕A .x +3y -5=0B .x +3y -15=0C .x -3y +5=0D .x -3y +15=06.两直线l1:y =x ,l2:ax -y =0,其中a 为实数,当这两条直线的夹角在(0,12π)内变动时,a 的取值范围为〔〕A .(0,1)B .(33,3) C .(33,1)∪(1,3) D .(1,3)二、填空题7.点P 〔4cosθ,3sinθ〕到直线x +y -6=0的间隔的最小值等于.8.曲线c:y =x2,那么它关于x -y -2=0对称的曲线方程是.9.点O 为坐标原点,点A 的坐标为(4,2),P 是线段OA 的垂直平分线上一点,假设∠OPA 为锐角,那么P 的横坐标的取值范围是.10.两条平行直线分别过点A(6,2)和点B(-3,-1),各自绕A 、B 旋转至这两条平行线间隔取最大值时两直线的方程分别为和.三、解答题11.P 是直线l 上的一点,将直线l 绕点P 逆时针方向旋转角α(0<α<2π),所得直线方程为l1:3x -y -4=0,假设继续绕P 点逆时针方向转2π-α,那么得直线l2的方程为x +2y +1=0,求直线l 的方程.12.一光线从点A(3,2)出发经直线x -y +1=0反射后经过点B(-1,-1).试求反射光线所在的直线方程.13.过点A 〔1,1〕且斜率为-m(m>0)的直线l 与x 、y轴分别交于P 、Q 两点,过P 、Q 作直线2x +y =0的垂线,垂足分别为R 、S ,求四边形PRSQ 的面积的最小值.14.过点P(6,8)作两互相垂直的直线PA 、PB 分别交x轴正半轴于A ,y 轴正半轴于B . (1)求线段AB 中点轨迹的方程.(2)假设S △AOB =S △APB ,求PA 与PB 所在直线的方程.15.〔05年〕,在平面直角坐标系中,矩形ABCD 的长为2,宽为1,AB 、AD 边分别在x 轴,y 轴的正半轴上,A使A 点落在线段DC 为k7.3线性规划1.二元一次不等式表示的平面区域.⑴一般地,二元一次不等式Ax +By +C>0在平面直角坐标系中表示直线Ax +By +C =0某一侧的所有点组成的平面区域(半平面)不含边界限,不等式Ax +By +C≥0所表示的平面区域(半平面)包括边界限.⑵对于直线Ax +By +C =0同一侧的所有点(x 、y)使得Ax +By +C 的值符号一样.因此,假设直线Ax +By +C =0一侧的点使Ax +By +C>0,另一侧的点就使Ax +By +C<0,所以断定不等式Ax +By +C>0(或者者Ax +By +C<0)所表示的平面区域时,只要在直线Ax +By +C =0的一侧任意取一点(x0,y0),将它的坐标代入不等式,假设该点的坐标满足不等式,不等式就表示该点所在一侧的平面区域;假设不满足不等式,就表示这个点所在区域的另一侧平面区域.⑶由几个不等式组成的不等式组表示的平面区域是各个不等式所表示的平面区域的公一一共部分.2.线性规划 ⑴根本概念⑵用图解法解决线性规划问题的一般步骤: ①设出所求的未知数;②列出约束条件(即不等式组);③建立目的函数;④作出可行域和目的函数的等值线;⑤运用图解法即平行挪动目的函数等值线,求出最优解.〔有些实际问题应注意其整解性〕【例1】假设△ABC 的三个顶点为A(3,-1),B(-1,1),C(1,3),写出△ABC 区域〔含边界〕表示的二元一次不等式组.【例2】x 、y 满足约束条件⎪⎩⎪⎨⎧≥++≤-+≤--0104011702357y x y x y x 分别求: ⑴z =2x +y ⑵z =4x -3y⑶z =x2-y2的最大值、最小值?【例3】某木器厂消费圆桌子和衣柜两种产品,现有两种木料,第一种72立方米,第二种有56立方米,假设消费每种产品都需要用两种木料,消费一张圆桌需用第一种木料0.18立方米,第二种木料0.08立方米,可获利润6元,消费一个衣柜需用第一种木料0.09立方米,第二种0.28立方米,可获利10元,木器厂在现有木料条件下,圆桌和衣柜应各消费多少才能使所获利润最多?【例4】预算用2000元购置单价为50元桌子和20元的椅子,希望桌子的总数尽可能的多,但椅子的总数不能少于桌子的总数,但不多于桌子数的倍,问桌椅各买多少才适宜?1.二元一次不等式或者者不等式组表示的平面区域:①直线确定边界;②特殊点确定区域.2.线性规划实际上是“数形结合〞的数学思想的表达,是一种求最值的方法.3.把实际问题抽象转化为数学问题是本节的重难点,求解关键是根据实际问题中的条件,找出约束条件和目的函数,利用图解法求得最优解.而在考虑约束条件时,除数学概念的条件约束外,还要深化其境、考虑实际意义的约束.4.解线性规划问题的关键步骤是在图上完成的,所以作图尽可能准确,图上操作尽可能标准。

高中数学第1轮全套高效复习导学案(第五课时 直线与圆综合问题

高中数学第1轮全套高效复习导学案(第五课时 直线与圆综合问题

高中数学第1轮全套高效复习导学案精品资料Word精排版第五课时直线与圆综合问题【学习目标】1.能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两圆的方程,判断两圆的位置关系;2.能用直线和圆的方程解决一些简单问题3.初步了解用代数方法解决几何问题的思想。

【考纲要求】直线与圆方程为C级要求【自主学习】1.直线与圆的位置关系将直线方程代入圆的方程得到一元二次方程,设它的判别式为△,圆心C到直线l的距离为d,则直线与圆的位置关系满足以下关系:相切⇔d=r⇔△=0相交⇔⇔相离⇔⇔2.圆与圆的位置关系设两圆的半径分别为R和r(R≥r),圆心距为d,则两圆的位置关系满足以下条件:外离⇔d > R+r外切⇔相交⇔内切⇔内含⇔3. 圆的切线方程① 圆x2+y2=r2上一点p(x0, y)处的切线方程为l: .② 圆(x-a)2+(y-b)2=r2上一点p(x0, y)处的切线方程为l : .③ 圆x2+y2+Dx+Ey+F=0上一点p(x0, y)处的切线方程为 .[典型例析]例1过⊙:x2+y2=2外一点P(4,2)向圆引切线.⑴ 求过点P的圆的切线方程.⑵ 若切点为P1、P2求过切点P1、P2的直线方程.例2已知m R∈,直线2:84160+-++=C x y x y:(1)4l mx m y m-+=和圆22例3已知直线l:y=k(x+22)(k≠0)与圆O:x2+y2=4相交于A、B两点,O为坐标原点.△AOB的面积为S.⑴ 试将S表示为k的函数S(k),并求出它的定义域.⑵ 求S(k)的最大值,并求出此时的k值.例4 已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.(1)若直线l过P且被圆C截得的线段长为43,求l的方程;(2)求过P点的圆C的弦的中点的轨迹方程.[当堂检测]1.“关于实数k的方程x2+y2+4kx-2y-k=0的图形是圆”的充分且必要条件是.2.设直线ax -y +3=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且32 AB ,则a= .3.将一张画有直角坐标系的图纸折叠一次,使得点A(0,2)与点B(4,0)重合,若此时点C(7,3)与点D(m ,n)重合,则m +n 的值是 .4.圆心在y 轴上,且与直线x +y -3=0及x -y -1=0都相切的圆的方程为 .5.在圆x 2+y 2-5x =0内,过点(25,23) 有n 条长度成等差数列的弦, 最小弦为a 1最大弦为a n 若公差d∈[61,31],那么n 的取值集合是 .[学后反思]________________________________________________________________________________________________________________________________________________________________________________________。

高三数学应知应会讲义十:直线与圆复习教案

高三数学应知应会讲义十:直线与圆复习教案

直线与圆序号 内容要求 A BC 1 直线的倾斜角与斜率√2 直线方程√3 两条直线的平行关系与垂直关系√ 4 两条相交直线的交点、交角√ 5 点到直线的距离√ 6 简单的线性规划问题 √ 7 曲线与方程的概念√8圆的标准方程、一般方程、参数方程√二、应知应会知识1.(1)一直线过点(0,-3),(-3,0),则此直线的倾斜角为( ) A .π4 B .3π4 C .-π4 D .-3π4解:B .(2)直线x cos θ+y -1=0(θ∈R )的倾斜角的取值范围是( )A .[0,π)B .[π4,3π4]C .[-π4,π4]D .[0,π4]∪[3π4,π)解:D(3)已知直线l 的倾斜角的变化范围是(π3,3π4],则该直线的斜率k 的变化范围是_______.解:(3,+∞)∪(-∞,-1].考查直线的倾斜角、斜率、斜率公式,理解倾斜角与斜率之间关系.注意正切函数的图象与性质的适当应用. 2.(1)原点在直线l 上的射影是P (-2,1),则直线l 的方程是( ) A .x +2y =0 B .x +2y -4=0 C .2x -y +5=0 D .2x +y +3=0 解:C .(2)过两点(-1,1)和(3,9)的直线在x 轴上的截距为( ) A .-32 B .-23 C .25D .2解:A .(3)过点(5,2),且在x 轴上截距是在y 轴上截距的2倍的直线方程是( ) A .2x +y -12=0 B .x +2y -9=0或2x -5y =0 C .x -2y -1=0 D .2x +y -12=0或2x -5y =0 解:B考查直线方程的几种形式、适用范围,注意截距的概念、运算的准确. 3.(1)已知两条直线y =ax -2和y =(a +2)x +1互相垂直,则a 等于( ) A .2 B .1 C .0 D .1- 解:D.(2)已知两条直线l 1:ax +3y -3=0,l 2:4x +6y -1=0.若l 1∥l 2,则a =___________.解:2.(3)若三点A (2,2),B (a ,0),C (0,4)共线,则a 的值等于_____. 解:4(4)与直线3x -4y +5=0共线的单位向量是( )A .(3,4)B .(4,-3)C .(35 ,45 )D .(45 ,35 )解:D .(5)a =3是直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行且不重合的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件 解:C .(6)直线x +a 2y +1=0与直线(a 2+1)x -by +3=0互相垂直,ab ∈R ,则||ab |的最小值是( )A .1B .2C .4D .5 解:B .考查两条直线平行与垂直的条件,注意选择合理的转化方法. 4.(1)直线y =2与直线x +y —2=0的夹角是( ) A .π4 B .π3 C .π2 D .3π4解:A .(2)若直线l :y =kx -3与直线2x +3y -6=0交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .[π6,π3) B .(π6,π2) C .(π3,π2) D .[π6,π2) 解:B .考查两条直线的交点与夹角的计算,注意运算准确.5.(1)已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( ) A . 2 B .2- 2 C .2-1 D .2+1 解:C .(2)已知实数x ,y 满足2x +y +5=0,那么x 2+y 2的最小值为( )A . 5B .10C .2 5D .210 解:A .(3)直线y =2x 关于x 轴对称的直线方程为( ) A .y =-12x B .y =12x C .y =-2x D .y =2x解:C .(4)若点P (3,4)、Q (a ,b )关于直线x -y -1=0对称,则( )A .a =1,b =-2B .a =2,b =-1C .a =4,b =3D .a =5,b =2 解:D .考查点到直线的距离公式,注意综合应用平行、垂直、夹角、交点、距离等工具转化对称问题.6.(1)不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y +5≥0,0≤x ≤3,表示的平面区域的面积是( )A .48B .36C .24D .12 解:C(2)图中阴影部分用二元一次不等式组表示为__________________.解:⎩⎪⎨⎪⎧x ≤0,y ≥-1,2x -y +2≥0.(3)设 z =2y -x ,式中变量x ,y 满足条件⎩⎪⎨⎪⎧2x -y ≥-1,3x +2y ≤23,y ≥1.则z 的最大值为_________.解:11.(4)已知平面区域D 由以A (1,3),B (5,2),C (3,1)为顶点的三角形内部以及边界组成.若在区域D 上有无穷多个点(x ,y )可使目标函数z =x +my 取得最小值,则m =( ) A .-2 B .-1 C .1 D .4 解:C .(5)某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11.则z =10x +10y 的最大值是( )A .80B . 85C . 90D .95 解:C .考查线性规划问题,注意平面区域与不等式组的对应,体会数形结合的重要思想. 7.(1)以点(1,2)为圆心,与直线4x +3y -35=0相切的圆的方程是___________.解:(x -1)2+(y -2)2=25.(2)圆心在直线y =x 上且与x 轴相切于点(1,0)的圆的方程为 .解:(x -1)2+(y -1)2=1.(3)过点A (1,-1),B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( )A .(x -3)2+(y +1)2=4B . (x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=4 解:C .考查圆的方程,注意直接找圆心、半径与待定系数法之间的关系.8.(1)圆x 2+y 2-2x +4y +3=0的圆心到直线x -y =1的距离为( )A .2B .22C .1D . 2解:D .(2)“a =-1”是方程“a 2x 2+(a +2)y 2+2ax +a =0”表示圆的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既非充分又非必要条件 解:C .考查圆的一般方程与标准方程的互化,了解圆的一般方程与二元二次方程之间的关系.9.(1)点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 的坐标为( )A .(-12,32)B .(-32,-12)C .(-12,-32)D .(-32,12) 解:A . (2)曲线⎩⎨⎧x =cos θ,y =sin θ.(θ为参数)上的点到两坐标轴的距离之和的最大值是( ) A .12B .22C .1D . 2解:D .考查圆的参数方程,注意参数方程在研究最值中的应用.10.(1)若P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是( ) A . x -y -3=0 B .2x +y -3=0 C . x +y -1=0 D . 2x -y -5=0 解:A .(2)若直线(1+a )x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为( )A .1,-1B .2,-2C .1D .-1 解:D .(3)圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠π2+k π,k ∈Z )的位置关系是( )A .相交B .相切C .相离D .不确定的 解:C .(4)已知圆(x +1)2+y 2=1和圆外一点P (0,2).过点P 作圆的切线,则两条切线夹角的正切值是__________. 解:43.(5)圆x 2+y 2-2x -2y +1=0上的动点Q 到直线3x +4y +8=0距离的最小值为_________. 解:2.(6)若过定点M (-1,0)且斜率为k 的直线与圆x 2+4x +y 2-5=0在第一象限内的部分有交点,则k 的取值范围是( )A .0<k < 5B .-5<k <0C .0<k <13D .0<k <5 解:A ..考查直线与圆的位置关系,注意平面几何的一些方法在求弦长、切线、交点、最值等问题的合理应用,简化运算的过程. xyO 2-1-1。

江苏省灌南高级中学高三数学 椭圆复习导学案

江苏省灌南高级中学高三数学 椭圆复习导学案

江苏省灌南高级中学高三数学复习导学案:椭圆高考要求:B 级学习目标:1.掌握椭圆的定义、几何图形、标准方程及简单几何性质. 2. 了解椭圆的实际背景及椭圆的简单应用.3. 理解数形结合的思想. 一、自主梳理1.椭圆的概念平面内到两个定点F 1、F 2的距离的和等于常数(大于F 1F 2)的点的轨迹叫做________.这两定点叫做椭圆的________,两焦点间的距离叫______.集合P ={M |MF 1+MF 2=2a },F 1F 2=2c ,其中a >0,c >0,且a ,c 为常数:(1)若______,则集合P 为椭圆;(2)若______,则集合P 为线段;(3)若______,则集合P 为空集. 判断下列点的轨迹是否为椭圆(请在括号内填“是”或“否”) ①平面内到点A (0,2),B (0,-2)距离之和等于2的点的轨迹( ) ②平面内到点A (0,2),B (0,-2)距离之和等于4的点的轨迹( ) ③平面内到点A (0,2),B (0,-2)距离之和等于6的点的轨迹( ) ①否 ②否 ③是2.椭圆的标准方程和几何性质3.思考: (1)若方程Ax 2+By 2=1表示焦点在y 轴上的椭圆,则A 与B 具有什么关系? 提示:A >B 且A >0,B >0.(2)椭圆的离心率的大小与椭圆的扁平程度有怎样的关系?提示:离心率e =ca越接近1,a 与c 就越接近,从而b =a 2-c 2就越小,椭圆就越扁平;同理离心率越接近0,椭圆就越接近于圆. 二、基础检测1.(2011·新课标全国卷改编)椭圆x 216+y 28=1的离心率e =________.答案 22解析 由题意知:a 2=16,b 2=8,c 2=a 2-b 2=16-8=8.∴c =22,∴e =c a =224=22.2.设P 是椭圆x 225+y 216=1上的点,若F 1、F 2是椭圆的两个焦点,则PF 1+PF 2=________.答案 10解析 依椭圆的定义知:PF 1+PF 2=2×5=10.3. 已知椭圆x 210-m +y 2m -2=1,长轴在y 轴上,若焦距为4,则m 等于________.解析:椭圆焦点在y 轴上,∴a 2=m -2,b 2=10-m .又∵c =2,∴m -2-(10-m )=22=4.∴m =8.4.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过点P ()-5,4,则椭圆的方程为______________.答案x 245+y 236=1 解析 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),将点(-5,4)代入得25a 2+16b 2=1,又离心率e =c a =55⇒e 2=c 2a2=a 2-b 2a 2=15,解之得a 2=45,b 2=36,故椭圆的方程为x 245+y 236=1. 5.已知F 1、F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.答案 3解析 由题意知PF 1+PF 2=2a ,PF 1→⊥PF 2→,∴(PF 1)2+(PF 2)2=(F 1F 2)2=4c 2,∴(PF 1+PF 2)2-2PF 1·PF 2=4c 2,∴2PF 1·PF 2=4a 2-4c 2=4b 2.∴PF 1·PF 2=2b 2,∴S △PF 1F 2=12PF 1·PF 2=12×2b 2=b 2=9.∴b =3.6.[2011·课标高考]在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为________.[答案]x 216+y 28=1[审题视点] 先由△ABF 2的周长确定a 的值,根据离心率求得c ,进一步确定b 值,写出椭圆方程.[解析] 设椭圆方程为x 2a 2+y 2b2=1(a >b >0),因为AB 过F 1且A 、B 在椭圆上,如图,则△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a=16,∴a =4.又离心率e =c a =22,∴c =22,∴b 2=a 2-c 2=8.∴椭圆C 的方程为x 216+y 28=1.三、典型例题例1.(1)长轴是短轴的3倍且经过点A (3,0);(2)已知椭圆过(3,0),离心率e =63,求椭圆的标准方程; (3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1)、P 2(-3,-2),求椭圆的标准方程.变式: (1)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5、3,过P 且与长轴垂直的直线恰好过椭圆的一个焦点,求椭圆的方程.(2) “m >n >0”是方程“mx 2+ny 2=1表示焦点在y 轴上的椭圆”的________条件.例2. 已知椭圆x 2a 2+y 2b2=1(a >b >0)的长、短轴端点分别为A 、B ,从椭圆上一点M (在x 轴上方)向x 轴作垂线,恰好通过椭圆的左焦点F 1,AB →∥OM →. (1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点,F 1、F 2分别是左、右焦点,求∠F 1QF 2的取值范围.变式: 已知椭圆的中心在原点,离心率e=12,左焦点为F 1(-2,0).(1)求椭圆的方程;(2)设P 是椭圆上一点,且点P 与椭圆的两个焦点F 1、F 2构成直角三角形,若PF 1>PF 2,求PF 1PF 2的值.例3已知长轴在x 轴上的椭圆的离心率e =12,且过点⎝ ⎛⎭⎪⎫1,32. (1)求椭圆的标准方程; (2)若P 是椭圆上任意一点,F 1、F 2是椭圆的左、右焦点.①求PF 1·PF 2的最大值;②求PF 1→·PF 2→的取值范围.变式:设A ,B 分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,⎝ ⎛⎭⎪⎫1,32为椭圆上一点,椭圆长半轴的长等于焦距.(1)求椭圆的方程;(2)设P (4,x )(x ≠0),若直线AP ,BP 分别与椭圆相交异于A ,B 的点M ,N ,求证:∠MBN 为钝角.四、课后练习1.已知ABC ∆中, (3,0),(3,0)B C -,周长为16,则顶点A 的轨迹方程是2.若椭圆22136x y m +=的焦点在x 轴上,离心率为23e =,则m = 3.若椭圆()222210x y a b a b+=>>上存在点P 使得12F PF ∠为直角,求离心率e 的取值范围.4. [2013·金华联考]方程为x 2a 2+y 2b2=1(a >b >0)的椭圆的左顶点为A ,左、右焦点分别为F 1、F 2,D 是它短轴上的一个端点,若3DF 1→=DA →+2DF 2→,则该椭圆的离心率为________.5. [2013·绵阳模拟]在平面直角坐标系xOy 中,椭圆C :x 225+y 29=1的左、右焦点分别是F 1、F 2,P 为椭圆C 上的一点,且PF 1⊥PF 2,则△PF 1F 2的面积为________.6、已知F 1,F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是等腰直角三角形,则这个椭圆的离心率是________.7、如图,A 、B 、C 分别为x 2a 2+y 2b2=1(a >b >0)的顶点与焦点,若∠ABC =90°,则该椭圆的离心率为________.8.若椭圆()222210x y a b a b+=>>上存在点P 使得12F PF ∠为直角,求离心率e 的取值范围.五、课后训练1. [2013·海淀模拟]2<m <6是方程x 2m -2+y 26-m =1表示椭圆的________条件.2. [2013·汕头检测]已知椭圆x 225+y 29=1,F 1、F 2分别为其左、右焦点,椭圆上一点M 到F 1的距离是2,N是MF 1的中点,则|ON |的长为________.3.若椭圆的短轴为AB ,它的一个焦点为F 1,则满足△ABF 1为等边三角形的椭圆的离心率是________.4.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y轴于点P .若AP →=2PB →,则椭圆的离心率是________.5.(2012·扬州调研一)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)过点P (3,1),其左、右焦点分别为F 1,F 2,且F 1P →·F 2P →=-6,则椭圆E 的离心率是________.6. 已知椭圆x 24+y 2=1,F 1,F 2为其两焦点,P 为椭圆上任一点.则|PF 1|·|PF 2|的最大值为________.7.[2013·湖南郴州]设e 是椭圆x 24+y 2k =1的离心率,且e ∈(12,1),则实数k 的取值范围是________.8. [2013·福建调研]若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为________.9、已知F 1、F 2为椭圆x 2a 2+y 2b 2=1(a <b >0)的左、右焦点, B 为椭圆短轴的一个端点,BF 1→·BF 2→≥12F 1F 2→2,则椭圆的离心率的取值范围是________.10、已知直线l :y =kx +2(k 为常数)过椭圆x 2a 2+y 2b2=1(a >b >0)的上顶点B 和左焦点F ,直线l 被圆x 2+y 2=4截得的弦长为d . (1)若d =23,求k 的值;(2)若d ≥455,求椭圆离心率e 的取值范围.11. [2013·深圳模拟]设A 、B 分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,(1,32)为椭圆上一点,椭圆长半轴的长等于焦距.(1)求椭圆的方程;(2)设P (4,x )(x ≠0),若直线AP ,BP 分别与椭圆相交异于A ,B 的点M ,N ,求证:∠MBN 为钝角.12、 (2012·安徽卷)如图,点F 1 (-c,0),F 2(c,0)分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过点F 1作x 轴的垂线交椭圆C 的上半部分于点P ,过点F 2作直线PF 2的垂线交直线x =a2c于点Q .(1)如果点Q 的坐标是(4,4),求此时椭圆C 的方程; (2)证明:直线PQ 与椭圆C 只有一个交点.。

新课标高三数学第一轮复习直线和圆的方程详细教案

新课标高三数学第一轮复习直线和圆的方程详细教案

高三数学第一轮复习直线和圆的方程详细教案知识结构第一节直线的倾斜角和斜率学习目标1.了解直线的方程、方程的直线的定义;2.掌握直线的倾斜角、直线的斜率的定义及其取值范围;3.掌握过两点的直线的斜率公式,会运用公式求出有关直线的斜率和倾斜角.重点难点本节重点:正确地理解斜率的概念,熟练地掌握已知直线上两点求直线斜率的公式,这是学好直线这部分内容的关键.本节难点:正确理解直线倾斜角定义中的几个条件,如直线与x轴相交与不相交,按逆时针方向旋转、最小正角等.求倾斜角时,要特别注意其取值范围是高考中,由于本节内容是解析几何成果中最基础的部分,一般是隐含在综合题中进行考查.典型例题【分析】【解】【点评】【分析】【解】【点评】【解法一】代数方法:套两点斜率公式.【解法二】【点评】“解析几何的特点之一是数形结合,数无形时少直观,形无数时难入微.”在学习数学时,应该记住华罗庚的这段话.教材上还涉及证明三点共线的练习题,怎样证明三点共线呢?请看下面例4.【分析】证明三点共线,可以用代数方法、几何方法,可以用直接证法、间接证法,你能想出至少一个方法吗?下面是同学们讨论出的几种证法供参考.【证法一】【证法二】【证法三】第二节直线的方程学习目标掌握直线方程的点斜式、两点式、参数式、一般式,并能根据条件熟练地求出直线的方程式.重点难点本节重点:直线方程的点斜式和一般式,点斜式是推导直线方程其他形式的基础,一般式是直线方程统一的表述形式.本节难点:灵活运用直线方程的各种形式解题.在高考中几乎每年都要考查这部分内容,题型以选择题、填空题居多.典型例题【分析】关键是确定直线方程中的待定系数.【解】【点评】学习直线的方程常犯的错误是忽略方程各种形式的应用条件,因此造成丢解.本例中各个小题均为两解,你做对了吗?第(4)小题的解法一要用到下节学到的公式,解法二用到课外知识,供有兴趣的同学欣赏.【解法一】【解法二】【解法三】【点评】灵活运用直线方程的各种形式,常常要和平面几何的有关知识相结合.本题还有别的解法,不再一一列举.【解法一】【解法二】【解法三】【证明】【点评】【分析】【解法一】【解法二】【解法三】【点评】第三节两条直线的位置关系学习目标1.掌握两条直线平行与垂直的条件,以及两条直线的夹角和点到直线的距离公式.2.能够根据直线的方程判断两条直线的位置关系.重点难点本节重点:两条直线平行与垂直的条件,点到直线的距离公式.本节难点:了解解析几何的基本思想,并用解析几何方法研究角.在高考中,两条直线的位置关系几乎年年必考,常常单独出现在选择题和填空题中,或作为综合题的一部分出现在解答题中.典型例题学习了本节以后,应该对两条直线平行与垂直的充要条件,怎样求直线的斜率、距离与角有哪些公式等问题进行归纳小结,以便提纲挈领地掌握有关知识,并灵活运用这些知识解决问题.1.两条直线平行、垂直的充要条件是什么?答:2.怎样求直线的斜率?答:3.距离和角有哪些公式?能灵活运用吗?答:【解】用下面的例题检验是否理解和掌握了以上这些内容.1.两条直线的位置关系【解】2.两条直线所成的角【解】【解法一】【解法二】3.有关交点的问题(A)1 (B)2 (C)3 (D)4【解法一】【解】【解法二】4.点到直线的距离【错误的解】【正确的解】【解法一】【解法二】【解法三】【解法四】第四节简单的线性规划学习目标1.了解用二元一次不等式表示平面区域.2.了解线性规划的意义,并会简单的应用.重点难点典型例题学习了简单的线性规划以后,常见的题型是用二元一次不等式表示平面区域,以及用线性规划的知识来解决一些简单的问题.下面的例题可检验是否掌握了这些内容.1.二元一次不等式表示的区域【分析】【解】【点评】例2 试讨论点线距离公式中,去掉绝对值符号的规律?【分析】【解】【点评】2.线性规划初步例3钢管长11.1米,需要截下1.5米和2.5米两种不同长度的小钢管,问如何截取可使残料最少?【分析】关键是利用约束条件,列出线性目标函数.【解】【评析】例4 用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有().(A)5种(B)6种(C)7种(D)8种【解法一】【解法二】【解法三】列表数点.故选(C).【点评】本题为1999年全国高考试题第14题,难度系数0.47.如果有利用二元一次不等式表示平面区域的知识,此题将不再困难.【分析】甲的解法错误,错在(1)、(2)(3)、(4),反之不行,用必要不充分条件代替原条件,使解的范围扩大,[6,10]是[5,11]的子集.乙的解法正确.本题数形结合,利用本节的知识还可以有以下的解法.【解】【点评】第六节曲线和方程学习目标1.掌握曲线的方程、方程的曲线等概念.2.了解解析几何的基本思想和解析法,学习运动变化、对立统一等辩证唯物主义思想.重点难点本节重点:了解曲线的点集与方程的解集之间的一一对应关系,从而掌握曲线的方程和方程的曲线这两个重要概念,并掌握由曲线的已知条件求方程的方法和步骤,熟悉解析法.本节难点:理解曲线和方程的概念,以及求曲线的方程的方法.在高考中,曲线和方程常是重点考查的内容,出现在解答题中.典型例题学习了本节后主要要掌握求曲线的方程的步骤,以及用解析法解题的步骤,以下归纳供参考.求曲线的方程的步骤是:一建--选取适当的点和直线,建立坐标系;二设--设曲线上点,以及利用已知条件设出其他有关点的坐标等;三列式--根据动点符合的条件,列出含、的方程0;四化简--化方程0为最简形式;五证明--证曲线上点的坐标都是方程的解,以这个方程的解为坐标的点都在曲线上(这一步不要求写出).解析法的主要步骤是:一建--建立适当的坐标系.建系原则是使已知条件好用,使表达式简明,运算简便.因此,尽量利用已知点和已知直线;二设--选取一组基本量,用字母表示出题目涉及的点的坐标和曲线的方程;三算--通过运算,得到所要的结果.用以下例题检验是否理解和掌握了这些内容.1.怎样求轨迹方程【解法一】【解法二】【点评】【错误解法】【正确解法】【点评】【解法一】【解法二】【点评】2.解析法与综合法【证法一】【证法二】【证法三】【证法四】【点评】不同证法,以解析法较简便,复数将在高三年级学习,这里的证法实质和解析法一样,不过是换个说法.【分析】【解】【点评】解析法与综合法的特点,从中你体会到了吗?解析法的优点是程序固定(一建二设三算),操作简便,但一般运算量较大;综合法的优点是思路灵活,但如何添加辅助线不易掌握.【解法一】【解法二】【解法三】【解法四】【点评】“是否可以用代数中的计算过程代替几何中的证明?”“让代数和几何中一切最好的东西互相取长补短”等是笛卡儿创立解析几何的初衷.解析几何既然是用代数方法来研究几何对象的特征和性质,当然对运算能力要求较高.运算能力是一种计算化了的推理能力,是逻辑思维能力与计算知识、方法、技能和技巧的结合.在解析几何中,如果不注意运算方法上的特点和技能,就可能陷入有思路但算不出或很难算出正确结果的窘境,如本题的思路一、二.解析几何中常用的运算方法和技能是:①注意利用平面几何知识,如思路四;②不忘利用定义,尤其是圆锥曲线的定义解题;③充分利用一元二次方程根与系数的关系,并不忘对判别式的要求,如思路三;④合理利用曲线系;⑤数形结合,依形判数,就数论形;⑥灵活运用字母的可轮换性,减少同类量的重复运算.以上方法和技能,要在实际解题中逐步掌握.第七节圆的方程学习目标1.掌握圆的标准方程和一般方程,理解圆的参数方程.2.初步了解直线和圆中反映出的运动变化、对立统一等辩证思想和观点.重点难点本节重点:圆的标准方程、一般方程、参数方程及其相互转化.本节难点:直线和圆的综合运用.在高考中,圆的方程在选择题、填空题、解答题等各类题型中出现.本节要掌握三种类型的问题,之一是求圆的方程,之二是直线和圆的综合题,之三是应用直线和圆的知识解决一些问题.1.圆的方程有哪些形式?典型例题用下面的例题检验是否理解和掌握了圆的方程的三种形式:【解法一】【解法二】【解法三】【点评】怎样求圆的方程?这三条思路具有典型意义.【解法一】【解法二】【点评】【解法一】【解法二】【点评】【分析】关键确定圆心坐标和半径.【解】【点评】本题为1997年全国高考理科第25题,难度系数0.20.难在什么地方呢?第一文字叙述较长,有同学读不懂题;第二涉及众多知识,有同学不会运用;第三丢解,忽略了不同的位置关系.会不会用知识和怎样用知识,是一个人有没有能力和能力高低的重要标志,努力吧!2.直线和圆综合题【分析】【解】【点评】【解法一】【解法二】【分析】【点评】【解】【点评】【解法一】【解法二】【点评】分类是自然科学的基本方法,数学中的分类讨论的思想方法,就是依据数学对象的共同点和差异点,将其区分为不同种类,分类讨论并归纳结论,这一思想方法,在近代数学和现代数学中占有重要地位,是应该学习和掌握的重要思想方法.3.怎样利用直线和圆的知识解题?【分析】数形结合,将代数式或方程赋予几何意义.【解】【点评】从“数”中认识“形”,从“形”中认识“数”,数形结合相互转化,是数学思维的基本方法之一.“数学是一个有机的统一体,它的生命力的一个必要条件是所有的各个部分不可分离地结合.”(希尔伯特)数形结合的思维能力不仅是中学生的数学能力、数学素养的主要标志之一,而且也是学习高等数学和现代数学的基本能力.本题是利用直线和圆的知识求最值的典型题目.【解法一】【解法二】【解法三】【点评】。

2025年高考数学一轮复习-直线与圆、圆与圆的位置关系【导学案】

2025年高考数学一轮复习-直线与圆、圆与圆的位置关系【导学案】

第4课时-直线与圆、圆与圆的位置关系【课标解读】【课程标准】1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的数学问题与实际问题.【核心素养】数学抽象、数学运算、逻辑推理.【命题说明】考向考法直线与圆、圆与圆的位置关系是高考的热点内容之一,其中直线与圆相切及直线与圆相交是重点考查的内容,多以选择题或填空题的形式出现.预测预计2025年高考直线与圆、圆的位置关系仍会出题,一般在选择题或填空题中出现.【必备知识·逐点夯实】知识梳理·归纳1.直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)位置关系相离相切相交图形量化方程观点Δ<0Δ=0Δ>0几何观点d>r d=r d<r微点拨判断直线与圆的位置关系,常用几何法而不用代数法.微思考当某直线所过定点A在圆上时,该直线与圆有何位置关系?提示:直线与圆相交或相切.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=12(r1>0),圆O2:(x-a2)2+(y-b2)2=22(r2>0).位置关系方法公切线条数几何法:圆心距d与r1,r2的关系代数法:联立两圆方程组成方程组的解的情况外离d>r1+r2无解4外切d=r1+r2一组实数解3相交|r1-r2|<d<r1+r2两组不同的实数解2内切d=|r1-r2|(r1≠r2)一组实数解1内含0≤d<|r1-r2|(r1≠r2)无解03.直线被圆截得的弦长(1)几何法:弦心距d、半径r和弦长|AB|的一半构成直角三角形,弦长|AB|=2 2- 2.(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,代入,消去y,得关于x的一元二次方程,则|MN|=1+ 2·( + )2-4 .常用结论1.圆的切线方程常用结论(1)过圆x2+y2=r2(r>0)上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.(2)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.2.当两圆外切时,两圆有一条内公切线,该公切线垂直于两圆圆心的连线;当两圆内切时,两圆有一条外公切线,该公切线垂直于两圆圆心的连线.3.两圆相交时公共弦的性质圆C1:x2+y2+D1x+E1y+F1=0(12+ 12-4F1>0)与圆C2:x2+y2+D2x+E2y+F2=0(22+ 22-4F2>0)相交时:(1)将两圆方程直接作差,消去x2,y2得到两圆公共弦所在直线方程;(2)两圆圆心的连线垂直平分公共弦;(3)x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ∈R,λ≠-1)表示过两圆交点的圆系方程(不包括C2).基础诊断·自测类型辨析改编易错高考题号12,3541.(思考辨析)(正确的打“√”,错误的打“×”)(1)若直线与圆有公共点,则直线与圆相交或相切.(√)提示:(1)直线与圆有一个公共点,则直线与圆相切,有两个公共点,则直线与圆相交,故(1)正确;(2)若两圆没有公共点,则两圆一定外离.(×)提示:(2)两圆没有公共点,则两圆外离或内含,故(2)错误;(3)若两圆外切,则两圆有且只有一个公共点,反之也成立.(×)提示:(3)若两圆外切,则两圆有且只有一个公共点;若两圆有且只有一个公共点,则两圆外切或内切,故(3)错误;(4)若两圆有公共点,则|r1-r2|≤d≤r1+r2.(√)提示:(4)若两圆有公共点,则两圆外切或相交或内切,所以|r1-r2|≤d≤r1+r2,故(4)正确.2.(选择性必修第一册人AP96例5变条件)圆O1:x2+y2-4y+3=0和圆O2:x2+y2-16y=0的位置关系是()A.外离B.相交C.相切D.内含【解析】选D.O1:x2+(y-2)2=1,O2:x2+(y-8)2=64,所以O1(0,2),r1=1,O2(0,8),r2=8, 1 2=(0-0)2+(2-8)2=6,则 1 2=6<r2-r1=7,所以两圆内含.3.(选择性必修第一册人AP93练习T3变条件)直线x-y+3=0被圆(x+2)2+(y-2)2=2截得的弦长等于()A.62B.3C.23D.6【解析】选D.圆心(-2,2)到直线x-y+3=0的距离d=22,圆的半径r=2,解直角三角形得,半弦长为62,所以弦长等于6.4.(2022·天津高考)若直线x-y+m=0(m>0)与圆(x-1)2+(y-1)2=3相交所得的弦长为m,则m=__________.【解析】因为圆心C(1,1)到直线x-y+m=0(m>0)的距离d又直线与圆相交所得的弦长为m,所以m=2 2- 2,所以m2=4(3- 22),解得m=2.答案:25.(忽视直线斜率不存在的情形致误)过点P(2,2)的圆C:x2+(y-1)2=2的切线方程为______________________.【解析】由圆C方程知:圆心C(0,1),半径r=2;当过P的直线斜率不存在,即直线方程为x=2时,直线与圆C相切;设过P点且斜率存在的圆C的切线方程为y-2=k(x-2),即kx-y-2k+2=0,则圆心C到直线的距离d=2,即k=-24,所以该切线方程为-24x-y+52=0,即x+22y-52=0;综上所述:所求切线方程为x=2或x+22y-52=0.答案:x=2或x+22y-52=0【核心考点·分类突破】考点一直线与圆的位置关系考情提示直线与圆相切求切线方程以及直线与圆相交求弦长是高考的重点,正确利用圆心到直线的距离与半径之间的关系是解决此类问题的关键.角度1直线与圆的位置关系的判断[例1](1)(一题多法)已知圆C:x2+y2-6x-8y+21=0和直线l:kx-y+3-4k=0的位置关系是()A.相交、相切或相离B.相交或相切C.相交D.相切【解析】选C.圆C:x2+y2-6x-8y+21=0,即(x-3)2+(y-4)2=22,圆心为C(3,4),半径为r=2.方法一直线l:kx-y+3-4k=0,即k(x-4)-y+3=0,所以直线l过定点B(4,3).(4-3)2+(3-4)2=2<4,所以点B(4,3)在圆C内,所以直线l与圆C相交.方法二圆心C(3,4)到直线l:kx-y+3-4k=0的距离为≤2<4,所以直线与圆相交.(2)(多选题)(2021·新高考Ⅱ卷)已知直线l:ax+by-r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法正确的是()A.若点A在圆C上,则直线l与圆C相切B.若点A在圆C内,则直线l与圆C相离C.若点A在圆C外,则直线l与圆C相离D.若点A在直线l上,则直线l与圆C相切【解析】选ABD.圆心C(0,0)到直线l的距离d若点A(a,b)在圆C上,则a2+b2=r2,所以dr,则直线l与圆C相切,故A正确;若点A(a,b)在圆C内,则a2+b2<r2,所以dr,则直线l与圆C相离,故B正确;若点A(a,b)在圆C外,则a2+b2>r2,所以dr,则直线l与圆C相交,故C错误;若点A(a,b)在直线l上,则a2+b2-r2=0,即a2+b2=r2,所以dr,则直线l与圆C相切,故D正确.解题技法判断直线与圆的位置关系的一般方法(1)几何法:圆心到直线的距离与圆半径比较大小,特点是计算量较小;(2)代数法:将直线方程与圆方程联立方程组,通过解的情况判断,适合于判断直线与圆的位置关系.角度2弦长问题[例2](2024·昆明模拟)已知直线y=2x与圆(x-2)2+(y-2)2=1交于A,B两点,则 =()A.55B.255C.355D.455【解析】选B.因为圆的方程为(x-2)2+(y-2)2=1,所以圆心坐标为(2,2),半径r=1,则圆心(2,2)到直线y=2x的距离d=255,所以弦长 =2 2- 2=2=255.解题技法直线和圆相交弦长的两种求法(1)代数法:将直线和圆的方程联立方程组,根据弦长公式求弦长.(2)几何法:若弦心距为d,圆的半径长为r,则弦长l=2 2- 2.根据弦长求直线方程时要注意验证斜率不存在的情况.角度3切线问题[例3]已知点P(2+1,2-2),点M(3,1),圆C:(x-1)2+(y-2)2=4.(1)求过点P的圆C的切线方程;【解析】由题意得圆心C(1,2),半径r=2.(1)因为(2+1-1)2+(2-2-2)2=4,所以点P在圆C上.又k PC-2-所以切线的斜率k=-1 =1.所以过点P的圆C的切线方程是y-(2-2)=x-(2+1),即x-y+1-22=0.(2)求过点M的圆C的切线方程,并求出切线长.【解析】(2)因为(3-1)2+(1-2)2=5>4,所以点M在圆C外部.当过点M的直线斜率不存在时,直线方程为x=3,即x-3=0.又点C(1,2)到直线x-3=0的距离d=3-1=2=r,即此时满足题意,所以直线x=3是圆的切线.当切线的斜率存在时,设切线方程为y-1=k(x-3),即kx-y+1-3k=0,则圆心C到切线的距离dr=2,解得k=34.所以切线方程为y-1=34(x-3),即3x-4y-5=0.综上可得,过点M的圆C的切线方程为x-3=0或3x-4y-5=0.因为|MC|=(3-1)2+(1-2)2=5,所以过点M的圆C的切线长为| |2- 2=5-4=1.解题技法1.过一点求圆的切线方程的两种求法(1)代数法:设切线方程为y-y0=k(x-x0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k.注意斜率不存在的情况.(2)几何法:设切线方程为y-y0=k(x-x0),利用点到直线的距离公式表示出圆心到切线的距离d,然后令d=r,进而求出k.注意斜率不存在的情况.特别地,当点在圆上时,可直接利用圆心与切点的连线的斜率及切线的性质求切线方程.2.过圆外一点P引圆的切线,求切线长时,常利用点P、圆心、切点构成的直角三角形求解.对点训练1.(2024·南京模拟)直线3x+4y+12=0与圆(x-1)2+(y+1)2=9的位置关系是()A.过圆心B.相切C.相离D.相交但不过圆心【解析】选D.由题意知,圆(x-1)2+(y+1)2=9的圆心为(1,-1),半径r=3,则圆心到直线3x+4y+12=0的距离d=115,因为0<d<r,所以直线与圆相交但不过圆心.2.过点(-33,0)且倾斜角为π3的直线l交圆x2+y2-6y=0于A,B两点,则弦AB的长为()A.42B.22C.210D.10【解析】选A.过点(-33,0)且倾斜角为π3的直线l的方程为y=3(x+33),即3x-y+1=0,又圆x2+y2-6y=0即x2+(y-3)2=9,所以圆心(0,3),半径r=3,则圆心(0,3)到直线l的距离d=|-3+1|2=1,所以直线被圆截得的弦AB=232-12=42.3.(2024·东城模拟)已知点M(1,3)在圆C:x2+y2=m上,过M作圆C的切线l,则l的倾斜角为()A.30°B.60°C.120°D.150°【解析】选D.由题意得m=1+3=4,当l的斜率不存在时,此时直线方程为x=1,与圆C:x2+y2=4相交,不符合题意;当l的斜率存在时,设切线l的方程为y-3=k(x-1),-3|解得k=-33,因为l的倾斜角为0°≤θ<180°,故l的倾斜角为150°.【加练备选】(2024·宜春模拟)已知圆C经过三点O(0,0),A(1,1),B(4,2).(1)求圆C的方程;【解析】(1)设圆C的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),由圆C经过三点O(0,0),A(1,1),B(4,2),得 =02+ + + =0 20+4 +2 + =0,解得 =-8 =6 =0,所以圆C的方程为x2+y2-8x+6y=0.(2)经过点M(1,-4)的直线l被圆C所截得的弦长为45,求直线l的方程.【解析】(2)由(1)知圆C:(x-4)2+(y+3)2=25,即圆心C(4,-3),半径为5,由直线l被圆C所截得的弦长为45,得圆心C到直线l的距离d=52-(25)2=5,而直线l经过点M(1,-4),显然直线l的斜率存在,设直线l的方程为y+4=k(x-1),即kx-y-4-k=0,于是d=5,得k=2或k=-12,所以直线l的方程为2x-y-6=0或x+2y+7=0.考点二圆与圆的位置关系[例4](1)已知圆E的圆心在y轴上,且与圆x2+y2-2x=0的公共弦所在直线的方程为x-3y=0,则圆E的方程为()A.x2+(y-3)2=2B.x2+(y+3)2=2C.x2+(y-3)2=3D.x2+(y+3)2=3【解析】选C.两圆圆心连线与公共弦垂直,不妨设所求圆心的坐标为(0,a),半径为r.又圆x2+y2-2x=0的圆心为(1,0),半径为1,故 -1×解得a=3.故所求圆心为(0,3).点(1,0)到直线x-3y=0=12,所以x2+y2-2x=0截直线x-3y=0所得弦长为3,圆心(0,3)到直线x-3y=0的距离为32,所以圆截直线x-3y=0所得弦长为=3,解得r=3.故圆心坐标为(0,3),半径为3.得圆E的方程为x2+(y-3)2=3.(2)已知两圆C1:x2+y2-2x+10y-24=0和C2:x2+y2+2x+2y-8=0.①判断两圆公切线的条数;【解析】①两圆的标准方程分别为C1:(x-1)2+(y+5)2=50,C2:(x+1)2+(y+1)2=10,则圆C1的圆心为(1,-5),半径r1=52;圆C2的圆心为(-1,-1),半径r2=10.又|C1C2|=25,r1+r2=52+10,r1-r2=52-10,所以r1-r2<|C1C2|<r1+r2,所以两圆相交,所以两圆有两条公切线.②求公共弦所在的直线方程以及公共弦的长度.【解析】②将两圆方程相减,得公共弦所在直线方程为x-2y+4=0.圆心C1到直线x-2y+4=0的距离d =35,设公共弦长为2l,由勾股定理得r2=d2+l2,得50=45+l2,解得l=5,所以公共弦长2l=25.一题多变[变式1]本例(2)中,若两圆相交于A,B两点,不求交点,则线段C1C2(C1,C2分别为两个圆的圆心)的垂直平分线所在的直线方程为______________.【解析】由圆C1的圆心坐标为(1,-5),圆C2的圆心坐标为(-1,-1),可知 1 2=-5-(-1)1-(-1)=-2,则k AB=12,C1C2的中点坐标为(0,-3),因此线段C1C2的垂直平分线所在的直线方程为y+3=12x,即x-2y-6=0.答案:x-2y-6=0[变式2]本例(2)中的两圆若相交于两点A,B,则经过两点A,B且圆心在直线x+y=0上的圆的方程为______________.【解析】设所求的圆的方程为x2+y2-2x+10y-24+λ(x2+y2+2x+2y-8)=0(λ≠-1),整理可得(1+λ)x2+(1+λ)y2+(2λ-2)x+(2λ+10)y-8λ-24=0,因此圆的圆心坐标为(1- 1+ ,- +51+ ),由于圆心在x+y=0上,则1- 1+ +(- +51+ )=0,解得λ=-2,因此所求的圆的方程为x2+y2+6x-6y+8=0.答案:x2+y2+6x-6y+8=0解题技法圆与圆的位置关系问题的解题策略(1)判断两圆位置关系常用几何法,即用两圆圆心距与两圆半径和及差的绝对值的大小关系判断.(2)两圆相交时,两圆的公共弦所在直线的方程,可由两圆的方程作差消去x2,y2项得到.(3)求两圆公共弦长,常选其中一圆,由弦心距d、半弦长 2、半径r构成直角三角形,利用勾股定理求解.考点三与圆有关的最值、范围问题[例5](2024·沈阳模拟)已知实数x,y满足方程x2+y2-4x+1=0.求:(1) 的取值范围;【解析】(1)由圆的一般方程可得:圆心为(2,0),半径r=3;因为02+02-4×0+1=1>0,所以原点在圆x2+y2-4x+1=0的外部,设 =k,则kx-y=0(x≠0)与圆x2+y2-4x+1=0有公共点,所以圆心(2,0)到kx-y=0(x≠0)的距离d≤3,解得-3≤k≤3,即 的取值范围为-3,3.(2)y-x的取值范围;【解析】(2)设y-x=m,则直线x-y+m=0与圆x2+y2-4x+1=0有公共点,所以圆心(2,0)到x-y+m=0的距离d ≤3,解得-6-2≤m≤6-2,即y-x的取值范围为-6-2,6-2.(3)x2+y2的取值范围.【解析】(3)由(1)知:原点在圆x2+y2-4x+1=0的外部,则可设x2+y2=r2(r>0),则圆x2+y2=r2(r>0)与圆x2+y2-4x+1=0有公共点,因为两圆圆心距d=(0-2)2+(0-0)2=2,所以r-3≤2≤r+3,解得2-3≤r≤2+3,所以7-43≤r2≤7+43,即x2+y2的取值范围为7-43,7+43.解题技法关于圆上点(x,y)有关代数式的最值问题的解法代数式特征求解方法u=y-b x-a转化为过点(a,b)和点(x,y)的直线的斜率的最值t=ax+by转化为动直线的截距的最值(x-a)2+(y-b)2转化为动点(x,y)到定点(a,b)的距离平方的最值对点训练(多选题)(2024·盐城模拟)已知实数x,y满足曲线C的方程x2+y2-2x-2=0,则下列选项正确的是()A.x2+y2的最大值是3+1B. +1 +1的最大值是2+6C.|x-y+3|的最小值是22-3D.过点(0,2)作曲线C的切线,则切线方程为x-2y+2=0【解析】选BD.由圆C:x2+y2-2x-2=0可化为(x-1)2+y2=3,可得圆心(1,0),半径r=3,对于A,由x2+y2表示圆C上的点到定点(0,0)的距离的平方,所以它的最大值为[(1-0)2+02+3]2=4+23,所以A错误;对于B, +1 +1表示圆上的点与点(-1,-1)的斜率,设 +1 +1=k,即y+1=k(x+1),由圆心(1,0)到直线y+1=k(x+1)的距离d≤3,解得2-6≤k≤2+6,所以 +1 +1的最大值为2+6,所以B正确;对于C,由 - +3表示圆上任意一点到直线x-y+3=0的距离的2倍,圆心到直线的距离d =22,所以其最小值为2(22-3)=4-6,所以C错误;对于D,因为点(0,2)满足圆C的方程,即点(0,2)在圆C上,则该点与圆心连线的斜率为k1=-2,根据圆的性质,可得过点(0,2)作圆C的切线的斜率为k=-1 1=22,所以切线方程为y-2=22(x-0),即x-2y+2=0,所以D正确.【加练备选】已知点P(x,y)在圆:x2+(y-1)2=1上运动.试求:(1)(x+3)2+y2的最值;【解析】(1)设圆x2+(y-1)2=1的圆心为A(0,1),半径r=1,点P(x,y)在圆上,所以(x+3)2+y2表示P(x,y)到定点E(-3,0)的距离的平方,因为|AE|=(3)2+12=2,所以|AE|-r≤|PE|≤|AE|+r,即1≤|PE|≤3,所以1≤(x+3)2+y2≤9,即(x+3)2+y2的最大值为9,最小值为1;(2) -1 -2的最值.【解析】(2)点P(x,y)在圆上,则 -1 -2表示圆上的点P与点B(2,1)连线的斜率,根据题意画出图形,当P与C(或D)重合时,直线BC(BD)与圆A相切,设直线BC的解析式为y-1=k(x-2),即kx-y-2k+1=0,所以圆心(0,1)到直线BC的距离d=r,解得k=±33,所以-33≤ -1 -2≤33,所以 -1 -2的最大值为33,最小值为-33.。

(完整版)《高三数学一轮复习课-直线与圆的位置关系优质课比赛教学设计》

(完整版)《高三数学一轮复习课-直线与圆的位置关系优质课比赛教学设计》

(完整版)《高三数学一轮复习课-直线与圆的位置关系优质课比赛教学设计》直线与圆的位置关系(1)课型:高三数学一轮复习课课题:直线与圆的位置关系课时:第一课时教材:苏教版对教材内容的理解分析:1、本节内容在全书及章节的地位:直线与圆的位置关系是高中数学新教材“圆的方程”的综合课.2、本节课的复习内容:本节课的主要内容是直线与圆的位置关系及判定方法,它是高考中的热点内容之一.3、教材的地位与作用:本节课是平面解析几何学的基础知识,它既复习了前面刚学过的直线与圆的方程,又为今后学习直线与圆锥曲线的位置关系奠定基础.它虽然是解析几何中较为简单的内容,但有着广泛的应用,也具有较强的综合性,有利于培养学生分析问题和解决问题的能力.教学反思:1、通过小组合作学习,组织学生对问题进行讨论,激发学生的求知欲望,使大部分学生在学习过程中始终处于积极思考、探索的状态,真正成为主动学习的主体.2、利用计算机辅助教学,显示了事物从静态到动态的运动过程,培养学生用运动变化这一辩证唯物主义观点分析问题、解决问题的能力.用几何画板可以很好地体现数形结合的思想,使较为复杂的问题明了化.教案的简介:直线与圆的位置关系(1),高三数学一轮复习课、扬州市优秀公开课,并获一等奖.关键字:位置关系、广义几何法、狭义几何法、代数法.参赛者简介:扬州市特级教师,扬州市学科带头人,扬州市优秀班主任,高邮市中青年专家,高邮市劳动模范等.[教学目标]知识目标:了解代数法和几何法解决直线与圆位置关系的差异,明确几何法在直线与圆的位置关系的判定中的地位,并能应用几何法解决问题.能力目标:让学生在解决问题的过程中体会到数形结合、转化、化归等数学思想,注重培养学生的分析、计算、总结归纳等能力.情感态度价值观目标:培养学生合作交流,善于思考的良好品质,激发学生学习数学的积极性.[重点难点]重点:几何法在直线与圆的位置关系的判定中的应用.难点: 通过对圆上的点到直线的距离变化的分析诠释数形结合的魅力.[教学方法] 启发式、自主探究相结合.[教具资料]三角板、圆规、多媒体课件导入语:大家知道数学来源于生活,又服务于生活.下面有一道生活问题,你能用学过哪方面的知识求解? 问题情境:在一个特定的时间内,以O 为中心的5米范围内(不包括边界)被设为危险区域,某人在O 点的南偏西θ(其中135sin =θ)的方向上,且距O 点13米的A 地,若他向东北方向直行,会进入危险区域吗? (8分钟)一分钟后,提问学生:A,你谈谈思路?(生说时教师写出点坐标,圆方程,直线方程) 你能用数学化的语言刻化一下,如何判定此人是否会进入危险区域?问题数学化:直线07=--y x 与圆C: 2522=+y x 的位置关系为________.直线07=--y x 上是否存在点P 在圆C: 2522=+y x 内? (即OP 〈5有解?也就是OP min 〈5?其本质就是OP min =d )两种思路都可以解释为 d 与 r 的大小比较问题两类方法:几何法(利用平几直接求解或用d 与r 的关系)、代数法(判别式法、定义法)引出课题:直线与圆的位置关系(1) 提问学生B :回顾直线与圆的位置关系的定义、判定方法你能选择恰当的方法解决下面问题吗?问题一:(8分钟)已知圆C:(x-1)2+(y+1)2=1,直线l 过点P(-2,-2),求l 与圆C 有公共点时斜率k 的范围提问学生C :如何求斜率k 的范围?答:写出圆心和半径、设出直线方程、利用点与直线的距离公式将d 用k 表示、利用d 与r 关系列出关于k 的不等式、求斜率k 的范围注意事项:“有公共点”的含义,“与斜率k 有关的问题求解”,不必考虑斜率不存在之情. (提问学生D)师:(学生思考时)画图(学生回答时)板演法一:平几性质加三角公式求解.(广义几何法)法二:利用d 与r 关系列出关于k 的不等式.(狭义几何法)法三:投影,比较各方法的优劣.(代数法)解题回顾:处理解析几何问题时,若能结合平面几何图形的性质,可使解答简捷明快,本题用“圆心到直线距离与半径比较”来探讨直线和圆的位置关系便是典型体现. 方法总结: (提问学生E) 一、解题步骤:(1)设直线方程并化为一般式(2)求圆心到直线距离(3)比较弦心距与半径的大小二、解题体会:1、几何法比代数法运算量少,简便.代数法比几何法通用,主要用于直线与圆锥曲线位置关系问题,具有运用的广泛性.2、在解决有关圆的问题时,一般不用代数法而用几何法(8分钟)变式1:过点P(-2,-2)作圆C:(x-1)2+(y+1)2=1的切线l ,则切线l 的方程为_____________ 分析:本题是问题一的临界状态,斜率已求,切线易得.02=+y 和0243=--y x (提问学生F)变式2:已知x,y 满足条件 (x-1)2+(y+1)2=1,则代数式22++x y 的取值范围___________430≤≤k 分析:本题是问题一的不同形式的表示,既可以理解为斜率,直接数形结合又可以转化为直线方程的一般式(少一点),从而化归为问题一,当然也可以化为三角函数求解. (提问学生G) 解题回顾:直线与圆的位置关系问题一般有下列几种题型(1)给定两者方程判定位置关系(如问题情境)(2)给定两者位置关系,求解参数范围或切线方程(如问题一及变式一)(3)给定圆的方程,求圆上点表示的目标函数范围(如问题一及变式二)方法总结:完整直线与圆位置关系方面的题目常用d 与r 关系求解直线与圆局部图形位置关系方面的题目常用数形结合求解问题二: (5分钟)求证:直线021)1()2(:=---++m y m x m l 与圆C: 4)2()1(22=++-y x 有两个不同的公共点. (提问学生H)分析:法一 0)12()2(:=-++--y x m y x l 过定点P(1,-1),且定点P 在圆内法二 C(1,-2), r=2 , 22)1()2(|1|m m m d -++-=与2比较大小解题回顾:如果直线过定点,只要先确定定点与圆的位置关系,就能得知直线与圆相应的位置关系.就不必用利用d 与r 关系来判定了.方法总结:观察直线是否过定点,优先考虑直线与圆的可能关系,优化解题过程. (提问学生I) (5分钟)变式1:已知}02|),{(22=-+=y y x y x A ,}1|),{(+-==k kx y y x B , 则B A I 中的元素个数是________1学生思考时,教师画图,并对学生的回答加以说明 (提问学生J)变式2:已知}02|),{(22=-+=y y x y x A ,}11|),{(k x y y x B =--=, 则B A I 中的元素个数是________2 师:你能注意到它们之间的差异吗? 课堂练习:(8分钟)1.过点)4,4(P 作圆0422=-+x y x 的切线,求圆的切线方程. 板演(学生K) 3x -4y +4=0或x =4对策:首先考虑斜率不存在之情或先定解的个数,解不足时补上斜率不存在之情变式:圆0422=-+x y x 在点)3,1(P 处的切线方程是______________(提问学生L) 023=+-y x解题回顾:求过定点的圆的切线方程,一定要判定点的位置,若在圆上,可简化过程.若在圆外,一般有两条切线,容易遗漏斜率不存在的那一条.2.(教材P106 e2)如果直线ax +by =4与圆有两个不同的交点, 则P(a,b)与圆的位置关系是 ____________(填上以下正确结论的序号)(1)P 在圆外 (2)P 在圆上 (3)P 在圆内 (4)不确定 (提问学生M)师同时板演过程改变2中两个不同的交点的条件,同学们能提出类似的结论吗?(提问学生N) 下面这个问题结论是什么?若点P(a,b) 在圆x 2+y 2=1外,则直线ax +by =1 与 x 2+y 2=1的位置关系是_______(相交) 本节课回顾总结: (3分钟)(1)本节课我们复习了哪些内容你能用流程图表示出来吗? (提问学生O 、P) (2)直线与圆的位置关系的判定方法有哪些?它们各自有什么优点?(提问学生姜杰)答:两类方法:几何法(广义——利用平几直接求解或狭义——用d 与r 的关系)、代数法直接——判别式法或间接的定义法几何法比代数法简洁,代数法比几何法通用(3)今天我们所遇到的情形各自用哪种方法更简便?为什么?各自又有什么注意事项? (提问学生Q)(4)本节课主要用到了哪些数学思想?用得最多的是哪个?最少的是哪个?(5)点与圆的位置关系与过此点的直线与圆的位置关系有何联系?思考:已知圆M:1)sin ()cos (22=-++θθy x ,直线kx y l =:,下面四个命题 (1)对任意实数k 与θ,直线l 和圆M 相切 (2)对任意实数k 与θ,直线l 和圆M 有公共点(3)对任意实数θ,必存在实数k ,使得直线l 和圆M 相切 (4) 对任意实数k ,必存在实数θ,使得直线l 和圆M 相切所有真命题的序号是_____________板书设计课题注:从右向左书写注:先中间再右边最后左边。

灌南高级中学高三数学复习导学案:直线的方程1

灌南高级中学高三数学复习导学案:直线的方程1

1 学习目标:理解直线的倾斜角、斜率的意义及相互关系,掌握直线的斜率公式及运用
自主梳理:
1.直线的倾斜角与斜率
(1)直线的倾斜角
①定义:在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按 方向旋转到和直线重合时所转过的 正角称为这条直线的倾斜角.
②直线的倾斜角α的范围为 .
(2)直线的斜率
①定义:一条直线的倾斜角α的 叫做这条直线的斜率,斜率常用小写字母k 表示,即k = ,倾斜角是90°的直线斜率不存在.
②过两点的直线的斜率公式经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1. (3)直线的倾斜角α与斜率k 的关系式
例2.已知点2(1,)A a 、3(,)4
B a ,(1)求过点A 、B 的直线斜率,( 2)求直线AB 的倾斜角的范围,。

江苏省灌南高级中学高三数学 空间几何体复习导学案

江苏省灌南高级中学高三数学 空间几何体复习导学案

江苏省灌南高级中学高三数学复习导学案:空间几何体【考点导读】1.观察认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图;3.通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式;4.了解球、棱柱、棱锥、台的表面积和体积的计算公式。

【基础练习】1.一个凸多面体有8个顶点,①如果它是棱锥,那么它有 条棱,个面;②如果它是棱柱,那么它有 条棱 个面。

2.(1)如图,在正四面体A -BCD 中,E 、F 、G 分别是三角形ADC 、ABD 、BCD 的中心,则△EFG 在该正四面体各个面上的射影所有可能的序号是 。

(2)如图,E 、F 分别为正方体的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的射影可能是图的 (要求:把可能的图的序号都.填上).【范例导析】① ② ③ ④ABCD•••EF G例1.下列命题中,假命题是 。

(选出所有可能的答案) (1)有两个面互相平行,其余各个面都是平行四边形的多面体是棱柱 (2)四棱锥的四个侧面都可以是直角三角形(3)有两个面互相平行,其余各面都是梯形的多面体是棱台 (4)若一个几何体的三视图都是矩形,则这个几何体是长方体例2.C B A '''∆是正△ABC 的斜二测画法的水平放置图形的直观图,若C B A '''∆的面积为3,那么△ABC 的面积为_______________。

【反馈演练】1.一个圆柱的侧面积展开图是一个正方形,这个圆柱的全面积与侧面积的比是_______。

2.如图,一个底面半径为R的圆柱形量杯中装有适量的水.若放入一个半径为r的实心铁球,水面高度恰好升高r,则=_____。

高三数学一轮复习学案:专题《直线与圆》_1

高三数学一轮复习学案:专题《直线与圆》_1

(2)求直线BD被过P,A,B三点的圆C截得的弦长;(3)是否存在分别以PB,P A为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.3. 已知圆C的方程为x2+y2=1,直线l1过定点A(3,0),且与圆C相切.(1) 求直线l1的方程;(2) 设圆C与x轴交于P、Q两点,M是圆C上异于P、Q的任意一点,过点A且与x轴垂直的直线为l2,直线PM交直线l2于点P′,直线QM交直线l2于点Q′.求证:以P′Q′为直径的圆C′总过定点,并求出定点坐标.四:课后反思课堂检测——直线与圆(2)姓名:1.设直线l的方程为(a+1)x+y-2-a=0(a∈R).若直线l在两坐标轴上的截距相等,求直线l的方程________.2.在平面直角坐标系xOy中,已知圆x2+y2=r2(r>0)上有且仅有四个点到直线12x-5y+13=0的距离为1,则实数r的取值范围是________.AB AC=,点P3.在等腰直角三角形ABC中,=4是边AB上异于,A B的一点,光线从点P出发,BC CA发射后又回到原点P(如图1).若光线经,∆的重心,则AP等于____.QR经过ABC4.在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的取值范围是________.5.设m,n∈R若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是________.6.如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C(-4,0),D(0,4),设△AOB的外接圆圆心为E.(1) 若⊙E与直线CD相切,求实数a的值;(2) 设点P在圆E上,使△PCD的面积等于12的点P有且只有三个,试问这样的⊙E是否存在,若存在?求出⊙E的标准方程;若不存在,说明理由.。

江苏省灌南高级中学高三数学 直线方程复习导学案

江苏省灌南高级中学高三数学 直线方程复习导学案

江苏省灌南高级中学高三数学复习导学案:直线方程
高考要求:C 级 学习目标:⑴了解两个独立条件确定一条直线,掌握直线方程的截距式,斜截式,掌握直线 方程的点斜式、两点式和一般式,并会求直线方程的一般式。

⑵能灵活运用直线方程的五种形式求直线的方程
自主梳理
基础检测
见导航134页 典型例题
例1 见导航135页例1
变式训练1 已知直线m 过点A(-2,1),分别求m 的方程:
(1)倾斜角的正弦值为5
4; (2)B (-1,-2),C (-3,6)到m 的距离相等;
(3)在x 轴上的截距为y 轴上的两倍;(4)B (-1,-2)到m 的距离为1.
例2 见导航135页例2
例3 见导航135页例3
变式训练2 过点P (2,1)作直线m 交x 轴、y 轴正半轴分别于A ,B ,分别求m 的方程 (1)ABO s ∆最小; (2)B A 00+最小; (3)6=PB PA。

江苏省灌南高级中学高三数学 直线与直线的位置关系复习导学案

江苏省灌南高级中学高三数学 直线与直线的位置关系复习导学案

江苏省灌南高级中学高三数学复习导学案:直线与直线的位置关系高考要求:B导学目标: 1.能根据两条直线的斜率判定这两条直线平行或垂直.2.能用解方程组的方法求两条相交直线的交点坐标.3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.自主梳理1.两直线的位置关系平面上两条直线的位置关系包括平行、相交、重合三种情况.(1)两直线平行对于直线l1:y=k1x+b1,l2:y=k2x+b2,l1∥l2⇔_________________________________________________________________.对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A2B2C2≠0),l1∥l2⇔__________________________________________________________________.(2)两直线垂直对于直线l1:y=k1x+b1,l2:y=k2x+b2,l1⊥l2⇔k1·k2=____.对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,l1⊥l2⇔A1A2+B1B2=____.2.两条直线的交点两条直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,如果两直线相交,则交点的坐标一定是这两个方程的________;反之,如果这两个二元一次方程只有一个公共解,那么以这个解为坐标的点必是l1和l2的________,因此,l1、l2是否有交点,就看l1、l2构成的方程组是否有________.3.有关距离(1)两点间的距离平面上两点P1(x1,y1),P2(x2,y2)间的距离P1P2=__________________________________.(2)点到直线的距离平面上一点P (x 0,y 0)到一条直线l :Ax +By +C =0的距离d =______________________.(3)两平行线间的距离已知l 1、l 2是平行线,求l 1、l 2间距离的方法:①求一条直线上一点到另一条直线的距离;②设l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0,则l 1与l 2之间的距离d =________________. 自我检测1.(2010·济宁模拟)若点P (a,3)到直线4x -3y +1=0的距离为4,且点P 在不等式2x +y -3<0表示的平面区域内,则实数a 的值为________.2.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过的定点的坐标为________.3.已知直线l 1:ax +by +c =0,直线l 2:mx +ny +p =0,则am bn=-1是直线l 1⊥l 2的______________条件.4.(2009·上海)已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是________.5.已知2x +y +5=0,则x 2+y 2的最小值是________.探究点一 两直线的平行与垂直例1 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0,(1)试判断l 1与l 2是否平行;(2)l 1⊥l 2时,求a 的值.变式迁移2 △ABC的两条高所在直线的方程分别为2x-3y+1=0和x+y=0,顶点A 的坐标为(1,2),求BC边所在直线的方程.探究点三距离问题例3已知点P(2,-1).求:(1)求过P点且与原点距离为2的直线l的方程;(2)求过P点且与原点距离最大的直线l的方程,最大距离是多少?(3)是否存在过P点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.变式迁移3 已知直线l过点P(3,1)且被两平行线l1:x+y+1=0,l2:x+y+6=0截得的线段长为5,求直线l的方程.。

江苏省灌南高级中学高三数学 椭圆3复习导学案

江苏省灌南高级中学高三数学 椭圆3复习导学案

会判断直线与椭圆的位置关系,能解决与弦有关的问题1、由⎩⎨⎧=++=222222ba y a xb m kx y 得ac b c bx ax 4,022-=∆=++, (1)∆ 0( , )⇔直线与椭圆相交(切、离); (2)相交时,弦AB 中点坐标为 ; 弦长AB = 基础检测1在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为_______. 2椭圆12222=+by a x (0>>b a )的左焦点为F,直线m x =与椭圆相交于A,B 两点,若FAB ∆的周长最大时,FAB ∆的面积为ab ,则椭圆的离心率为________.3设椭圆C :)0(12222>>=+b a by a x 的左、右焦点分别为12,F F ,上顶点为A ,过点A 与2AF 垂直的直线交x 轴负半轴于点Q ,且02221=+Q F F F .则椭圆C 的离心率为___________4、椭圆1162522=+y x 上点P 到直线092=++y x 的距离的最大值为 最小值为 5、当k 变化时,直线1+=kx y 与椭圆1522=+my x 总有公共点,则m 的取值范围是 典型例题例1、已知椭圆的中心为坐标原点O , 焦点在坐标轴上,直线01=+-y x 与椭圆相交于点A 、B ,且210,=⊥AB OB OA ,求椭圆的方程. 例2、如图,已知椭圆1E 方程为22221(0)x y a b a b+=>>,圆2E 方程为222x y a +=,过椭圆的左顶点A 作斜率为1k 直线1l 与椭圆1E 和圆2E 分别相交于B 、C.(Ⅰ)若11k =时,B 恰好为线段AC 的中点,试求椭圆1E 的离心率e ;(Ⅱ)若椭圆1E 的离心率e =12,2F 为椭圆的右焦点,当2||||2BA BF a +=时,求1k 的值;(Ⅲ)设D 为圆2E 上不同于A 的一点,直线AD 的斜率为2k ,当2122k b k a=时,试问直线BD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.例3、如图,设A ,B 分别为椭圆2222:1(0)x y E a b a b+=>>的右顶点和上顶点,过原点O 作直线交线段AB 于点M (异于点A ,B ),交椭圆于C ,D 两点(点C 在第一象限内),ABC ∆和ABD ∆的面积分别为1S 与2S .(1)若M 是线段AB 的中点,直线OM 的方程为13y x =,求椭圆的离心率; (2)当点M 在线段AB 上运动时,求12S S 的最大值.。

高中数学第37课时直线和圆位置关系综合练习导学案苏教版必修2(2021学年)

高中数学第37课时直线和圆位置关系综合练习导学案苏教版必修2(2021学年)

江苏省宿迁市高中数学第37课时直线和圆位置关系综合练习导学案苏教版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省宿迁市高中数学第37课时直线和圆位置关系综合练习导学案苏教版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省宿迁市高中数学第37课时直线和圆位置关系综合练习导学案苏教版必修2的全部内容。

第37课时直线和圆的位置关系【学习目标】1。

掌握直线与圆的位置关系。

2。

会利用直线与圆的位置关系解决相关问题.【基础训练】1. 直线10x y ++=与圆2242x y x y +-+10+=的位置关系为__________________.2. 圆22420x y x y F +-++=与y 轴交于,A B 两点,圆心为C ,若90ACB ∠=,则F 的值是_________________.3. 若直线1ax by +=与圆221x y +=相交,则点(,)P a b 与圆的位置关系是___________.4. 过圆上一点(3,4)P 作圆2225x y +=的切线,该切线的方程为 . 5。

以M (-4,3)为圆心的圆与直线2x +y -5=0相离,那么圆M 的半径r 的取值范围是____________________。

6.已知M={(x ,y)|x 2+y 2=1,0〈y ≤1},N={(x,y)|y=x +b,b ∈R},并且M ∩N ≠,那么b的取值范围是 _______________。

7。

已知圆x 2+y2=r 2在曲线|x|+|y|=4的内部,则半径r的范围是______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.基础练习
1.已知直线l 的倾斜角为α,且︒<≤︒1350α,则直线l 的斜率的取值范围是 .
2.圆心为(1,1)且与直线4=+y x 相切的圆的方程是 .
3.已知两圆1022=+y x 和20)3()1(22=-+-y x 相交于B A ,两点,则直线AB 的方程 是 .
4.圆0544:221=--++y x y x C 与圆0748:222=++-+y x y x C 的公切线有 条
5.B A ,是x 轴上两点,点P 的横坐标为2,且PB PA =,若直线PA 的方程为01=+-y x , 则直线PB 的方程为 .
二.典型例题
1.已知圆C 的方程为)(0442222R m m y mx y x ∈=-+--+
⑴试求m 的值,使圆C 的面积最小;
⑵求与满足⑴中条件的圆C 相切,且过点)2,1(-的直线方程.
2.圆03622=+-++y x y x 上两点Q P ,满足:①关于直线04=+-y kx 对称;
②OQ OP ⊥,求直线PQ 的方程.
4.在平面直角坐标系xoy 中,已知圆221:(3)(1)4C x y ++-=和圆222:(4)(5)4C x y -+-=.
(1)若直线l 过点(4,0)A ,且被圆1C 截得的弦长为l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标.
三.课后练习
1.已知直线l 过点)0,2(-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是 .
2.直线01=+++m y mx 与圆222=+y x 的位置关系是 .
3.若直线03=-+by ax 和圆01422=-++y y x 切于点)2,1(-P ,则ab 的值为 .
4.过点)4,2(-M 作圆25)1()2(:22=-+-y x C 的切线l ,直线023:1=++a y ax l 与l 平行,则1l 与l 之间的距离是 .
5.圆心在直线x y =上,且与直线012=-+y x 相切的圆截y 轴所得弦长为2,则此圆的方程为 .
6.点A 在圆05422=-+++y ax y x 上,它关于直线012=-+y x 的对称点也在圆C 上,则a 的值是 .
7.已知直线04:=+-y x l 与圆2)1()1(:22=-+-y x C ,则C 上各点到l 距离最小值 为 .
8.函数y 的最小值为 .
9.已知圆922=+y x 的内接ABC ∆,点A 的坐标是(-3,0),重心G 的坐标为)1,2
1(--,求(1)边BC 所在直线的方程;(2)弦BC 的长度.
10.已知P 是直线0843=++y x 上的动点,PB PA ,是圆012222=+--+y x y x 的两条切点,C 是圆心,求四边形PACB 面积的最小值.。

相关文档
最新文档