石墨烯复合材料的制备及其性能研究进展
石墨烯聚合物复合材料的制备与性能研究
石墨烯聚合物复合材料的制备与性能研究石墨烯作为一种二维的碳纳米材料,拥有独特的物理和化学性质,引起了广泛的研究兴趣。
而将石墨烯与聚合物复合制备成新型材料,也成为了当前前沿的研究方向之一。
本文将探讨石墨烯聚合物复合材料的制备方法以及相关性能研究进展。
一、石墨烯的制备方法石墨烯的制备方法多种多样,其中最常用的方法是机械剥离法。
该方法通过在石墨表面使用粘性剂剥离石墨烯,并通过溶剂处理使其分散为独立的石墨烯片。
此外,还有化学气相沉积法、化学还原法等制备方法。
这些方法中,机械剥离法制备的石墨烯具有高质量和大尺寸等优势。
二、石墨烯聚合物复合材料的制备方法将石墨烯与聚合物复合制备成新材料的方法主要有两种:一种是物理混合法,将石墨烯与聚合物经过机械混合、溶剂混合等方式混合制备成复合材料;另一种是化学合成法,通过聚合物的化学反应合成石墨烯聚合物复合材料。
其中,物理混合法简单易行,成本低,但界面结合力较差;而化学合成法能够在石墨烯和聚合物之间形成更加稳定的化学键,增强界面结合力。
三、石墨烯聚合物复合材料的性能研究石墨烯聚合物复合材料的性能研究主要体现在力学性能、热性能、电学性能和光学性能等方面。
力学性能方面,石墨烯的加入可以显著提高聚合物复合材料的强度和刚度。
石墨烯具有极高的抗拉强度和模量,且其二维结构还能减轻材料的密实度,使复合材料更加轻盈。
同时,石墨烯的高柔韧性也能提高聚合物的韧性,增加材料的断裂韧性。
热性能方面,石墨烯的导热性能突出,可以将热量迅速传导到复合材料的整个体积中,提高材料的导热性能。
石墨烯的加入还能提高材料的热稳定性和阻燃性能,减少火灾事故的发生。
电学性能方面,石墨烯是一种优秀的导电材料,可以显著提高聚合物复合材料的导电性能。
这使得复合材料在柔性电子器件、电磁屏蔽等领域具有广泛的应用前景。
光学性能方面,石墨烯具有宽波长吸收和优异的非线性光学性质。
复合材料中的石墨烯可以调控光的传输和吸收特性,使其在光学器件、光电子学等领域有着重要的应用价值。
石墨烯基复合材料的制备及性能研究
石墨烯基复合材料的制备及性能研究石墨烯是一种由碳原子构成的单层二维晶体材料,具有多种优异的物理、化学和机械性质,被广泛认为是材料科学领域的革命性发现之一。
石墨烯具有极高的电子迁移率、巨大的表面积和出色的机械强度,使其成为制备复合材料的理想增强剂。
石墨烯基复合材料的制备方法有多种,其中最常用的方法之一是化学气相沉积法(Chemical Vapor Deposition,CVD)。
CVD法通过将碳源气体(如甲烷)在高温下引入反应室中,经过化学反应生成石墨烯,并将其沉积在基底材料上。
CVD法制备的石墨烯通常为大面积单层石墨烯,具有较高的质量和较少的缺陷。
石墨烯基复合材料的性能研究是一个热门领域。
其中一个典型应用是石墨烯纳米复合材料的电子器件方面。
石墨烯的高电子迁移率和大量的自由电子使其成为理想的导电层材料,可以用于制备高性能的柔性电子器件、传感器和太阳能电池。
另外,石墨烯还可以作为增强剂用于制备高性能的复合材料。
石墨烯具有极高的拉伸强度和刚度,可以有效地增强复合材料的力学性能。
研究表明,在复合材料中引入少量的石墨烯可以显著提高复合材料的强度、刚度和耐磨性。
除了力学性能的增强,石墨烯还可以改善复合材料的导热性能。
石墨烯具有优异的热导率,能够有效地传导热量。
因此,将石墨烯引入导热性能较差的基体材料中,可以显著提高复合材料的导热性能。
这对于一些需要高导热材料的领域(如电子散热材料)具有重要意义。
此外,石墨烯还可以提高复合材料的抗腐蚀性能。
石墨烯具有较高的化学稳定性,可以有效地防止基体材料受到腐蚀。
因此,在复合材料中引入石墨烯可以增强复合材料的耐腐蚀性能,延长其使用寿命。
总之,石墨烯基复合材料的制备和性能研究是一个充满挑战和潜力的领域。
石墨烯的优异性能使其成为制备高性能电子器件和复合材料的理想材料。
未来,随着对石墨烯制备技术和性能研究的不断深入,相信石墨烯基复合材料将在各个领域展现出更多的应用前景。
石墨烯PVDF复合材料的制备及其性能探讨
2020年第19卷第12期石墨烯/PVDF复合材料的制备及其性能探讨□狄莹莹【内容摘要】通过熔融模压法制备以聚偏氟乙烯(PVDF)树脂和石墨烯为基体和填料的PVDF/石墨烯复合材料,具有较好的热、电性能。
通过改变石墨烯含量和添加助剂,研究其对复合材料电性能、热性能的影响。
对不同条件下制备得到的样品进行性能测试和表征后,对比数据结果和微观照片可知,电性能参数(介电常数和体积电阻率)与导热系数均与石墨烯含量成正比,且参数变化有突变现象;添加助剂能有效促进石墨烯在PVDF基体中的均匀分散,合适的助剂体系能显著提高复合材料的性能。
【关键词】熔融模压法;聚偏氟乙烯;助剂;石墨烯;复合材料;材料性能【基金项目】本文为陕西省教育厅专项科研计划项目(编号:19JK0075)研究成果。
【作者简介】狄莹莹(1985 ),陕西工业职业技术学院财经与旅游学院讲师;研究方向:高分子材料在电性能和热性能方面,聚偏氟乙烯(PVDF)比其它聚合物材料更为优异,因此常选用PVDF作为制备导热、导电、介电性能优异的复合材料的基体树脂。
近年来不断引起大众关注的石墨烯是一种新型二维纳米材料,具有优异的热性能和电性能。
以石墨烯为填料的复合材料相关的研究近年来不断取得进展,如通过化学改性法处理石墨烯,改善了其易发生团聚的特性,使其能更好地在聚合物基体中均匀分散。
不同于传统的填料材料,石墨烯独特的纳米结构能满足PVDF对填料填充量的需求,提高材料的性能。
目前实验室制备PVDF/石墨烯复合材料主要采用溶液共混工艺和原位聚合法,该制备方法的工业应用受到溶剂的使用量、成本、环境污染等问题的阻碍。
本文采用熔融模压法制备石墨烯/ PVDF复合材料,研究制备配方中助剂和石墨烯含量的变化对制备得到的石墨烯/PVDF复合材料热、电性能的影响,以促进制备该类复合材料的技术发展并推广,提升其科研和市场价值。
一、实验部分(一)主要原料与试剂。
1.基体。
聚偏氟乙烯(PVDF,301F),购自美国苏威公司。
石墨烯复合材料研究进展
石墨烯复合材料研究进展摘要:近年来石墨烯因其优良的力学、电学、热学和光学等特性, 且添加到基体材料中可以提高复合材料的性能,拓展其功能,因此石墨烯复合材料的制备成为研究热点之一。
本文介绍了国内外对石墨烯复合材料的研究,对石墨烯复合材料的研究进展及现状进行了详细的介绍,并对石墨烯复合材料的发展趋势进行了展望。
关键词:石墨烯;复合材料;研究进展一、引言石墨烯因其优异的物理性能和可修饰性, 受到国内外学者的广泛关注。
石墨烯的杨氏模量高达1TPa、断裂强度高达130GPa,是目前已知的强度性能最高的材料,同时是目前发现电阻率最小的材料, 只有约10-8Ω·m;拥有很高的电子迁移率,且具有较高的导热系数。
氧化石墨烯作为石墨烯的重要派生物,氧化石墨烯薄片在剪切力作用下很容易平行排列于复合材料中, 从而提高复合材料的性能。
本文总结介绍了几种常见的石墨烯复合材料。
二、石墨烯复合材料(1)石墨烯及氧化石墨烯复合材料膜聚乙烯醇(PVA)结构中有非常多的羟基,因此其能与水相互溶解,溶解效果很好。
GO和PVA都可以在溶液中形成均匀、稳定的分散体系。
干燥成型后,GO在PVA中的分散可以达到分子水平,GO表面丰富的含氧官能团可以与PVA的羟基形成氢键,因此添加少量的GO可以显著提高复合材料的力学性能。
樊志敏[1]等制备出了氧化石墨烯纳米带/TPU复合膜。
通过机械测试显示,当加入氧化石墨烯纳米带的量为2%时,复合薄膜的弹性模量和抗拉强度与不加氧化石墨烯纳米带的纯TPU薄膜相比都得到了非常大的提高,分别提高了160%和123%。
马国富[2]等人发现,在聚乙烯醇(PVA)和氧化石墨烯(GO)复合制备的得复合薄膜中,GO均匀的分散在PVA溶液中,PVA的羟基与GO表面的含氧基团发生相互作用复合而不分相。
加入GO之后,大大提高了复合膜的热稳定性,当加入的GO量为3%时,纳米复合膜力学性能测试出现最大值,此时断裂伸长率也出现了最大值,这表明在此GO含量时复合膜有最佳性能;与不加GO的纯PVA膜相比,当加入的GO量为3%时,耐水性也大大地提高。
石墨烯复合材料的制备及应用研究进展
石墨烯复合材料的制备及应用研究进展一、本文概述石墨烯,作为一种新兴的二维纳米材料,因其独特的电子结构、优异的物理和化学性能,在复合材料领域引起了广泛的关注。
石墨烯复合材料结合了石墨烯和其他材料的优点,使得这种新型复合材料在力学、电学、热学等方面表现出色,因此具有广阔的应用前景。
本文旨在综述石墨烯复合材料的制备方法、性能特点以及在不同领域的应用研究进展,以期为石墨烯复合材料的进一步研究和实际应用提供理论支持和参考。
本文将首先介绍石墨烯及其复合材料的基本概念和特性,然后重点综述石墨烯复合材料的制备方法,包括溶液混合法、原位合成法、熔融共混法等。
接着,文章将探讨石墨烯复合材料在能源、电子、生物医学、航空航天等领域的应用研究进展,分析其在提高材料性能、降低成本、推动相关产业发展等方面的重要作用。
本文还将对石墨烯复合材料未来的研究方向和应用前景进行展望,以期推动这一领域的持续发展和创新。
二、石墨烯复合材料的制备方法石墨烯复合材料的制备方法多种多样,每一种方法都有其独特的优点和适用范围。
以下是几种主要的制备方法:溶液混合法:这是最简单且最常用的方法之一。
首先将石墨烯分散在适当的溶剂中,然后通过搅拌或超声处理使其均匀分散。
接着,将所需的基体材料(如金属氧化物、聚合物等)加入溶液中,通过搅拌或热处理使石墨烯与基体材料充分混合。
通过过滤、干燥等步骤得到石墨烯复合材料。
这种方法操作简便,但石墨烯在溶剂中的分散性和稳定性是关键因素。
原位生长法:这种方法通常在高温或特定气氛下进行,利用石墨烯与基体材料之间的化学反应,使石墨烯在基体材料表面或内部原位生长。
例如,通过化学气相沉积(CVD)或热解等方法,在金属氧化物或聚合物表面生长石墨烯。
这种方法可以得到石墨烯与基体材料结合紧密、性能优异的复合材料,但操作过程较复杂,且需要特殊的设备。
熔融共混法:对于高温稳定的基体材料,如金属或某些聚合物,可以采用熔融共混法制备石墨烯复合材料。
ZnO-石墨烯复合材料的制备及其光催化降解性能研究
05140功滋讨科2021年第5期(52)卷文章编号:1001-9731(2021)05-05140-05ZnO-石墨烯复合材料的制备及其光催化降解性能研究李林枝(吕梁学院化学化工系,山西吕梁033000)摘要:采用溶剂热法,制备了一系列不同还原氧化石墨烯(RGO)含量(0,2%,4%,6%和8%(质量分数))的ZnO-石墨烯复合材料。
通过XRD.SEM.PL等方法对复合材料样品进行了表征。
结果表明,所有掺杂RGO的复合材料样品均没有改变ZnO的结构;纯ZnO样品为圆球状颗粒,晶粒尺寸约为40nm,掺入RGO后,样品的晶粒尺寸出现了不均匀现象,并且随着RGO含量的增加,复合材料样品的团聚逐渐加大;所有复合材料的发射峰都在373nm附近,随着RGO掺量的增加,复合材料的本征发射峰的强度呈现先降低后升高的趋势;RGO的引入可以提高复合材料在可见光区域的吸收,并且吸收峰有轻微红移的趋势;随着RGO掺量的增加,复合材料的光催化性能呈现出先升高后降低的趋势,当RGO含量为6%(质量分数)时,复合材料的光催化性能最佳,降解率和反应速率常数分别达到71.97%,0.017mirT1。
关键词:ZnO;石墨烯;复合材料;光催化;吸收光谱中图分类号:))613.71;TQ426.6文献标识码:A DOI:10.3969/.issn.100-9731.2021.05.0210引言随着工业社会的进步,环境污染已经成为了制约我国发展的主要问题,目前废水处理是影响最为广泛的问题,对于废水处理,常用的手段就是光催化[4]。
光催化是指半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物的合成与分解。
金属氧化物常常被作为光催化剂,在众多光催化剂中,ZnO 凭借其宽禁带(3.3〜3.4eV)、较高的激子结合能和优异的常温发光性能等成为了光催化降解水污染的核心研究方向[-10]。
但同时ZnO在催化中也存在一些缺点,例如:ZnO仅对紫外光(<400mm)有较强吸收,对可见光区域的吸收利用率较低、Zn()的电子-空穴复合概率较高,复合速率较快:1115],这些问题都严重制约了ZnO在光催化中的应用。
石墨烯-MOFs复合材料的制备及其吸附性能研究
石墨烯-MOFs复合材料的制备及其吸附性能研究石墨烯/MOFs复合材料的制备及其吸附性能研究一、引言石墨烯和金属有机骨架材料(MOFs)是近年来受到广泛关注的两种新型材料。
石墨烯具有超高的比表面积、高导电性和优异的力学性能,而MOFs则具有大孔隙度、特殊的孔道结构和高度可调性的化学性质。
将二者合并成复合材料,不仅能够发挥各自的优点,还可以在催化、吸附、储能等领域中展示出卓越的性能。
本文将重点探讨石墨烯/MOFs复合材料的制备方法及其吸附性能的研究进展。
二、石墨烯/MOFs复合材料的制备方法制备石墨烯/MOFs复合材料的方法有许多种,常见的有混合法、原位法和化学还原法等。
混合法是将已制备好的石墨烯和MOFs混合,并通过超声处理使其混合均匀。
这种方法简单易行,但由于两种材料之间的界面接触不够紧密,可能影响复合材料的性能。
原位法是在制备石墨烯的过程中,加入MOFs的前体,使MOFs在石墨烯表面形成。
这种方法可以使MOFs与石墨烯之间的界面接触更紧密,提高复合材料的性能。
化学还原法则是将二氧化石墨烯和金属离子一起还原成金属纳米颗粒,形成复合材料。
这种方法制备的材料结构较为复杂,但拥有更好的导电性和可调性。
三、石墨烯/MOFs复合材料的吸附性能研究石墨烯/MOFs复合材料在吸附性能上具有优异的表现,广泛应用于环境污染物的去除、气体分离和储氢等方面。
以环境污染物去除为例,石墨烯/MOFs复合材料具有较大的比表面积和丰富的孔道结构,能够提供更多的吸附活性位点,从而实现对污染物的高效吸附。
同时,石墨烯的导电性能使得复合材料能够通过外加电场的作用,实现对吸附过程的可控和再生。
在气体分离方面,石墨烯/MOFs复合材料的孔道结构可以选择性地吸附不同大小和性质的气体分子,从而实现对混合气体的高效分离。
在储氢方面,石墨烯/MOFs复合材料由于石墨烯的高导电性和MOFs的大孔隙度,可以提供更大的气体吸附容量和较快的吸附速率,从而在储氢材料中具有巨大的应用潜力。
石墨烯制备与改性的研究进展
—115—《装备维修技术》2021年第5期1 石墨烯的制备方法1.1 氧化还原法氧化还原法主要是利用强氧化剂和强酸对石墨实施氧化处理,从而在石墨的表面形成环氧、羟基以及羧基等多种含氧基团,进一步降低手摸层间的相互作用,增大石墨层间距离,制备出氧化石墨烯,其实也就是人们常说的GO ,之后再利用相应的化学方法或者高温作用还原GO ,将其表面附着的含氧基团去除,最终得到我们所需要的石墨烯。
这种制备方法具体操作过程中,由于GO 表面存在大量的含氧基团,其中中央区域分布最多的是环氧基团和羟基基团,羧基基团主要分布在GO 的边缘区域。
采用氧化还原法制备石墨烯,由于无法彻底消除各类含氧基团,造成最终制备的石墨烯存在一定的缺陷,但最大的优势就是制备成本低且操作简便,所以还是存在较为广阔的应用前景[1]。
1.2 GO 的还原GO 还原法包含了溶液热还原法、热还原法以及化学还原法三种。
下面就这三种制备方式进行简要论述。
首先,溶液热还原法具体操作步骤:先将GO 均匀分散在溶液当中,然后对溶液进行加热处理,在此环境下可以促使GO 表面的含氧基团去除干净,同时也可以在一定程度上抑制石墨烯片层的重新堆叠。
相关学者研究表明,将GO 水悬浮液放置到180摄氏度的热反应器当中,静置六个小时之后可以得到纯度比较高的石墨烯。
而且通常情况下溶液的极性越大,GO 还原处理就越容易。
其次是热还原法,这种还原方式是在惰性气体保护环境下,将GO 温度升到230摄氏度,这样便能够有效去除GO 表面的含氧基团,由于是高温去除所以被人们称作热还原。
可是在热还原处理中会造成石墨烯片层的重新堆积,所以最终得到的通常为石墨结构,而不是预期的石墨烯结构。
只有GO 升温非常迅速情况下才有可能获得石墨烯结构[2]。
再次,化学还原法是利用一些强还原剂对GO 实施还原处理,采取这种方法可以获得质量比较好的石墨烯。
我国目前最常采用的强还原剂主要为水合肼。
研究发现,利用水合肼还原得到的石墨烯的电导性可以达到2420S/m ,通过对还原时间、温度和水合肼含量的调控实现了对GO 的可控还原。
石墨烯基复合材料的制备及其力学性能研究
石墨烯基复合材料的制备及其力学性能研究石墨烯作为一种新兴的二维材料,因其优异的力学性能和独特的物理化学性质而备受研究者的关注。
石墨烯基复合材料的制备和性能研究是一个热门的研究领域。
本文将介绍石墨烯基复合材料的制备方法及其力学性能研究的相关进展。
1. 制备方法石墨烯基复合材料的制备方法多种多样,下面将介绍几种常用的制备方法。
1.1 石墨烯的氧化还原法石墨烯的氧化还原法制备工艺相对简单,但是会引入一定数量的氧原子和缺陷。
该方法一般是通过将石墨烯氧化成氧化石墨烯,然后再通过还原反应将其还原成石墨烯。
1.2 石墨烯的机械剥离法石墨烯的机械剥离法是通过机械手段将石墨烯层层剥离,从而得到单层或少层石墨烯。
这种方法制备的石墨烯具有高度结晶性和较低的缺陷密度。
1.3 石墨烯的化学气相沉积法石墨烯的化学气相沉积法是将碳源气体通过热解反应在基底上沉积,从而得到石墨烯。
这种方法具有制备速度快、制备规模大等优点。
2. 力学性能研究石墨烯基复合材料的力学性能研究是评价其应用前景的重要指标之一。
2.1 强度和刚度石墨烯具有出色的力学性能,因此制备的石墨烯基复合材料往往具有较高的强度和刚度。
研究者通过拉伸测试、压缩测试等实验方法来评估其力学性能,并与其他材料进行比较。
2.2 韧性和断裂韧度尽管石墨烯具有优异的强度和刚度,但其低韧性限制了其在实际应用中的广泛应用。
研究者通过断裂韧度测试等方法来评估石墨烯基复合材料的韧性,并寻找提高韧性的方法。
2.3 疲劳性能石墨烯基复合材料的疲劳性能是指其在长时间作用力下的力学性能表现。
研究者通过疲劳试验来评估其耐久性和疲劳寿命。
3. 应用前景石墨烯基复合材料具有广泛的应用前景。
例如,在航空航天领域,石墨烯基复合材料可用于制备轻质高强度的结构材料;在电子领域,石墨烯基复合材料可用于制备高性能的导电材料等。
总结:通过石墨烯的制备方法以及力学性能研究,我们可以看出石墨烯基复合材料具有巨大的潜力。
然而,目前仍存在一些挑战,如制备大尺寸石墨烯、提高石墨烯基复合材料的韧性等。
石墨烯基复合材料的制备与性能研究
石墨烯基复合材料的制备与性能研究石墨烯是一种单层碳原子排列成的二维晶体,具有极高的强度、导电性和导热性。
在过去的几年里,石墨烯在材料科学领域引起了广泛的关注。
为了进一步发展石墨烯的应用,研究人员开始将石墨烯与其他材料相结合,形成石墨烯基复合材料。
这些复合材料具有优异的性能和多样化的应用前景。
本文将探讨石墨烯基复合材料的制备方法以及其性能研究。
一、石墨烯基复合材料的制备方法1. 化学气相沉积法(CVD)化学气相沉积法是一种常用的制备大面积石墨烯的方法。
该方法通过在金属衬底上加热挥发的碳源,使其在高温下与金属表面反应生成石墨烯。
石墨烯的生长在具有合适结晶特性的金属表面上进行,如铜、镍等。
CVD法制备的石墨烯可以获得高质量、大尺寸的单层石墨烯。
2. 液相剥离法液相剥离法是一种以石墨为原料制备石墨烯的方法。
通过在石墨表面涂覆一层粘性聚合物,然后利用粘性聚合物与石墨之间的相互作用力,将石墨从衬底上剥离,最终得到石墨烯。
这种方法能够制备出大面积的石墨烯,并且使用简便、成本较低。
3. 氧化石墨烯还原法氧化石墨烯还原法是一种制备石墨烯的简单方法。
首先将石墨烯氧化生成氧化石墨烯,然后通过还原处理,还原为石墨烯。
该方法可以在实验室条件下进行,操作简单方便。
然而,由于氧化石墨烯的导电性较差,所得石墨烯的质量较低。
二、石墨烯基复合材料的性能研究1. 机械性能石墨烯具有出色的机械性能,其强度和刚度超过大多数材料。
石墨烯基复合材料的机械性能主要取决于基体材料和石墨烯的界面相互作用。
研究表明,合适添加石墨烯可以显著提升材料的强度和硬度。
2. 电学性能石墨烯具有优异的电学性能,可以用作电极材料、导电填料等。
石墨烯基复合材料在导电性能方面表现出色,可以用于制备柔性电子器件、传感器等。
3. 热学性能由于石墨烯的热导率高达3000-5000 W/(m·K),石墨烯基复合材料在热学性能方面具有巨大的潜力。
石墨烯能够显著提高基体材料的热导率,因此可以应用于散热材料、热界面材料等领域。
石墨烯增强陶瓷基复合材料的制备与性能研究
石墨烯增强陶瓷基复合材料的制备与性能研究石墨烯作为一种二维晶体材料,具有优异的力学性能、导电性能和热传导性能,在复合材料领域中具有广泛的应用前景。
石墨烯增强陶瓷基复合材料由于其独特的性能组合,被广泛研究和应用于高性能材料制备。
一、石墨烯的制备方法石墨烯的制备方法多种多样,例如机械剥离、化学气相沉积、化学剥离等。
在石墨烯增强陶瓷基复合材料的制备中,一般采用机械剥离的方法来获得高质量的石墨烯。
机械剥离通过在石墨表面施加剪切力,将石墨逐渐剥离成单层的石墨烯。
然后,通过化学处理和物理分离的方法获得纯净的石墨烯材料。
这种制备方法简单、成本低,并且可以大规模生产石墨烯。
二、石墨烯增强陶瓷基复合材料的制备石墨烯增强陶瓷基复合材料的制备主要包括石墨烯的分散和烧结过程。
首先,将得到的石墨烯进行分散处理,以获得均匀分散的石墨烯分散液。
常用的分散剂有聚乙烯吡咯烷酮、聚乙烯醇等。
然后,将陶瓷基体与石墨烯分散液混合均匀,形成石墨烯/陶瓷基复合材料的预制坯体。
最后,通过热压烧结或热等静压等方法对预制坯体进行高温处理,使其烧结成致密的石墨烯增强陶瓷基复合材料。
三、石墨烯增强陶瓷基复合材料的性能研究石墨烯的加入可以显著提升陶瓷基复合材料的力学性能和热传导性能。
石墨烯具有超高的强度和刚度,可以有效增强陶瓷基体的强度和硬度。
同时,石墨烯的高导热性能可以提高陶瓷基复合材料的导热性能,使其能够更好地在高温环境下工作。
此外,石墨烯的高导电性能也使得复合材料具有优异的导电性能,可以应用于电子器件等领域。
四、石墨烯增强陶瓷基复合材料的应用前景石墨烯增强陶瓷基复合材料在航空航天、汽车制造、电子设备等领域有广阔的应用前景。
例如,在航空航天领域,石墨烯增强陶瓷基复合材料可以用于制造航空发动机叶轮和航天器的结构件,以提高其耐高温、高压和高速工作的能力。
在汽车制造领域,石墨烯增强陶瓷基复合材料可以用于制造汽车零部件,提高汽车的耐磨性和耐用性。
在电子设备领域,石墨烯增强陶瓷基复合材料可以用于制造高性能的电子封装材料,提高电子器件的工作效率和可靠性。
高性能石墨烯复合材料的制备及其电催化性能研究
高性能石墨烯复合材料的制备及其电催化性能研究石墨烯具有独特的二维结构和优异的物理、化学特性,使其成为材料科学领域的研究热点。
同时,与其他材料相比,石墨烯的电催化性能也备受关注。
在高性能石墨烯复合材料的制备及其电催化性能研究中,研究人员通过改变石墨烯的复合方式和结构调控,进一步提高了石墨烯复合材料的性能。
本文将从制备方法、复合材料的结构和电催化性能三个方面进行综述。
高性能石墨烯复合材料的制备方法多样,常见的方法包括物理复合、化学还原法和电化学法等。
物理复合是最简单、最常用的方法之一,通过物理混合石墨烯和其他材料,如金属、半导体等,可以实现不同材料之间的相互作用和优化性能。
化学还原法是将氧化石墨烯与还原剂反应,重新还原成石墨烯,同时掺杂其他材料,如金属、二氧化硅等,从而形成复合材料。
电化学法是利用电化学反应将石墨烯沉积到基底上,形成复合结构。
不同的制备方法对石墨烯的结构和性能具有重要影响,研究人员可以根据需求选择合适的方法进行制备。
石墨烯复合材料的结构调控也是提高其性能的关键。
通过控制复合材料的组成、形貌和结构,可以调控石墨烯复合材料的性能。
例如,石墨烯与金属复合可以提高电催化反应的活性,增强电流密度和电荷传输性能;石墨烯与半导体复合可以调控能带结构,提高能带的调控性。
此外,还可以通过控制石墨烯的层数、缺陷密度和表面修饰等来改变石墨烯复合材料的性能。
因此,在制备过程中,研究人员需要结合实际需求进行结构调控,以获得高性能的石墨烯复合材料。
关于石墨烯复合材料的电催化性能研究主要集中在电催化还原和电催化氧化两个方向。
电催化还原反应是将物质从高价态还原为低价态的反应,其反应速度和效率对于电池、传感器等电子器件的性能具有重要影响。
石墨烯复合材料的引入可以提高催化剂的活性,增加电池的能量密度和循环寿命。
例如,石墨烯与金属复合材料在电催化还原中表现出优异的活性和稳定性,具有广泛的应用潜力。
电催化氧化反应是将物质从低价态氧化为高价态的反应,其反应速度和效率对于燃料电池、光电池等能源器件的性能有很大影响。
石墨烯复合材料的制备及性能研究
石墨烯复合材料的制备及性能研究石墨烯作为一种最薄的二维材料,具有出色的导电性、热导性和力学性能,近年来备受关注。
然而,石墨烯单层结构的应用受到制备工艺的限制,其在实际应用中的性能发挥受到限制。
为了克服这一问题,研究人员通过将石墨烯与其他材料进行复合,改善了其性能和应用范围。
石墨烯复合材料的制备方法多种多样,其中一种常见的方法是通过机械混合和化学修饰实现。
机械混合法将石墨烯和其他材料粉末进行混合,并在高温下进行烧结。
化学修饰法则是通过将石墨烯表面进行功能化修饰,使其与其他材料有更好的结合能力。
石墨烯复合材料的性能研究集中在导电性、力学性能和化学稳定性等方面。
石墨烯的导电性极佳,具有很高的载流子迁移率,可以用于制备导电材料。
石墨烯复合材料的导电性通常优于纯石墨烯,这得益于其他材料的加入,能够提高载流子的传输效率。
例如,将石墨烯与金属氧化物复合,可以显著提高复合材料的导电性能。
在力学性能方面,石墨烯复合材料具有优异的强度和韧性。
石墨烯单层结构的强度非常高,但由于其脆性,应用受到限制。
然而,通过与其他材料的复合,可以增加石墨烯复合材料的韧性,提高其抗拉强度和断裂延伸率。
例如,将石墨烯与聚合物复合,可以制备出强韧的复合材料,具有优异的拉伸性能。
此外,石墨烯复合材料的化学稳定性也是重要的研究内容之一。
石墨烯在常规环境下较为稳定,但在一些特殊条件下容易发生氧化或者化学反应,导致性能下降。
因此,石墨烯复合材料的化学稳定性研究成为了关注的焦点。
通过将石墨烯与合适的包覆材料进行复合,可以有效提高复合材料的化学稳定性。
石墨烯复合材料在实际应用中有着广阔的前景。
例如,石墨烯复合材料在电子器件领域有着重要的应用。
石墨烯的高导电性和热导性使得其成为制备高性能电子器件的理想材料。
通过将石墨烯与半导体材料或金属材料复合,可以制备出具有优异性能的纳米电子器件。
此外,石墨烯复合材料还可以应用于能源储存和传输领域。
石墨烯作为电极材料可以改善电化学电容器和锂离子电池的性能。
不饱和聚酯树脂石墨烯纳米复合材料的制备及其性能的
不饱和树脂/石墨烯复合材料的制备及性能石沫,陈丹青,陈国华(华侨大学材料科学与工程学院,福建厦门,361021)摘要:本文采用球磨法制备了不饱和聚酯树脂/石墨烯纳米复合材料,并对其力学性能、导电性能进行了研究.结果表明通过球磨,石墨烯微片被剥离成了厚度低于5层的石墨烯,且制备的不饱和聚酯树脂石墨烯复合材料与纯的不饱和聚酯树脂相比,在石墨烯的质量分数为0.5wt%时,复合材料拉伸强度,杨氏模量,弯曲强度均达到最大值,分别提高了54.17%,47.67%和55.2%,最重要的是复合材料的冲击性能基本不受石墨烯加入的影响。
复合材料的渗滤阀值为6wt%。
关键词:不饱和聚酯树脂;石墨烯;球磨;力学性能中图分类号:文献标志码:APreparation and Characterization of unsaturated polyesterresin/graphene compositeSHI Mo, CHEN Dan-qing,CHEN Guo-hua(College of Materials Science and Engineering,Huaqiao University,Fujian Xiamen 361021)Abstract:unsaturated polyester resin(UPR)/graphene nanocomposite was prepared by ball milling in this paper Mechanical, conductivity properties and the structure of the composites were studied. It was found that the graphene in the composite was fewer than 5 layers. The tensile strength, Young’s modulus and flexural strength of the composites had the greatest improvement at the loading of 0.5wt% which showed 54.17%, 47.67% and 55.2% improvement, respectively. Their impact strength was not affected by the loading of graphene. The percolation threshold of the nanocomposite was 6wt%.Key words:unsaturated polyester resin;graphene;ball milling;mechanical property不饱和聚酯树脂是(UPR)热固性树脂中使用量最多的,也是现代复合材料技术中最早使用的复合物基体. 不饱和树脂具有强度高,质量轻,耐腐蚀,耐疲劳,工艺制作简单,价格低廉等有点,被广泛的应用于建筑、交通运输、造船工业、宇航工具等行业中。
石墨烯基复合材料的制备及性能分析
石墨烯基复合材料的制备及性能分析石墨烯是一种新型的碳材料,由于其独特的结构和优异的性能,被广泛应用于材料科学领域。
石墨烯基复合材料作为一种将石墨烯与其他材料复合而成的新材料,具有石墨烯的优势和复合材料的多功能性,因此在材料制备和性能分析方面备受关注。
一、石墨烯基复合材料的制备方法目前,制备石墨烯基复合材料的方法主要包括机械混合法、溶液处理法和化学气相沉积法等。
机械混合法是最简单的制备方法,将石墨烯和其他材料进行物理混合。
这种方法操作简单,成本低廉,但是石墨烯与其他材料的界面结合较弱,对复合材料性能的提升有限。
溶液处理法是通过将石墨烯分散于溶液中,与其他材料形成复合体。
这种方法不仅能够提高石墨烯与其他材料的界面结合,还可以调控复合体的结构和性能。
然而,溶液处理法对石墨烯的分散性要求较高,操作复杂。
化学气相沉积法是一种高温气相合成法,通过在金属基底上沉积石墨烯。
这种方法制备的石墨烯基复合材料具有较高的结晶质量和界面结合强度,但是设备要求高、制备时间长。
二、石墨烯基复合材料的性能分析石墨烯基复合材料的性能主要包括力学性能、导电性能和热学性能等。
力学性能是衡量材料抗拉、抗压、抗弯等力学性能的指标。
石墨烯具有极高的强度和刚度,因此能够大幅提升复合材料的力学性能。
石墨烯基复合材料的强度和刚度通常随着石墨烯含量的增加而增加,但是当石墨烯含量过高时,由于石墨烯的堆叠导致复合材料的脆性增加。
导电性是衡量材料传导电流的性能指标。
石墨烯是一种具有优异导电性的材料,其导电性能主要取决于石墨烯的层数和形态。
石墨烯基复合材料通常具有较好的导电性能,且导电性能能够随着石墨烯含量的增加而增加。
热学性能是衡量材料导热性能的指标。
石墨烯具有很高的导热性能,因此能够显著提高复合材料的导热性能。
石墨烯基复合材料的导热性能通常随着石墨烯含量的增加而增加,但是石墨烯的堆叠也会对导热性能产生一定的影响。
除了上述性能分析,石墨烯基复合材料还具有其他一些特殊的性能。
石墨烯纳米复合材料的制备与应用研究进展
石墨烯 具有优 异的热性 能 、 力学 性能及 电性 能 , 特 别 是氧化 石 墨烯 由于 成 本低 、 料 易 得 、 原 比表 面 积 超 大 、 面官 能 团丰 富 , 表 在经过了稳 定存 在 的石 墨烯 。石 墨烯 得 的出现颠 覆 了传 统 理论 , 使碳 的晶 体结 构 形成 了从 零 维 的富勒 烯 、 维的碳 纳米管 、 一 二维 的石墨烯 到三维 的 金 刚石和 石墨 的完整 体系 ] 。 作 为一种 独特 的二 维 晶体 , 墨烯 具 有 非常 优 异 石
m 。。、
液 中的石墨烯 也可 与聚合物 单体混 合形成 复合材料 体 系 。此 外 , 墨烯 的加入使 复合材料 多功 能化 , 石 不仅 表 现 出优 异的 力学和 电学性能 , 且具有 优 良的加工性 能 ,
为复合 材料 提供 了更广 阔的应用前 景 。
lS・ m一 。张 好斌 等[] 1 对微 孑 MAA/ 墨烯 3 LP 石
导 电纳米复合 材料 进行 了研 究 , 现极 少 量 均匀 分 散 发
作 者在 此 阐述 了石 墨烯 纳 米 复 合 材 料 的制 备 方
法 , 石墨烯 纳米 复合 材 料 的应 用研 究 进展 进 行 了综 对
的石墨烯 即能显著 改变 材料 的 泡孔 结 构 , 为制备 综 合 性 能优异 的微 孔 发 泡材 料 提供 了基 础 。黄 毅 等n 通 过 溶液共混 制备 了石 墨烯 增 强 的聚 氨 酯 ( U) P 复合 材
基体 中形 成纳米级 分散 , 改善聚合 物 的热性 能 、 在 力学 性 能及 电性 能 等方 面 具有 更大 的潜 力 。石 墨烯/ 聚合
石墨烯复合材料的制备及其力学性能研究
石墨烯复合材料的制备及其力学性能研究一、引言石墨烯具有优异的力学性能和化学性质,被认为是一种理想的强化相。
目前,采用石墨烯作为复合材料增强相的研究已经受到广泛关注。
本文将讨论石墨烯复合材料的制备方法,并探究其在力学性能方面的表现。
二、石墨烯复合材料的制备方法石墨烯的制备方法多种多样,如化学气相沉积法(CVD)、机械剥离法和化学还原法等。
在石墨烯复合材料的制备中,涂布法、溶胶凝胶法和层层自组装法得到了广泛应用。
1. 涂布法涂布法是将石墨烯直接涂覆在基体表面制备复合材料的方法。
涂布过程需要控制好石墨烯的分散度和厚度,以获得理想的增强效果。
此外,石墨烯的厚度和分散度还会受到涂布工艺和基体性质的影响。
2. 溶胶凝胶法溶胶凝胶法是通过化学反应将石墨烯纳入在溶胶凝胶微观内部,再制备石墨烯复合材料的一种方法。
溶胶凝胶法可以控制石墨烯的形貌和分散度,从而得到高性能的复合材料。
但是,其制备过程复杂,且需要进行高温脱模步骤,增加了生产成本。
3. 层层自组装法层层自组装法是将石墨烯层层覆盖在基体表面,逐层制备复合材料的一种方法。
其制备过程灵活,可以调控复合材料的厚度和石墨烯的分散度。
但是,由于层层自组装的化学反应需要时间较长,限制了该方法在大规模生产中的应用。
三、石墨烯复合材料的力学性能表现石墨烯具有极高的强度和刚度,加入石墨烯的复合材料也具备优异的力学性能。
石墨烯复合材料可以提高基体的强度、刚度和耐磨性,从而扩展了其在结构材料和电子器件方面的应用。
1. 强度增强效果通过石墨烯增强的复合材料,可以大大提高基体的屈服强度和极限强度。
研究表明,石墨烯含量为0.5%时,陶瓷复合材料的强度可以提高40%以上。
此外,石墨烯复合材料的强度增强效果还与石墨烯的分散度和形貌有关。
2. 刚度增强效果石墨烯具有极高的刚度,加入石墨烯的复合材料也可以显著提高基体的刚度。
研究表明,石墨烯含量为0.7%时,铝合金复合材料的刚度可以提高20%以上。
石墨烯增强金属基复合材料的制备与性能研究
石墨烯增强金属基复合材料的制备与性能研究石墨烯是一种由碳原子组成的二维晶状材料,具有独特的结构和优异的性能。
近年来,石墨烯被广泛应用于材料领域的增强剂,尤其是在金属基复合材料的制备中,展现出了极高的潜力。
本文将探讨石墨烯增强金属基复合材料的制备与性能研究方面的最新进展。
石墨烯具有非常好的导电性、导热性和机械性能。
因此,将石墨烯与金属基材料相结合可以显著改善复合材料的性能。
首先,我们来探讨石墨烯的制备方法。
目前,常用的方法有机械剥离法、化学气相沉积法、化学剥离法等。
其中,化学气相沉积法是一种较为常见的方法,它能够在金属基材料表面生长均匀连续的石墨烯层。
接下来,让我们关注石墨烯增强金属基复合材料的性能研究。
首先是力学性能。
众所周知,金属具有较高的强度和韧性,但也容易发生塑性变形和断裂。
通过将石墨烯引入金属基材料中,可以显著提高其抗拉强度和硬度。
实验结果表明,石墨烯的加入可以使金属基材料的抗拉强度提高约50%,同时保持相对良好的延展性。
此外,石墨烯增强金属基复合材料还具有优异的导电性能。
石墨烯是一种单层碳原子构成的二维结构,其具有非常高的电子迁移率。
因此,将石墨烯引入金属基材料中,可以显著提高复合材料的导电性能。
实验结果显示,石墨烯增强的铝基复合材料在导电性能方面较纯铝提高了近百倍,这为电子器件的制备提供了广阔的应用潜力。
此外,石墨烯还具有优异的导热性能。
其热导率远高于金属基材料,因此可以大大提高复合材料的导热性能。
石墨烯的高导热性使其成为一种非常理想的热管理材料,在制备高性能散热器等应用中有着广泛的应用前景。
除了力学性能、导电性能和导热性能,石墨烯还具有一些其他独特的性能,如化学稳定性和阻燃性能。
石墨烯因其特殊的结构,在高温、强酸和强碱等恶劣环境下仍能保持较好的稳定性。
同时,石墨烯还能够起到阻燃的作用,有效增强金属基复合材料的阻燃性能。
这些独特的性能为石墨烯在复合材料领域的应用提供了更多可能。
综上所述,石墨烯增强金属基复合材料具有卓越的性能,并在材料科学领域引起了极大的关注。
石墨烯增强铜基复合材料制备工艺及性能的研究进展
1 制备工艺1.1 粉末冶金法粉末冶金法是将石墨烯粉与铜粉通过球磨等方式混合,然后经过压制与烧结进行致密化而获得石墨烯增强铜基复合材料(Gr/Cu复合材料)的一种方法,其原理如图1所示。
通过球磨将石墨烯纳米片(GNSs)与铜粉混合,再通过真空热压烧结制备了GNSs/Cu复合材料;在球磨过程中石墨烯的润滑作用使得铜粉冷焊倾向减小,粉末颗粒形状趋于扁平细小,烧结后石墨烯分布于铜基体晶界处,在一定烧结压力下适当降低烧结温度有利于提高复合材料的力学性能和导电性。
充分混料并烧结后制备的块体复合材料可通过塑性变形加工,进一步降低复合材料孔隙率,实现完全致密化,改善增强体分布状况并细化晶粒。
采用片状粉末冶金工艺与轧制变形相结合的方法制备出GNSs/Cu复合材料带材,发现片状粉末冶金工艺中的球磨可以有效将石墨片剥离为石墨烯,并与二维片状铜粉结合良好,轧制后石墨烯在基体中分散良好,复合材料截面呈有序片层堆叠状结构,其抗拉强度达330MPa,并拥有极高的弹性模量(170GPa)与优良的抗弯曲能力。
粉末冶金法作为石墨烯增强铜基复合材料最为成熟的制备工艺,对基体粉末与增强体的含量、尺寸、形状等基本没有限制,具有较高的可设计性,但混料过程易破坏石墨烯结构的完整性,降低石墨烯的强化效果。
1.2 分子级水平混合法分子级水平混合法通过将氧化石墨烯(GO)与铜氨等含有Cu2+的溶液混合,使Cu2+吸附到GO表面,并在还原气氛下高温还原或使用水合肼(分子式N2H4·H2O)等强还原剂还原,得到还原氧化石墨烯(rGO)与铜的复合粉体,其原理如图2所示;再经烧结后制得石墨烯增强铜基复合材料。
以石墨烯纳米微片(GNPs)和GO为碳源,通过分子级水平混合法制备了GNPs/Cu、rGO/Cu和镀镍的GNPs-Ni/Cu 3种复合材料,发现:GNPs与铜基体界面处存在机械与冶金结合;GNPs-Ni与铜基体间存在铜镍过渡层,使复合材料具有更高的负载能力,抗拉强度达281MPa,高于镀镍前的256MPa;rGO与铜基体界面处为富氧区域,二者形成了化学键合,改善了界面结合情况,复合材料的抗拉强度为278MPa,并拥有与纯铜相当的塑性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前
石墨烯自2004年被发现以来,就引起了材料科学家的广泛关注,在世界范围内掀起了石墨烯材料的制备和应用研究的热潮。石墨烯是sp2杂化的碳原子形成的单原子层厚度,排列成二维蜂窝状的晶体。其优异的物理和化学性质、较大的表面积和较低的制备成本,比较适宜应用于功能性复合材料的开发。复合材料是以一种材料为基体,添加一种或一种以上其它材料组合而成的材料。各种组成材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料,从而满足不同的应用需求。石墨烯复合材料是以石墨烯为基体,在其中添加聚合物或其它无机材料而形成的复合材料。在制备以及应用研究中,石墨烯复合材料可以分为:石墨烯/聚合物、石墨烯/无机材料等二元复合材料以及石墨烯/无机材料/聚合物三元复合材料等。石墨烯复合材料的应用前景比较广泛,比如应用于传感器、储能、催化和电极材料等领域。
(2)石墨烯-锰(Mn)化合物复合材料
Wang等[7]将石墨烯悬浮液和二氧化锰(MnO2)有机溶胶在乙二醇中混合,用超声处理和热处理得到四氧化三锰(Mn3O4)/石墨烯纳米复合材料,当其用作超级电容器电极材料时,在浓度为1mol/L的硫酸钠(Na2SO4)电解液中,Mn3O4/石墨烯纳米复合材料的比电容高达175F/g,在浓度为6mol/L的氢氧化钾(KOH)电解液中高达256F/g,Mn3O4/石墨烯纳米复合材料的这种增强的超级电容性能,归因于Mn3O4纳米粒子、石墨烯的高电导率和显著增加的比表面积的电化学贡献。Chen等[8]报道了一种用溶剂方法把碱式氧化锰(MnOOH)纳米晶体沉积在石墨烯上,通过X线衍射仪(XRD)和透射电子显微镜(TEM)观察表明,MnOOH纳米晶体任意地装饰剥离的石墨烯,形成分散良好的石墨烯-MnOOH纳米复合材料,合成过程中重要的机制是溶解-结晶和取向附生,对于高氯酸胺热分解,制备的纳米复合材料表现出不寻常的催化性能,这个无模板方法容易重复,制备在低温下容易进行,并能容易地制备其他石墨烯型纳米复合材料。
1.3石墨烯的结构
石墨烯(Graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料。这种石墨晶体薄膜的厚度只有0.335 nm,只有头发的20万分之一,是形成其他维数碳材料(如零维的富勒烯、一维的纳米碳管和三维的石墨等)的基本单元具有极好的结晶性及电学性。完美的石墨烯是二维的,只包括六角元胞(等角六边形),但在实际情况下不免有缺陷的存在,这些缺陷的地方就会不再是碳六元环而是五元环或七元环等。这些少量存在的碳五元环可以使得石墨烯发生卷曲,再和其他的碳六元环卷曲形成的圆柱一起组成封闭的一维碳纳米管;十二个碳五元环和一定的碳六元环就会一起组成富勒烯。
(2)电子在石墨烯中传输时不易发生散射,迁移率可达200000cm2/(V*s),约为硅中电子迁移率的140倍,其电导率可达104S/m,是室温下导电性最佳的材料。
(3)石墨烯的导电性可通过化学改性的方法进行控制,并可同时获得各种基于石墨烯的衍生物。
(4)双层石墨烯在一定条件下还可呈现出绝缘性。
1.4.3力学性能
1.4石墨烯性能简介
1.4.1光学性能
(1)石墨烯具有优异的光学性能。
(2)理论和实验结果表明,单层石墨烯吸收2.3%的可见光,即透过率为97.7%。
(3)从基底到单层石墨烯、双层石墨烯的可见光透射率依次相差2.3%。
1.4.2电学性能
(1)石墨烯的每个碳原子均为sp2杂化,并贡献剩余一个p轨道电子形成一个大键,电子可以自由移动,赋予石墨烯优异的导电性。
Hale Waihona Puke 石墨烯具有优异的导电、导热和力学性能,可作为制备高强导电复合材料的理想纳米填料,同时分散在溶液中的石墨烯也可和聚合物单体相混合形成复合材料体系,此外石墨烯的加入使复合材料多功能化,不但表现出优异的力学和电学性能,且具有优良的加工性能,为复合材料提供了更广阔的应用领域。但是结构完整的石墨烯是由不含任何不稳定键的苯六元环组合而成的二维晶体,化学稳定性高,其表面呈惰性状态,与其他介质( 如溶剂等) 相互作用较弱,且石墨烯片与片之间存在较强的范德华力,容易产生团聚,使其难溶于水和常用有机溶剂,限制了石墨烯的进一步研究和应用。而氧化石墨烯表面含有大量的含氧官能团,如羟基、羧基等,这些官能团使得改性石墨烯成为可能。石墨烯氧化物是大规模合成石墨烯的起点,也是实现石墨烯功能化的最为有效的途径之一,可通过将氧化石墨烯作为新型填料来制备功能聚合物纳米复合材料来实现,以改善纳米复合材料的力、热、电等综合性能。目前研究的石墨烯复合材料主要有石墨烯 /聚合物复合材料和石墨烯 /无机物复合材料两类,其制备方法主要有共混法、溶胶-凝胶法、插层法和原位聚合法。
1.2石墨烯的基本性质
石墨烯作为单原子层的二维石墨晶体模型,基础结构都是sp2碳材料,被认为是富勒烯、碳纳米管和石墨的基本结构单元。石墨烯作为一种新型的纳米材料,它具有一些特殊优异的性质,如大的比表面积、高机械强度以及超强的电子传导能力。石墨烯由一层密集的、包裹在蜂巢晶体点阵上的碳原子组成,是世界上最薄的二维材料,其厚度仅为0.335 nm。结构完整的石墨烯是由不含任何不稳定键的苯六元环组合而成的二维晶体,化学稳定性高,表面呈惰性状态,与其它介质如溶剂等的相互作用较弱,并且由于石墨烯片与片之间有较强的范德华力的作用,使其容易产生聚集难溶于水及常化用的有机溶剂,对于进一步研究和应用有一定的限制。因此对石墨烯进行一定程度的功能并将其溶解于特定的溶液中,可以实现石墨烯的功能化利用和性质的发挥。在0.1 mol/L 的pH=7的PBS缓冲液中测试石墨烯修饰电极的电化学性质,发现它有比单纯的石墨电极、玻璃碳电极以及金刚石电极都要优异的电化学性质,主要表现在通过交流阻抗谱测得的电阻明显低于其它碳材料;通过循环伏安法测得的曲线出现了明显的氧化还原峰,并且氧化还原峰电流与扫描频率的平方根有明显的线性关系,这表明通过石墨烯修饰电极上的氧化还原过程可以实现特定物质的检测。
(6)石墨烯-二氧化钛(TiO2)复合材料
TiO2是一种应用广泛的半导体材料,由于其成本低、稳定性好、对人体无毒性,并具有气敏、压敏、光敏以及较强的光催化特性,而被广泛应用于传感器、太阳能电池和光催化等领域。Manga等[12]通过喷墨印刷术处理前驱溶液(氧化石墨和二(2-羟基丙酸)二氢氧化二铵合钛)制备石墨烯-TiO2光电导薄膜,由于这种薄膜制备的光电导体设备具有宽带光电导性、高的光电探测能力和光导率、与纯TiO2的光电探测器相比具有更快的光响应。Williams等[13]通过紫外照射TiO2悬浮液,使其释放电子还原分散在乙醇里的氧化石墨,TiO2颗粒和石墨烯相互作用阻碍剥离石墨烯的团聚。光催化技术不仅提供了紫外辅助还原技术,而且还开创了制备光敏石墨烯半导体复合材料的新途径。
2.1.1
金属化合物与石墨烯用不同方法制备复合材料,主要用于超级电容器、锂电池等领域,金属化合物包括金属氧化物、金属氢氧化物、金属硫化物等。
(1)石墨烯-氧化锌(ZnO)复合材料
ZnO具有良好的电和光学性能,可应用于太阳能电池、气敏元件和发光二极管,加之石墨烯独特的性能,国内外的研究者已着手研究石墨烯-ZnO复合材料。Zhang等[5]合成的石墨烯-ZnO复合材料应用于超级电容器的电极材料,石墨烯由改进Hummers法和肼还原过程制备,ZnO通过超声喷雾热分解沉积在石墨烯上,相比纯石墨烯或ZnO电极,石墨烯-ZnO复合材料薄膜在浓度为1mol/L的氯化钾电解液中具有更好的可逆充电/放电能力和更高比电容值(11.3F/g)。Wu等[6]用乙二醇为媒介,氧化石墨为石墨烯的前驱体,乙酸丙酮锌为氧化锌的前驱体制备三明治结构的石墨烯-ZnO纳米材料,ZnO纳米结构成长在石墨烯上,能有效地提高光催化和ZnO的传感性能,在纳米技术领域有广阔的应用前景。
(1)石墨烯是已知材料中强度和硬度最高的晶体结构。
(2)其抗拉强度和弹性模量分别为125GPa和1.1TPa。
(3)石墨烯的强度极限为42N/m2.。
1.4.4热学性能
(1)石墨烯的室温热导率约为5300 W/m·K,高于碳纳米管和金刚石,是室温下铜的热导率的10倍多。
(2)石墨烯的理论比表面积可达2630m2/g。
论文
题 目:
石墨烯复合材料的制备
及其性能研究进展
学生姓名:
学 号:
院(系):
化工与制药工程系
专业班级:
指导教师:
职称:
201年月
石墨烯复合材料的制备及其性能研究进展
摘要: 石墨烯以其优异的性能和独特的二维结构成为材料领域研究热点。本文综述了石墨烯的制备方法并分析比较了各种方法的优缺点, 简单介绍了石墨烯的力学、光学、电学及热学性能。基于石墨烯的复合材料是石墨烯应用领域中的重要研究方向, 本文详细介绍了石墨烯聚合物复合材料和石墨烯基无机纳米复合材料的制备及应用,以及石墨烯复合材料的展望。
(3)石墨烯-四氧化三钴(Co3O4)复合材料
Yan等[9]采用微波辅助的方法快速地制备石墨烯纳米片/Co3O4复合材料,石墨烯纳 米 片/Co3O4复合材料复合材料在浓度为6mol/L的KOH水溶液中,在10mV/s下最大比电容达到243.2F/g,复合材料表现出良好的长循环寿命,在2000次循环后仍保持95.6%的电容。
1
1.1
石墨烯的理论研究已有60多年的历史。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学两位科学家安德烈·杰姆和克斯特亚·诺沃消洛夫采用简单的“微机械剥离法”首先在实验中成功地从石墨中分离出二维结构的石墨烯[1-3],从而证实它可以单独存在,两人也因“在二维石墨烯材料中的开创性实验”而共同获得2010年诺贝尔物理学奖。
关键词:石墨烯;制备;性能;复合材料
Research Progress on Preparation and properties of
graphene composite materials