七年级下数学期末模拟测试卷及答案4

合集下载

2022—2023年人教版七年级数学下册期末测试卷及答案【完美版】

2022—2023年人教版七年级数学下册期末测试卷及答案【完美版】

2022—2023年人教版七年级数学下册期末测试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.用科学记数法表示2350000正确的是()A.235×104B.0.235×107C.23.5×105D.2.35×1062.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E 处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°3.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为( )A.180 B.182 C.184 D.1864.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°5.已知点P(a+5,a-1)在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,-2) B.(-4,2) C.(-2,4) D.(2,-4)6.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A.70°B.180°C.110°D.80°7.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限 C.第三象限 D.第四象限8.若长度分别为,3,5a的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.89.若关于x的不等式mx- n>0的解集是15x<,则关于x的不等式()m n x n m>-+的解集是()A.23x>-B.23x<-C.23x<D.23x>10.已知三条不同的射线OA、OB、OC有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB,其中能确定OC平分∠AOB的有()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.分解因式:23m m -=________.5.因式分解:34a a -=_____________.6.一个多边形的内角和是1800°,这个多边形是________边形.三、解答题(本大题共6小题,共72分)1.解下列一元一次方程:(1)32102(1)x x -=-+ (2)2+151136x x -=-2.设m 为整数,且关于x 的一元一次方程(5)30m x m -+-=(1)当2m =时,求方程的解;(2)若该方程有整数..解,求m 的值.3.如图①,在三角形ABC 中,点E ,F 分别为线段AB ,AC 上任意两点,EG 交BC 于点G ,交AC 的延长线于点H ,∠1+∠AFE =180°.(1)证明:BC ∥EF ;(2)如图②,若∠2=∠3,∠BEG =∠EDF ,证明:DF 平分∠AFE.4.如图,∠1=70°,∠2 =70°. 说明:AB∥CD.5.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、C4、C5、A6、C7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、12、ab3、70.4、(3)m m -5、(2)(2)a a a +-6、十二.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)x=-32、(1)13x =-;(2)6m =或4m =,7m =或3m =3、(1)略;(2) 略.4、略.5、(1)1000;(2)图形见解析;(3)该校18000名学生一餐浪费的食物可供3600人食用一餐.6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。

北师大版2020七年级数学下册期末模拟测试题4(培优 附答案)

北师大版2020七年级数学下册期末模拟测试题4(培优  附答案)

北师大版2020七年级数学下册期末模拟测试题4(培优 附答案) 1.下列长度的三条线段能组成三角形的是( ) A .3, 4, 6B .6, 9,17C .5, 12, 18D .2, 2, 42.如图,将一副直角三角板摆放,点C 在EF 上,AC 经过点D ,已知∠A =∠EDF =90°,AB =AC ,∠E =30°,∠BCE =40°,则∠CDF =( )A .20oB .25oC .30oD .35o3.如图,直线AB 、CD 相交于点O ,OE CD ⊥,垂足为O ,若射线OF 在AOE ∠的内部,EOF 25∠=︒,2AOF BOD 3∠∠=,则BOC ∠的度数为( )A .120︒B .135︒C .141︒D .145︒4.如图,AB CD ∥ ,点E 在CA 的延长线上若50BAE ∠=︒,则ACD ∠的大小为( )A .100°B .120°C .130°D .110°5.如图,把一块含有45°角的直角三角板的两个顶点分别放在直尺的一组对边上.如果∠1=22°,那么∠2的度数是( )A .21°B .22°C .23°D .25°6.泰勒斯是古希腊哲学家,相传他利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B 是观察点,船A 在B 的正前方,过B 作AB 的垂线,在垂线上截取任意长BD ,C 是BD 的中点,观察者从点D 沿垂直于BD 的DE 方向走,直到点E 、船A 和点C 在一条直线上,那么△ABC ≌△EDC ,从而量出DE 的距离即为船离岸的距离AB ,这里判定△ABC ≌△EDC 的方法是( )A .SASB .ASAC .AASD .SSS7.下列四个算式中,可以直接用平方差公式进行计算的是( ) A .(﹣a +b )(﹣a ﹣b ) B .(2a +b )(a ﹣2b ) C .(a ﹣b )(b ﹣a )D .(a +b )(﹣a ﹣b )8.如图,点E, F 在直线AC 上,DF=BE , ∠AFD=∠CEB,下列条件中不能判断△ADF ≌△CBE 的是( )A .∠D=∠B B .AD=CBC .AE=CFD .AD// BC9.如图,把△ABC 纸片沿DE 折叠,当A 落在四边形BCDE 内时,则∠A 与∠1+∠2之间有始终不变的关系是( )A .∠A =∠1+∠2B .2∠A =∠1+∠2C .3A =∠1+∠2D .3∠A =2(∠1+∠2)10.下列运算正确的是( ) A .3a 2b 5ab +=B .325a a a ⋅=C .824a a a ⋅=D .236(2a )6a =-11.如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,∠2=60°,则∠3=____.12.用简便方法计算:20192-2019×38+361=________.13.在Rt ABC ∆中,90C ∠=°,10AC cm =,5BC cm =,某线段PQ AB =, P ,Q 两点分别在AC 和AC 的垂线AX 上移动,则当AP =__________.时,才能使ABC∆和APQ ∆全等.14.如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE=DF ,连接BF ,CE .下列说法:①△BDF ≌△CDE ;②CE=BF ; ③BF ∥CE ;④△ABD 和△ACD 周长相等.其中正确的有___________(只填序号)15.计算:()20202019133⎛⎫-⋅-= ⎪⎝⎭_____.16.已知|x-2|+y 2+2y+1=0,则x y 的值为__________________17.“国际半程马拉松”的赛事共有三项:A .“半程马拉松”、B .“10公里”、C .“迷你马拉松”.小明和小刚参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.小明和小刚被分配到不同项目组的概率______;18.如图,已知△ABC ≌△DEC ,∠E =40°,∠ACB=110°,则∠D 的度数为________.19.如图所示,是一块三角形木板,量的100A ∠=o ,40B ∠=o 则这块三角形木板的另外一个角的度数是___.20.若a m =4,a n =8,则a m +n =_____.21.已知ABC V 中,90BAC ∠=o ,AB AC =,点D 为直线BC 上的一动点(点D 不与点B 、C 重合),以AD 为边作ADE V ,使90DAE ∠=o ,AD AE =,连接CE . 发现问题:如图1,当点D 在边BC 上时,()1请写出BD 和CE 之间的位置关系为______,并猜想BC 和CE 、CD 之间的数量关系:______. 尝试探究:()2如图2,当点D 在边BC 的延长线上且其他条件不变时,()1中BD 和CE 之间的位置关系、BC 和CE 、CD 之间的数量关系是否成立?若成立,请证明;若不成立,请写出新的数量关系,说明理由; 拓展延伸:()3如图3,当点D 在边CB 的延长线上且其他条件不变时,若6BC =,2CE =,求线段ED 的长.22.已知,点D 和三角形ABC 在同一平面内.(1)如图1,点D 在BC 边上,DE BA P 交AC 于E ,DF CA ∥交AB 于F .若o(2)如图2,点D 在BC 的延长线上,DF CA ∥,EDF A ∠=∠,证明:DE BA P . (3)点D 是三角形ABC 外部的任意一点,过D 作DE BA P 交直线AC 于E ,DF CA ∥交直线AB 于F ,直接写出EDF ∠与A ∠的数量关系(不需证明).23.(1)操作思考:如图1,在平面直角坐标系中,等腰Rt △ACB 的直角顶点C 在原点,将其绕着点O 旋转,若顶点A 恰好落在点(1,2)处.则①OA 的长为 ;②点B 的坐标为 (直接写结果);(2)感悟应用:如图2,在平面直角坐标系中,将等腰R t △ACB 如图放置,直角顶点 C (-1,0),点A (0,4),试求直线AB 的函数表达式;(3)拓展研究:如图3,在平面直角坐标系中,点B (4;3),过点B 作BA ⊥y 轴,垂足为点A ;作BC ⊥x 轴,垂足为点C ,P 是线段BC 上的一个动点,点Q 是直线26y x =-上一动点.问是否存在以点P 为直角顶点的等腰R t △APQ ,若存在,请求出此时P 的坐标,若不存在,请说明理由.24.如图,长方形ABCD 表示一块草地,点E ,F 分别在边AB 、CD 上,BF ∥DE ,四边形EBFD 是一条水泥小路,若AD =12米,AB =7米,且AE ∶EB =5∶2,求草地的面积.25.已知:如图,AC ∥DF ,直线AF 分别直线BD 、CE 相交于点G 、H ,∠1=∠2,求证:∠C=∠D .解:∵∠1=∠2(已知)∠1=∠DGH (_________________) ∴∠2=__________(______________) ∴BD ∥CE (________________) ∴∠C= ________(_______________) 又∵AC ∥DF∴∠D=∠ABG (________________) ∴∠C=∠D (________________)26.已知△ABC 三边长分别为4,2a +1,7,求a 的取值范围. 27.(1)02201820181( 3.14)(0.5)()(3)3π---+⨯-; (2)(﹣3a )2•(a 2)3÷a 3.28.先化简再求值:x²(x-1)- x (x²+x-1),其中x=1参考答案1.A【解析】【分析】根据三角形的三边关系:三角形任意两边的和大于第三边进行分析判断.【详解】A、3+4=7>6,能组成三角形;B、9+6<17,不能组成三角形;C、5+12<18,不能够组成三角形;D、2+2=4,不能组成三角形.故选A.【点睛】本题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.B【解析】【分析】由AB=AC,∠A=90°,根据等腰直角三角形的性质可得∠ACB=45°,即可求得∠ACE=85°,又因∠ACE=∠F+∠CDF,∠F=60°,由此可得∠CDF=25°.【详解】∵AB=AC,∠A=90°,∴∠ACB=45°,∵∠BCE=40°,∴∠ACE=85°,∵∠ACE=∠F+∠CDF,∠F=60°,∴∠CDF=25°,故选B.【点睛】本题考查了三角形内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.C【解析】【分析】由ED⊥CD可得∠EOC=∠EOD=90°,根据对顶角的定义可得∠AOC=∠BOD,根据∠AOC+∠AOF+∠EOF=∠EOC=90°,即可求出∠AOC的度数,利用邻补角的定义即可求出∠BOC的度数.【详解】∵ED⊥CD,∴∠EOC=∠EOD=90°,∵∠AOC=∠BOD,∠AOF=23∠BOD,∠EOF=25°,∴∠AOC+∠AOF+∠EOF=∠EOC=90°∴∠AOC+23∠AOC+25°=90°,∴∠AOC=39°,∴∠BOC=180°-∠AOC=180°-39°=141°,故选C.【点睛】本题考查了垂直的定义、对顶角的性质及角的和差运算,认真观察图形是解题关键. 4.C【解析】【分析】本题先运用邻补角定义,得到∠BAC的度数,然后根据平行得到结果.【详解】解:∵∠BAE=50°,∴∠BAC=180°-50°=130°,∵AB CD∥,∴∠ACD=∠BAC=130°.故选择:C.【点睛】本题考查了平行线的性质和邻补角的定义,解题的关键是熟练运用平行线的性质.5.C【解析】【分析】直接利用平行线的性质,求得∠AFE的度数,进而结合等腰直角三角形的性质得出答案.【详解】如图,∵AB∥CD,∴∠AFE=∠2,∵∠GFE=45°,∠1=22°,∴∠AFE=23°,∴∠2=23°,故选:C.【点睛】此题考查平行线的性质,等腰直角三角形的性质,正确运用平行线的性质是解题关键.6.B【解析】【分析】根据题目确定出△ABC和△EDC全等的条件,然后根据全等三角形的判定方法解答即可;【详解】∵C是BD的中点,∴BC=DC,∵AB⊥BD,DE⊥BD,∴∠ABC=∠EDC=90°,∵在△ABC和△EDC中,90ABC EDC BC DCACB ECD ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△EDC (ASA ), ∴DE =AB . 故选:B . 【点睛】本题主要考查了全等三角形的应用,掌握全等三角形的应用是解题的关键. 7.A 【解析】 【分析】根据平方差公式的结构特点“两数之和与两数之差的乘积等于这两数的平方差”,对各项分析判断即可. 【详解】解:A 、(﹣a +b )(﹣a ﹣b )=(﹣a )2﹣b 2=a 2﹣b 2,符合平方差公式的结构特点,正确; B 、(2a +b )(a ﹣2b ),不是相同的两个数的和与差的积,不符合平方差公式的结构特点,错误;C 、(a ﹣b )(b ﹣a ),两项互为相反数,不符合平方差公式的结构特点,错误;D 、(a +b )(﹣a ﹣b ),两项互为相反数,不符合平方差公式的结构特点,错误; 故选:A . 【点睛】本题考查的是平方差公式的结构特点,熟记公式的结构是解题的关键. 8.B 【解析】 【分析】已知条件有一角和一边,可采用ASA 、AAS 或SAS 判定全等,据此逐项判断即可. 【详解】A. ∠D=∠B ,与已知条件组合可用ASA 判定△ADF ≌△CBE ,不符合题意;B. AD=CB ,与已知条件组合为“SSA ”,不能判定△ADF ≌△CBE ,符合题意;C. 由AE=CF 可得AF=CE ,与已知条件组合可用SAS 判定△ADF ≌△CBE ,不符合题意;D. 由AD// BC可得∠A=∠C,与已知条件组合可用AAS判定△ADF≌△CBE,不符合题意;故选B.【点睛】本题考查全等三角形的判定,熟练掌握判定定理是关键.9.B【解析】【分析】本题问的是关于角的问题,当然与折叠中的角是有关系的,∠1与∠AED的2倍和∠2与∠ADE的2倍都组成平角,结合△AED的内角和为180°可求出答案.【详解】∵△ABC纸片沿DE折叠,∴∠1+2∠AED=180°,∠2+2∠ADE=180°,∴∠AED=12(180°−∠1),∠ADE=12(180°−∠2),∴∠AED+∠ADE=12(180°−∠1)+12(180°−∠2)=180°−12(∠1+∠2)在△ADE中,∠A=180°−(∠AED+∠ADE)=180°−[180°−12(∠1+∠2)]=12(∠1+∠2)则2∠A=∠1+∠2,故选择B项.【点睛】本题考查折叠和三角形内角和的性质,解题的关键是掌握折叠的性质.10.B【解析】【分析】根据合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【详解】A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.考查合并同类项,同底数幂的乘法和幂的乘方,解题关键是熟记运算法则.11.100°【解析】【分析】根据两直线平行,内错角相等求出∠4,再根据对顶角相等解答.【详解】如图所示:∵a∥b,∠1=40°,∴∠4=∠1=40°,∴∠3=∠2+∠4=60°+40°=100°.故答案是:100°.【点睛】考查了平行线的性质,对顶角相等的性质,是基础题,熟记性质是解题的关键.12.4000000【解析】【分析】运用完全平方公式进行计算即可.【详解】20192-2019×38+361=20192-2×2019×19+192=(2019-19)2=4000000.故答案为:4000000.【点睛】本题考查了完全平方公式.13.5㎝或10㎝【解析】本题要分情况讨论:①Rt△ABC≌Rt△QPA,此时AP=BC=5cm,可据此求出P点的位置;②Rt△ABC≌Rt△PQA,此时AP=AC,P、C重合.【详解】解:∵PQ=AB,∴根据三角形全等的判定方法HL可知,当P运动到AP=BC时,在Rt△ABC和Rt△QPA中PQ AB AP BC=⎧⎨=⎩,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5cm;当P运动到与C点重合时,在Rt△ABC和Rt△QPA中PQ AB AP AC=⎧⎨=⎩,∴Rt△ABC≌Rt△PQA(HL),即AP=AC=10cm.故答案为:5㎝或10㎝.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.14.①②③【解析】【分析】根据AD是中线可知BD=CD,结合题意从而可证△BDF≌△CDE,继而可知CE=BF,BF∥CE,由于△ABC的两边AB与AC不一定相等,可判断△ABD和△ACD周长相等的对错,进而可以得出答案.【详解】∵AD 是△ABC 的中线,∴BD=CD在△BDF 和△CDE 中BD CD BDF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△CDE (SAS )故①正确;∵△BDF ≌△CDE∴BF=CE ,∠FBD=∠ECD故②正确;∵∠FBD=∠ECD∴BF ∥CE (内错角相等两直线平行)故③正确;∵△ABC 中AB 和AC 不一定相等∴△ABD 和△ACD 周长不一定相等故④错误;综上,答案为①②③.【点睛】本题考查的是中线的性质,三角形全等的判定与性质和平行线的判定,能够根据中线得出BD=CD 证得△BDF ≌△CDE 是解题的关键.15.1.3-【解析】【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:()20202019133⎛⎫-⋅- ⎪⎝⎭()2019201911333⎛⎫⎛⎫=-⋅-⨯- ⎪ ⎪⎝⎭⎝⎭()201911333⎡⎤⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 1.3=- 故答案为1.3-【点睛】 此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 16.12. 【解析】【分析】根据非负数的性质列出算式,求出x 、y 的值,计算即可.【详解】解:由题意得,|x-2|+(y+1)2=0,则x-2=0,y+1=0,解得,x=2,y=-1, 则y 1x 2= 故答案为:12 . 【点睛】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.17.23; 【解析】【分析】利用树状图法列出所有的分配情况,再看小明和小刚被分配到不同项目组的情况,根据概率公式求解即可.【详解】解:画树状图如图所示:由图可知,共有9种情况,其中小明和小刚被分配到不同项目组有6种情况,根据概率公式,则可知小明和小刚被分配到不同项目组的概率是:61 =93.【点睛】本题考查了求概率的方法,熟练应用树状图法或列表法求出所求情况数和总情况数是解题的关键.18.30°【解析】【分析】根据全等三角形的性质得到∠DCE=∠ACB=110°,然后利用三角形内角和定理求∠D即可. 【详解】解:∵△ABC≌△DEC,∠E=40°,∴∠DCE=∠ACB=110°,∴∠D=180°-∠E-∠DCE=180°-40°-110°=30°,故答案为:30°.【点睛】本题考查了全等三角形的性质和三角形内角和定理,熟知三角形内角和为180°是解题关键. 19.40【解析】【分析】直接根据三角形内角和定理解答即可.【详解】∵△ABC中,∠A=100°,∠B=40°,∴∠C=180°−∠A−∠B=180°−100°−40°=40°故答案为:40°【点睛】此题考查三角形内角和定理,难度不大20.32【解析】【分析】根据同底数幂的乘法,底数不变指数相加计算.【详解】解:∵a m =4,a n =8,∴a m +n =a m ×a n =4×8=32. 故答案为:32【点睛】题考查同底数幂的乘法,一定要记准法则才能做题.21.(1)BD CE ⊥;BC CD CE =+;(2)BD CE ⊥成立,数量关系不成立,关系为BC=CE-CD ;(3)DE =【解析】【分析】()1根据条件AB AC =,BAC 90∠=o ,AD AE =,DAE 90∠=o ,判定ABD V ≌()ACE SAS V ,即可得出BD 和CE 之间的关系,根据全等三角形的性质,即可得到CE CD BC +=;()2根据已知条件,判定ABD V ≌()ACE SAS V,得出BD CE =,再根据BD BC CD =+,即可得到CE BC CD =+;()3根据条件判定ABD V ≌()ACE SAS V ,得出BD CE =,在Rt DCE V 中,由勾股定理得22222DE DC CE 8268=+=+=,即可解决问题.【详解】()1如图1,BAC DAE 90∠∠==o Q ,BAD CAE ∠∠∴=,在ABD V 和ACE V中, AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴V ≌()ACE SAS V, BD CE ∴=,B ACE 45∠∠==o ,BCE 454590∠∴=+=o o o ,即BD CE ⊥;由①可得,ABD V ≌ACE V, BD CE ∴=,BC BD CD CE CD ∴=+=+,故答案为BD CE ⊥,BC CD CE =+;()2BD CE ⊥成立,数量关系不成立,关系为BC CE CD =-.理由:如图2中,由()1同理可得,BAC DAE 90∠∠==o Q ,∴BAC CAD DAE CAD ∠∠∠∠+=+即BAD CA ∠∠=E ,∴在ABD V 和ACE V中, AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴V ≌()ACE SAS V, BD CE ∴=,ACE ABC ∠∠=,AB AC =Q ,ABC ACB 45∠∠∴==o ,BD BC CD ∴=+,即CE BC CD =+,ACE ACB 90∠∠+=o ,BC CE CD ∴=-;BD CE ⊥;()3如图3中,由()1同理可得,BAC DAE 90∠∠==o Q ,BAC BAE DAE BAE ∠∠∠∠∴-=-,即BAD EAC ∠∠=,易证ABD V ≌()ACE SAS V, BD CE 2∴==,ACE ABD 135∠∠==o ,CD BC BD BC CE 8∴=+=+=,∵ACB 45∠=oDCE 90∠∴=o ,在Rt DCE V 中,由勾股定理得22222DE DC CE 8268=+=+=,DE ∴=【点睛】本题属于三角形综合题,主要考查了全等三角形的判定与性质以及等腰直角三角形的性质的运用,等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.解决问题的关键是掌握:两边及其夹角分别对应相等的两个三角形全等.解题时注意:全等三角形的对应边相等.22.(1)85o ;(2)见解析;(3)EDF A ∠=∠或180EDF A ∠+∠=o【解析】【分析】根据题意可知:(1)通过DE BA P 得到两同位角A DEC ∠=∠,DF CA ∥得到两内错角DEC EDF ∠=∠,然后等量代换.(2)通过延长BA ,构造出新的角BGD ∠,再用等量代换找到内错角EDF BGD ∠=∠,从而证明直线平行.(3)直线BA 与直线AC 相交分成四部分,分别考虑这四部分且在三角形ABC 外部的点,可知只有EDF A ∠=∠或180EDF A ∠+∠=o 这两种情况.【详解】(1)∵DE BA P ,DF CA ∥,∴A DEC ∠=∠,DEC EDF ∠=∠,∵85EDF ∠=o ,∴85A EDF ∠=∠=o ;(2)证明:如图1,延长BA 交DF 于G .∵DF AC P ,∴BAC BGD ∠=∠.又∵EDF BAC ∠=∠,∴EDF BGD ∠=∠.∴DE BA P .(3)EDF A ∠=∠或180EDF A ∠+∠=o证明如下:①按题意画出图形如上所示:因为DF AE ∥,DE AF P所以四边形AEDF 是平行四边形(两组对边平行的四边形是平行四边形) 所以EDF A ∠=∠(平行四边形对角相等)②按题意画出图形如上所示:因为DF AE ∥,DE AF P所以四边形AEDF 是平行四边形(两组对边平行的四边形是平行四边形)所以 EDF FAE ∠=∠(平行四边形对角相等)又因为180FAE BAC ∠+∠=o所以180EDF BAC ∠+∠=o BAC ∠即为原图中的A ∠BAC ∠即为原图中的A ∠,即180EDF A ∠+∠=o故答案为EDF A ∠=∠或180EDF A ∠+∠=o【点睛】本题运用到两直线平行内错角相等,内错角相等两直线平行的知识点。

2022—2023年人教版七年级数学(下册)期末综合检测卷及答案

2022—2023年人教版七年级数学(下册)期末综合检测卷及答案

2022—2023年人教版七年级数学(下册)期末综合检测卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒5.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣16.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b 7.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( ) A .m >2 B .m ≥2 C .m ≥2且m ≠3 D .m >2且m ≠38.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤2310.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.方程()()()()32521841x x x x +--+-=的解是_________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:3416 5633 x yx y+=⎧⎨-=⎩2.马虎同学在解方程13123x mm---=时,不小心把等式左边m前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m2﹣2m+1的值.3.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.4.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的14;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1 45.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、D6、A7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、150°3、<4、3x=.5、±46、±3三、解答题(本大题共6小题,共72分)1、612 xy=⎧⎪⎨=-⎪⎩2、0.3、(1) C(5,﹣4);(2)90°;(3)略4、(1) 4s;(2) 9s;(3) t=323s或16s5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)A种商品的单价为16元、B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件。

数学七年级下学期《期末测试卷》含答案

数学七年级下学期《期末测试卷》含答案

人 教 版 数 学 七 年 级 下 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A. 2- B. 0 C. 1 D. 382. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生视力情况,采用抽样调查的方式4. 如图,将△ABC 平移后得到△DEF ,若∠A =44°,∠EGC =70°,则∠ACB 的度数是( )A. 26°B. 44°C. 46°D. 66°5. 若(m –2018)x |m|–2017+(n+4)y |n|–3=2018是关于x ,y 的二元一次方程,则( )A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=46. 对于任意实数m,点P(m-2,9-3m)不可能()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -119. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤010. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.) 13. 3-7的相反数是____;|2-3|=____.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19. (1)2(32)32--(2)25{342x y x y -=+= 20. 解不等式组323(1){12123x x x x x +≥---+->-,并把解集数轴上表示出来. 21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?22. 如图,已知BC∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.23. 已知在平面直角坐标系中有A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A, B, C 的位置. (2)画出ABC关于直线x=-1对称的111A B C∆,并写出111A B C∆各点坐标. (3)在y轴上是否存在点P,使以A,B, P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标:若不存在,请说明理由.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.参考答案本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A.B. 0C. 1D. 【答案】A【解析】【分析】根据各项数字的大小排列顺序,找出最小的数即可.【详解】由题意得:01<<<最小的数为:故选A.【点睛】本题考查了实数大小的比较,解题的关键是理解正数大于0,0大于负数的知识.2. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 【答案】D【解析】【分析】利用不等式的性质判断即可得到结果.【详解】解:若x >y ,则有x-3>y-3;33x y >;-2x <-2y ; 3-x <3-y 故选D .【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解本题的关键.3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生的视力情况,采用抽样调查的方式【详解】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选D.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 如图,将△ABC平移后得到△DEF,若∠A=44°,∠EGC=70°,则∠ACB 的度数是()A. 26° B. 44° C. 46° D. 66°【答案】A【解析】【分析】由平移前后对应角相等及三角形的一个外角等于与它不相邻的两个内角的和得出.【详解】∵△ABC平移后得到△DEF,∴∠EDF=∠A=44°,∴∠ACB=∠EGC−∠EDF=26°.故选:A.【点睛】本题主要考查了平移的基本性质:①平移不改变图形的形状、大小和方向;②经过平移,对应点所连的线段平行或在同一直线上,对应线段平行且相等,对应角相等.同时考查了三角形的外角性质.5. 若(m–2018)x|m|–2017+(n+4)y|n|–3=2018是关于x,y的二元一次方程,则()A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=4【分析】依据二元一次方程的定义求解即可.【详解】解:()()m 2017n 3m 2018x n 4y 2018---++=是关于x ,y 的二元一次方程,20180201714031m m n n -≠⎧⎪-=⎪∴⎨+≠⎪⎪-=⎩, 解得:m 2018=-、n 4=,故选D .【点睛】本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.依据二元一次方程的定义求解即可.6. 对于任意实数m ,点P (m -2,9-3m )不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据点所在象限中横纵坐标的符号即可列不等式组,若不等式组无解,则不能在这个象限.【详解】A 、当点在第一象限时 20930m m -⎧⎨-⎩>>,解得2<m <3,故选项不符合题意; B 、当点第二象限时20930m m -⎧⎨-⎩<>,解得m <3,故选项不符合题意; C 、当点在第三象限时,20930m m -⎧⎨-⎩<<,不等式组无解,故选项符合题意; D 、当点在第四象限时20930m m -⎧⎨-⎩><,解得m >0,故选项不符合题意. 故选:C .【点睛】本题考查了点的坐标,理解每个象限中点的坐标的符号是关键.7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°【答案】C【解析】【分析】先由对顶角及直角三角形两锐角互余求出∠CFM=40°,再由折叠的性质求出∠EFC′的度数,进而求出∠EFD的度数,然后根据两直线平行内错角相等即可求出结论.【详解】∵∠B′MD=50°,∴∠C′FM=40°,∴∠EFC=∠EFC′=(180°+40°) ÷2=110°,∴∠EFD=110°-40°=70°.∵AB∥CD,∴∠BEF=∠EFD=70°.故选C.【点睛】本题主要考查了矩形性质,折叠的性质,及平行线的性质,熟练掌握相关的性质是解题的关键.8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -11 【答案】A【解析】【分析】由x与y互为相反数,得到y=-x,代入方程组计算即可求出m的值.【详解】解:由题意得:y= -x,代入方程组得:33221x x mx x m-++⎧⎨-⎩=①=②,消去x得:32123m m+-=,即3m+9=4m-2,解得:m=11.故选A.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤0【答案】A【解析】【分析】首先解关于x的不等式,不等式在实数范围内有解,则两个不等式的解集有公共部分,据此即可列出关于a的不等式,从而求得a的范围.【详解】解1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩①②,解①得:x≤3a+1,解②得:x>1.根据题意得:3a+1>1,解得:a>0.故选:A.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.10. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°【答案】B【解析】【详解】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个【答案】D【解析】【分析】根据题意设出未知数,找出不等关系列出相应的不等式即可.【详解】设这批闹钟至少有x个,根据题意得5500×60+5000(x-60)>550000∴5000(x-60)>5500×40x-60>44∴x>104答:这批闹钟最少有105个.故选D.【点睛】本题考查了实际问题与一元一次不等式,解题的关键是理解题意,根据不等关系列出相应的不等式.12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)【答案】B【解析】【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外),逐步探索出下标和个点坐标之间的关系,总结出规律,根据规律推理点A2017的坐标.【详解】通过观察可得数字是4的倍数的点在第三象限,数字是4的倍数余1的点在第四象限,数字是4的倍数余2的点在第一象限,数字是4的倍数的点在第二象限,且各个点分别位于象限的角平分线上(A1和第四象限内的点除外),∵2017÷4=504…1,∴点A2017在第四象限,点A2016在第三象限,∵20164=504,∴A2016是第三象限的第504个点,∴A2016的坐标为(−504,−504),∴点A2017的坐标为(505,-504).故选:B.【点睛】此题主要考查了点的坐标,属于规律型题目,解答此类题目一定要先注意观察,本题第三象限的点的坐标特点比较好判断,我们可以利用这一点达到简化步骤的效果.卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.)13. 3-7的相反数是____;2____.【答案】(1). 37(2). 2【解析】【详解】分析:根据相反数的定义,绝对值的性质和立方根的定义分别计算即可求解. 详解:3-7的相反数是37;因为2 1.4143≈< ,所以|2-3|=-(2-3),故答案为 (1).37 (2). 3-2. 点睛:本题考查了实数的性质,主要利用了绝对值的性质,相反数的定义,属于基础题.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC ∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.【答案】80°【解析】【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD =∠CAD =50︒,进而得出答案.【详解】∵∠BAC 的平分线交直线b 于点D ,∴∠BAD =∠CAD ,∵直线a ∥b ,∠1=50︒,∴∠BAD =∠CAD =50︒,∴∠2=180︒−50︒−50︒=80︒故答案为:80︒.【点睛】此题主要考查了平行线的性质,正确得出∠BAD =∠CAD =50︒是解题关键.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 【答案】126【解析】【分析】两式相加求出+a b =5,两式相减求出-a b =1,代入即可求解.【详解】解32132312a b a b +=⎧⎨+=⎩①②,①+②得5a+5b=25 ∴+a b =5,①-②得-a b =1∴3100()()a b a b ++-=53+1100=126.【点睛】此题主要考查二元一次方程的求解,解题的关键是熟知加减消元法的运用.16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 【答案】≥-1【解析】 【详解】分析:根据题意中的不等关系,列不等式可求解.详解:由题意可得-53x +1≤12x +-1 解不等式可得x≥-1故答案为≥-1.点睛:此题主要考查了一元一次不等式的应用,解不等式即可求出x 的范围,关键是根据题目的不等关系列不等式.17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.【答案】2【解析】【分析】根据第二象限角平分线上的点的横坐标与纵坐标互为相反数,可得答案.【详解】由题意,得-3+m+1=0,解得m =2,故答案为:2.【点睛】本题考查了点的坐标,利用第二象限角平分线上的点的横坐标与纵坐标互为相反数得出方程是解题关键.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.【答案】12【解析】【分析】由条件可得到|x−2|+|y−1|=3,分四种情况:①x−2=±3,y−1=0,②x−2=±2,y−1=±1,③x−2=±1,y−1=±2,④x−2=0,y−1=±3,进行讨论即可求解.【详解】依题意有|x−2|+|y−1|=3,①x−2=±3,y−1=0,解得11xy-⎧⎨⎩==,51xy⎧⎨⎩==;②x−2=±2,y−1=±1,解得xy⎧⎨⎩==,2xy⎧⎨⎩==,4xy⎧⎨⎩==,42xy⎧⎨⎩==;③x−2=±1,y−1=±2,解得11xy⎧⎨-⎩==,13xy⎧⎨⎩==,31xy⎧⎨-⎩==,33xy⎧⎨⎩==;④x−2=0,y−1=±3,解得22xy⎧⎨-⎩==,24xy⎧⎨⎩==.故满足条件的点P有12个.故答案为:12.【点睛】考查了两点间的距离公式,本题为新概念题目,理解题目中所给新定义是解题的关键,注意分类讨论思想的应用.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤)19. (1)2-(2)25 {342 x yx y-=+=【答案】(1)2(2)21 xy=⎧⎨=-⎩【解析】【分析】(1)根据实数的性质进行化简即可求解;(2)根据加减消元法即可求解.【详解】(1)2-2=2(2)解:25 342 x yx y-=⎧⎨+=⎩①②①×4,得:8x-4y=20③③+②,得11x=22,x=2将x=2代入①,得y=-1所以方程组的解是21 xy=⎧⎨=-⎩.【点睛】此题主要考查实数的运算及二元一次方程的求解,解题的关键是熟知实数的运算及二元一次方程的求解方法.20. 解不等式组323(1) {12 123x xx xx+≥---+->-,并把解集数轴上表示出来.【答案】x≥0;作图见解析【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:323(1)12123x xx xx+≥--⎧⎪⎨-+->-⎪⎩①②解不等式①,得:x≥0解不等式②,得x>-5把不等式组的解集在数轴上表示如下:∴不等式组的解集为x≥0.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?【答案】(1)30;(2)①补图见解析;②120;③70人.【解析】【详解】分析:(1)由B类别人数及其所占百分比可得总人数;(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;②用360°乘以A类别人数所占比例可得;③总人数乘以样本中C、D类别人数和所占比例.详解:(1)本次调查的好友人数为6÷20%=30人,故答案为30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×1030=120°, 故答案为120; ③估计大约6月1日这天行走的步数超过10000步的好友人数为150×12230 =70人. 点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22. 如图,已知BC∥GE ,AF∥DE ,∠1=50°.(1)求∠AFG 的度数;(2)若AQ 平分∠FAC ,交BC 于点Q,且∠Q=15°,求∠ACB 的度数.【答案】(1)50°;(2)80°.【解析】【分析】(1)先根据BC ∥EG 得出∠E=∠1=50°,再由AF ∥DE 可知∠AFG=∠E=50°;(2)作AM ∥BC ,由平行线的传递性可知AM ∥EG ,故∠FAM=∠AFG ,再根据AM ∥BC 可知∠QAM=∠Q ,故∠FAQ=∠AFM+∠FAQ ,再根据AQ 平分∠FAC 可知∠MAC=∠QAC+∠QAM=80°,根据AM ∥BC 即可得出结论.【详解】(1)∵BC ∥EG ,∴∠E=∠1=50°.∵AF ∥DE ,∴∠AFG=∠E=50°;(2)作AM ∥BC ,∵BC ∥EG ,∴AM ∥EG ,∴∠FAM=∠AFG=50°.∵AM ∥BC ,∴∠QAM=∠Q=15°,∴∠FAQ=∠AFM+∠MAQ=65°.∵AQ 平分∠FAC ,∴∠QAC=∠FAQ=65°,∴∠M AC=∠QAC+∠QAM=80°.∵AM ∥BC ,∴∠ACB=∠MAC=80°.考点:平行线的性质.23. 已知在平面直角坐标系中有 A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A , B , C 的位置.(2)画出ABC 关于直线x=-1对称的111A B C ∆,并写出111A B C ∆各点坐标.(3)在y 轴上是否存在点P ,使以A ,B , P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标:若不存在,请说明理由.【答案】(1)画图见解析;(2)画图见解析;(3)存在,P 点为(0,5)或(0,-3);【解析】【分析】(1)首先在坐标系中确定A 、B 、C 三点位置,然后再连接即可;(2)首先确定A 、B 、C 三点关于x=-1的对称点位置,然后再连接即可;(3)详细见解析;【详解】解:(1)如图:△ABC 即为所求;(2)如图:111A B C ∆即为所求;各点坐标分别为:1A (0,1),1B (-51),,1C (43)-,; (3)解:设P (0,y ),∵A(-2,1),B(3,1),∴AB=5, ∴151=122ABP S AB y y ∆=⨯--, ∵ABP S ∆=10, ∴51=102y -, ∴1=4y -,∴y=5或y=-3;∴P(0,5)或(0,-3);【点睛】本题主要考查了作图-轴对称变换,掌握作图-轴对称变换是解题的关键.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【答案】(1)清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元(2)方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【解析】【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40−m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.【详解】解:(1)设清理养鱼网箱和捕鱼网箱的人均支出费用分别为x元、y元.根据题意,得15957000 101668000x yx y+=⎧⎨+=⎩解得20003000 xy=⎧⎨=⎩答:清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元.(2)设分配a人清理养鱼网箱,则分配(40-a)人清理捕鱼网箱.根据题意,得20003000(40)102000 40a aa a+-⎧⎨<-⎩解得18≤a<20.∵a为正整数,∴a=18或19∴一共有2种分配方案,分别为:方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【点睛】本题主要考查二元一次方程组和一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程或不等式组.25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)见解析;(3)105°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行解答即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α, ∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,在△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】此题考查平行线的判定与性质,余角和补角,解题关键在于作出辅助线,灵活运用所学知识进行求解.。

人教版七年级数学下册期末测试题+答案解析(共四套)

人教版七年级数学下册期末测试题+答案解析(共四套)

⼈教版七年级数学下册期末测试题+答案解析(共四套)B ′C ′D ′O ′A ′O DC BA(第8题图)⼀、选择题(每⼩题3分,计24分,请把各⼩题答案填到表格内)题号 1 2 3 4 5 6 78 总分答案1.如图所⽰,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业⽣的中考数学成绩,从中抽取500名学⽣的数学成绩进⾏统计分析,那么样本是 A .某市5万名初中毕业⽣的中考数学成绩 B .被抽取500名学⽣(第1题图)C .被抽取500名学⽣的数学成绩D .5万名初中毕业⽣ 5.有⼀个两位数,它的⼗位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个D .⽆数个 7.下列事件属于不确定事件的是A .太阳从东⽅升起B .2010年世博会在上海举⾏C .在标准⼤⽓压下,温度低于0摄⽒度时冰会融化D .某班级⾥有2⼈⽣⽇相同 8.请仔细观察⽤直尺和圆规.....作⼀个⾓∠A ′O ′B ′等于已知⾓∠AOB 的⽰意图,请你根据所学的图形的全等这⼀章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AASD .SSS⼆、填空题(每⼩题3分,计24分)9.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为0.0000002cm .这个数量⽤科学记数法可表⽰为 cm . 10.将⽅程2x+y=25写成⽤含x 的代数式表⽰y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的⼤⼩是 °. 12.三⾓形的三个内⾓的⽐是1:2:3,则其中最⼤⼀个内⾓的度数是 °.13.掷⼀枚硬币30次,有12次正⾯朝上,则正⾯朝上的频率为 .14.不透明的袋⼦中装有4个红球、3个黄球和5个蓝球,每个球除颜⾊不同外其它都相同,从中任意摸出⼀个球,则摸出球的可能性最⼩. 15.下表是⾃18世纪以来⼀些统计学家进⾏抛硬币试验所得的数据:试验者试验次数n 正⾯朝上的次数m正⾯朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正⾯朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某⼀个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出⼀个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,⽅格纸中的△ABC 的三个顶点分别在⼩正⽅形的顶点(格点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与△ABC 全等且有⼀个公共顶点的格点△C B A ''';在图②中画出与△ABC 全等且有⼀条公共边的格点△C B A ''''''.20.解⽅程组:(每⼩题5分,本题共10分)(1)=+-=300342150y x yx (2)=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y 的⽅程组=+=+73ay bx by ax 的解是==12y x ,求a b +的值.OAC P P′(第16题图)(第16题图)22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)⼩王某⽉⼿机话费中的各项费⽤统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3)扇形统计图中,表⽰短信费的扇形的圆⼼⾓是多少度?24.(本题4+8=12分)上海世博会会期为2010年5⽉1⽇⾄2010年10⽉31⽇。

人教版七年级数学下册期末测试题及答案(共五套)

人教版七年级数学下册期末测试题及答案(共五套)

七下期期末(共六套)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PCBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)班级姓名成绩第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.36的平方根是()A.﹣6 B.36 C.±D.±62.已知a<b,则下列四个不等式中,不正确的是()A.a﹣2<b﹣2 B.﹣2a<﹣2b C.2a<2b D.a+2<b+23.若是关于x和y的二元一次方程ax+y=1的解,则a的值等于()A.3 B.1 C.﹣1 D.﹣34.如图,直线l与直线a,b相交,且a∥b,∠1=110°,则∠2的度数是()A.20°B.70°C.90°D.110°5.下列调査中,适合用全面调查方式的是()A.了解某校七年级(1)班学生期中数学考试的成绩B.了解一批签字笔的使用寿命C.了解市场上酸奶的质量情况D.了解某条河流的水质情况6.如图,小手盖住的点的坐标可能为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,5)D.(4,﹣5)7.方程4x+3y=16的所有非负整数解为()A.1个B.2个C.3个D.无数个8.已知方程组,则x+y的值为()A.﹣1 B.0 C.2 D.39.已知点A(a,3),点B是x轴上一动点,则点A、B之间的距离不可能是()A.2 B.3 C.4 D.510.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120 B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120 D.10x﹣5(20﹣x)<12011.若不等式组⎩⎨⎧-+-142322xxax>>,的解集为32<<x-,则a的取值范围是( )A.21=a B.2-=a C.2-≥a D.1-≤a12.若不等式组⎩⎨⎧<-<-mxxx632无解,则m的取值范围是()A.m>2 B.m<2 C.m≥2 D.m≤2第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.若点A(1,3)向左平移2个单位长度,再向下平移4个单位长度得到点B,则B的坐标为.14.若a+1和-5是实数m的两个平方根,则a的值为.15.若0x2-x=++y,则=xy .16.如图,将一个宽度相等的纸条按如图所示沿AB所折叠,已知︒=∠601,则=∠2 .17.已知a是5的整数部分,b是5的小数部分,则a-b= .18.若不等式组⎩⎨⎧<->+1bx23a2x解集为1<x<2,则(a+2)(b-1)值为 .三、解答题(本大题共7小题,共46分.解答应写出文字说明、证明过程或演算步骤)19.计算(5分)2-1-8-02--91-322020+++)()(20.解方程组(5分)⎩⎨⎧=+=+②①1534255x 2y x y21.(6分)解下列不等式组,并把解集在数轴上表示出来。

2022—2023年部编版七年级数学(下册)期末水平测试卷及答案

2022—2023年部编版七年级数学(下册)期末水平测试卷及答案

2022—2023年部编版七年级数学(下册)期末水平测试卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.超市出售的某种品牌的面粉袋上,标有质量为(25±0.2)kg 的字样,从中任意拿出两袋,它们的质量最多相差-( )A .0.2 kgB .0.3 kgC .0.4 kgD .50.4 kg2.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106° 3.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5 B .﹣8 C .﹣2 D .54.下列图形具有稳定性的是( )A .B .C .D .5.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( )A .237230x xB .327230x xC .233072x xD .323072x x6.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我 7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .39.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.若|x 2﹣4x+4|与23x y --互为相反数,则x+y 的值为( )A .3B .4C .6D .9二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是________.2.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.3.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.若一个数的平方等于5,则这个数等于________.6.已知13aa+=,则221+=aa__________;三、解答题(本大题共6小题,共72分)1.解方程组:(1)53x yy x+=⎧⎨=-⎩(2)223346a ba b⎧+=-⎪⎨⎪-=⎩2.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求a bm cdm+++的值.3.如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣4,2)、(1,﹣4),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以12个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的13?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.4.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:运费车型运往甲地/(元/辆)运往乙地/(元/辆)大货车 720 800小货车 500 650(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、A4、A5、D6、D7、B8、D9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、22、55°3、654、205、6、7三、解答题(本大题共6小题,共72分)1、(1)41xy=⎧⎨=⎩;(2)23ab=-⎧⎨=-⎩2、(1)a+b=0,cd=1,m=±2;(2)3或-13、(1)(﹣4,﹣4),D(1,2),面积为30;(2)∠MPO=∠AMP+∠PON或∠MPO=∠AMP﹣∠PON;(3)存在,t=10, P点坐标为(﹣4,﹣3).4、(1)∠1+∠2=90°;略;(2)(2)BE∥DF;略.5、(1)作图见解析;(2)120.6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。

人教版七年级数学下册期末测试题+答案解析(共四套)

人教版七年级数学下册期末测试题+答案解析(共四套)

⼈教版七年级数学下册期末测试题+答案解析(共四套)⼈教版七年级第⼆学期综合测试题(⼆)、填空题:(每题3分,共15分)i.8i 的算术平⽅根是 ________ ,旷64= __________ . 2. 如果 13. 在⼛ABC 中,已知两条边a=3,b=4,则第三边c 的取值范围是 _____________4. 若三⾓形三个内⾓度数的⽐为 2:3:4,则相应的外⾓⽐是 ___________ .5.已知两边相等的三⾓形⼀边等于 ___________ 5cm,另⼀边等于11cm,则周长是.⼆、选择题:(每题3分,共15分)6?点P (a,b )在第四象限,则点P 到x 轴的距离是() A.a B.b C.| a | D. | b |7. 已知aa b A.a+5>b+5B.3a>3b;C.-5a>-5bD.>3 38. 如图,不能作为判断AB// CD 的条件是()A. / FEB=/ ECDB./ AEC ⽞ ECD; C. / BEC+Z ECD=180D. / AEG=Z DCH三、解答题:(每题6分,共18分) 11.解下列⽅程组:12.2x 5y 25,4x 3y 15.9.以下说法正确的是()A. 有公共顶点,并且相等的两个⾓是对顶⾓B. 两条直线相交,任意两个⾓都是对顶⾓C. 两⾓的两边互为反向延长线的两个⾓是对顶⾓D. 两⾓的两边分别在同⼀直线上,这两个⾓互为对顶⾓ 10.下列各式中,正确的是()13.若A(2x-5,6-2x)在第四象限,求a解不等式组,并在数轴表⽰2x 3 6 x,1 4x 5x 2.的取值范围作图题:(6分)作BC 边上的⾼作AC 边上的中线。

五.有两块试验⽥,原来可产花⽣470千克,改⽤良种后共产花⽣ 532千克,已知第⼀块⽥的产量⽐原来增加 16%,第⼆块⽥的产量⽐原来增加10%,问这两块试验⽥改⽤良种后各增产花⽣多少千克?( 8分)六,已知a 、b 、c 是⼆⾓形的⼆边长,化简:|a — b +c|+ |a — b — c| (6分)⼋,填空、如图1,已知/1 =/2, Z B =Z C ,可推得AB //CD 。

人教版数学七年级下册 期末试卷测试卷(含答案解析) (4)

人教版数学七年级下册 期末试卷测试卷(含答案解析) (4)

人教版数学七年级下册期末试卷测试卷(含答案解析)一、解答题1.已知,AB∥DE,点C在AB上方,连接BC、CD.(1)如图1,求证:∠BCD+∠CDE=∠ABC;(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.2.如图,直线AB∥直线CD,线段EF∥CD,连接BF、CF.(1)求证:∠ABF+∠DCF=∠BFC;(2)连接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求证:CE平分∠BCD;(3)在(2)的条件下,G为EF上一点,连接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度数.3.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD 于G,过点F作FH⊥MN交EG于H.(1)当点H在线段EG上时,如图1①当∠BEG=36 时,则∠HFG=.②猜想并证明:∠BEG与∠HFG之间的数量关系.(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系.4.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点.(1)若∠DAP=40°,∠FBP=70°,则∠APB=(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由;②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示)5.已知点C在射线OA上.(1)如图①,CD//OE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数;(2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD 与∠BO′E′的关系(用含α的代数式表示)(3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系.二、解答题6.已知:直线1l∥2l,A为直线1l上的一个定点,过点A的直线交2l于点B,点C在线段BA的延长线上.D,E为直线2l上的两个动点,点D在点E的左侧,连接AD,AE,满足∠AED=∠DAE.点M在l上,且在点B的左侧.2(1)如图1,若∠BAD=25°,∠AED=50°,直接写出 ABM的度数;(2)射线AF为∠CAD的角平分线.① 如图2,当点D在点B右侧时,用等式表示∠EAF与∠ABD之间的数量关系,并证明;② 当点D与点B不重合,且∠ABM+∠EAF=150°时,直接写出∠EAF的度数.7.如图1,E点在BC上,∠A=∠D,AB∥CD.(1)直接写出∠ACB和∠BED的数量关系;(2)如图2,BG平分∠ABE,与∠CDE的邻补角∠EDF的平分线交于H点.若∠E比∠H 大60°,求∠E;(3)保持(2)中所求的∠E不变,如图3,BM平分∠ABE的邻补角∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不变,请求值;若改变,请说理由.8.(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1).①请你仿照以上过程,在图2中画出一条直线b ,使直线b 经过点P ,且//b a ,要求保留折纸痕迹,画出所用到的直线,指明结果.无需写画法:②在(1)中的步骤(b )中,折纸实际上是在寻找过点P 的直线a 的 线.(2)已知,如图3,//AB CD ,BE 平分ABC ∠,CF 平分BCD ∠.求证://BE CF (写出每步的依据).9.(感知)如图①,//,40,130AB CD AEP PFD ︒︒∠=∠=,求EPF ∠的度数.小明想到了以下方法:解:如图①,过点P 作//PM AB ,140AEP ︒∴∠=∠=(两直线平行,内错角相等)//AB CD (已知),//∴PM CD (平行于同一条直线的两直线平行),2180PFD ︒∴∠+∠=(两直线平行,同旁内角互补). 130PFD ︒∠=(已知),218013050︒︒︒∴∠=-=(等式的性质). 12405090︒︒︒∴∠+∠=+=(等式的性质).即90EPF ︒∠=(等量代换).(探究)如图②,//AB CD ,50,120AEP PFC ︒︒∠=∠=,求EPF ∠的度数.(应用)如图③所示,在(探究)的条件下,PEA ∠的平分线和PFC ∠的平分线交于点G ,则G ∠的度数是_______________︒.10.如图,已知AM ∥BN ,∠A =64°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .(1)①∠ABN 的度数是 ;②∵AM ∥BN ,∴∠ACB =∠ ; (2)求∠CBD 的度数;(3)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律; (4)当点P 运动到使∠ACB =∠ABD 时,∠ABC 的度数是 .三、解答题11.如图,直线m 与直线n 互相垂直,垂足为O 、A 、B 两点同时从点O 出发,点A 沿直线m 向左运动,点B 沿直线n 向上运动.(1)若∠BAO 和∠ABO 的平分线相交于点Q ,在点A ,B 的运动过程中,∠AQB 的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.(2)若AP 是∠BAO 的邻补角的平分线,BP 是∠ABO 的邻补角的平分线,AP 、BP 相交于点P ,AQ 的延长线交PB 的延长线于点C ,在点A ,B 的运动过程中,∠P 和∠C 的大小是否会发生变化?若不发生变化,请求出∠P 和∠C 的度数;若发生变化,请说明理由.12.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB 经过两次反射,得到反射光线CD.求证AB∥CD.(尝试探究)如图 3,有两块平面镜OM,ON,且∠MON =55︒,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 相交于点E,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜OM,ON,且∠MON =α ,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 所在的直线相交于点E,∠BED=β , α 与β 之间满足的等量关系是 .(直接写出结果)13.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD-∠ABD=∠______∴∠ACD-∠ABD=______°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD-∠A1BD=1(∠ACD-∠ABD)2∴∠A1=______°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系______;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.14.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:. 15.如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)仔细观察,在图2中有个以线段AC为边的“8字形”;(2)在图2中,若∠B=96°,∠C=100°,求∠P的度数;(3)在图2中,若设∠C=α,∠B=β,∠CAP=13∠CAB,∠CDP=13∠CDB,试问∠P与∠C、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.【参考答案】一、解答题1.(1)证明见解析;(2);(3).【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒. 【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CF DE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE , CFDE ∴,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠, BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE , CG DE ∴,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒,F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠, ABC F BCF ∴∠-∠=∠, CF BC ⊥,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE , GM DE ∴,MGN DFG ∴∠=∠,BH 平分ABC ∠,FN 平分CFD ∠, 11,22ABH AB D C CF DFG ∴∠=∠∠∠=,由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠∠-==∴︒,又BGD MGH MGDCGF DGN MGN MGD ∠=∠+∠⎧⎨∠=∠=∠+∠⎩,45MGH BGD GF MGN C ∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.2.(1)证明见解析;(2)证明见解析;(3)∠FBE =35°. 【分析】(1)根据平行线的性质得出∠ABF =∠BFE ,∠DCF =∠EFC ,进而解答即可; (2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)∠FBE =35°. 【分析】(1)根据平行线的性质得出∠ABF =∠BFE ,∠DCF =∠EFC ,进而解答即可; (2)由(1)的结论和垂直的定义解答即可; (3)由(1)的结论和三角形的角的关系解答即可.【详解】证明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)设∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.3.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.解析:(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.【详解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案为:18°.②结论:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如图2中,结论:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=1 1802β︒-.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;(2)结论:∠APB=∠DAP+∠FBP.(3)①根据(2)的规律和角平分线定义解答;②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P作PM∥CD,∴∠APM=∠DAP.(两直线平行,内错角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一条直线的两条直线互相平行),∴∠MPB=∠FBP.(两直线平行,内错角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质)即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)结论:∠APB=∠DAP+∠FBP.理由:见(1)中证明.(3)①结论:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分别平分∠CAP、∠EBP,∴∠CAP2=12∠CAP,∠EBP2=12∠EBP,∴∠AP2B=12∠CAP+12∠EBP,= 12(180°-∠DAP)+ 12(180°-∠FBP),=180°- 12(∠DAP+∠FBP),=180°- 12∠APB,=180°- 12β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.5.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;(2)解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;(2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E′的数量关系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°-2∠AOB,根据(2)∠OCD+∠BO′E′=360°-∠AOB,进而推出∠AOB=∠BO′E′.【详解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.证明:如图②,过O点作OF∥CD,∵CD ∥O ′E ′,∴OF ∥O ′E ′,∴∠AOF =180°-∠OCD ,∠BOF =∠E ′O ′O =180°-∠BO ′E ′,∴∠AOB =∠AOF +∠BOF =180°-∠OCD +180°-∠BO ′E ′=360°-(∠OCD +∠BO ′E ′)=α, ∴∠OCD +∠BO ′E ′=360°-α;(3)∠AOB =∠BO ′E ′.证明:∵∠CPO ′=90°,∴PO ′⊥CP ,∵PO ′⊥OB ,∴CP ∥OB ,∴∠PCO +∠AOB =180°,∴2∠PCO =360°-2∠AOB ,∵CP 是∠OCD 的平分线,∴∠OCD =2∠PCO =360°-2∠AOB ,∵由(2)知,∠OCD +∠BO ′E ′=360°-α=360°-∠AOB ,∴360°-2∠AOB +∠BO ′E ′=360°-∠AOB ,∴∠AOB =∠BO ′E ′.【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.二、解答题6.(1);(2)①,见解析;②或【分析】(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,解析:(1)125︒;(2)①2ABD EAF ∠=∠,见解析;②30或110︒【分析】(1)由平行线的性质可得到:DEA EAN =∠∠,MBA BAN =∠∠,再利用角的等量代换换算即可;(2)①设EAF α∠=,AED=DAE=β∠∠,利用角平分线的定义和角的等量代换表示出ABD ∠对比即可;②分类讨论点D 在B 的左右两侧的情况,运用角的等量代换换算即可.【详解】.解:(1)设在1l 上有一点N 在点A 的右侧,如图所示:∵12//l l∴DEA EAN =∠∠,MBA BAN =∠∠∴50AED DAE EAN ==︒∠=∠∠∴255050125BAN BAD DAE EAN =++=︒+︒+︒=︒∠∠∠∠125BAM =︒∠(2)①2ABD=EAF ∠∠.证明:设EAF α∠=,AED=DAE=β∠∠.∴+=+FAD EAF DAE αβ=∠∠∠.∵AF 为CAD ∠的角平分线,∴22+2CAD FAD αβ==∠∠.∵12l l ,∴EAN=AED=β∠∠.∴2+22CAN CAD DAE EAN αβββα=--=--=∠∠∠∠.∴=22ABD CAN EAF α∠∠==∠.②当点D 在点B 右侧时,如图:由①得:2ABD EAF ∠=∠又∵180ABD ABM +=︒∠∠∴2180ABM EAF +=︒∠∠∵150ABM EAF ∠+∠︒=∴18015030EAF =︒-︒=︒∠当点D 在点B 左侧,E 在B 右侧时,如图:∵AF 为CAD ∠的角平分线 ∴12DAF CAD =∠∠ ∵12l l∴AED NAE =∠∠,CAN ABE =∠∠∵DAE AED NAE ==∠∠∠ ∴11()22DAE DAE NAE DAN =+=∠∠∠∠ ∴11()(360)22EAF DAF DAE CAD DAN CAN =+=+=︒-∠∠∠∠∠∠ 11802ABE =︒-∠ ∵180ABE ABM +=︒∠∠ ∴11180(180)9022EAF ABM ABM =︒-︒-=︒+∠∠∠ 又∵150EAF ABM +=︒∠∠ ∴1190(150)16522EAF EAF EAF =︒+⨯︒-=︒-∠∠∠ ∴110EAF =︒∠当点D 和F 在点B 左侧时,设在2l 上有一点G 在点B 的右侧如图:此时仍有12DAE DAN=∠∠,12DAF CAD=∠∠∴11(360)1802211180(180)9022EAF DAE DAF CAN ABGABM ABM=+=︒-=︒-=︒-︒-=︒+∠∠∠∠∠∠∠∴110EAF=︒∠综合所述:30EAF∠=︒或110︒【点睛】本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键.7.(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠A解析:(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如图1,延长DE交AB于点F,根据AB//CD可得∠DFB=∠D,则∠DFB=∠A,可得AC//DF,根据平行线的性质得∠ACB+∠CEF=180°,由对顶角相等可得结论;(2)如图2,作EM//CD,HN//CD,根据AB//CD,可得AB//EM//HN//CD,根据平行线的性质得角之间的关系,再根据∠DEB比∠DHB大60°,列出等式即可求∠DEB的度数;(3)如图3,过点E作ES//CD,设直线DF和直线BP相交于点G,根据平行线的性质和角平分线定义可求∠PBM的度数.【详解】解:(1)如图1,延长DE交AB于点F,//AB CD,DFB D∴∠=∠,A D ∠=∠,A DFB ∴∠=∠,//AC DF ∴,180ACB CEF ∴∠+∠=︒,180ACB BED ∴∠+∠=︒,故答案为:180ACB BED ∠+∠=︒;(2)如图2,作//EM CD ,//HN CD ,//AB CD ,//////AB EM HN CD ∴,1180EDF ∴∠+∠=︒,MEB ABE ∠=∠, BG 平分ABE ∠,12ABG ABE ∴∠=∠, //AB HN ,2ABG ∴∠=∠,//CF HN ,23β∴∠+∠=∠, ∴132ABE β∠+∠=∠, DH 平分EDF ∠,132EDF ∴∠=∠, ∴1122ABE EDF β∠+∠=∠,1()2EDF ABE β∴∠=∠-∠, 2EDF ABE β∴∠-∠=∠,设DEB α∠=∠,1180180()1802MEB EDF ABE EDF ABE αβ∠=∠+∠=︒-∠+∠=︒-∠-∠=︒-∠,DEB ∠比DHB ∠大60︒,60αβ∴∠-︒=∠,1802(60)αα∴∠=︒-∠-︒,解得100α∠=︒.DEB ∴∠的度数为100︒;(3)PBM ∠的度数不变,理由如下:如图3,过点E 作//ES CD ,设直线DF 和直线BP 相交于点G ,BM 平分EBK ∠,DN 平分CDE ∠,12EBM MBK EBK ∴∠=∠=∠, 12CDN EDN CDE ∠=∠=∠, //ES CD ,//AB CD ,////ES AB CD ∴,DES CDE ∴∠=∠,180BES ABE EBK ∠=∠=︒-∠,G PBK ∠=∠,由(2)可知:100DEB ∠=︒,180100CDE EBK ∴∠+︒-∠=︒,80EBK CDE ∴∠-∠=︒,//BP DN ,CDN G ∴∠=∠,12PBK G CDN CDE ∴∠=∠=∠=∠, PBM MBK PBK ∴∠=∠-∠1122EBK CDE =∠-∠ 1()2EBK CDE =∠-∠ 1802=⨯︒ 40=︒.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.8.(1)①见解析;②垂;(2)见解析【分析】(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;②步骤(b )中,折纸实际上是在寻找过点的直线的垂线.(2)先根据解析:(1)①见解析;②垂;(2)见解析【分析】(1)①过P 点折纸,使痕迹垂直直线a ,然后过P 点折纸使痕迹与前面的痕迹垂直,从而得到直线b ;②步骤(b )中,折纸实际上是在寻找过点P 的直线a 的垂线.(2)先根据平行线的性质得到ABC BCD ∠=∠,再利用角平分线的定义得到23∠∠=,然后根据平行线的判定得到结论.【详解】(1)解:①如图2所示:②在(1)中的步骤(b )中,折纸实际上是在寻找过点P 的直线a 的垂线.故答案为垂;(2)证明:BE 平分ABC ∠,CF 平分BCD ∠(已知),12∠∠∴=,33∠=∠(角平分线的定义),//AB CD (已知),ABC BCD ∴∠=∠(两直线平行,内错角相等),2223∴∠=∠(等量代换),23∴∠=∠(等式性质),//BE CF ∴(内错角相等,两直线平行).【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质与判定.9.[探究] 70°;[应用] 35【分析】[探究]如图②,根据AB ∥CD ,∠AEP=50°,∠PFC=120°,即可求∠EPF 的度数.[应用]如图③所示,在[探究]的条件下,根据∠PEA 的平分线解析:[探究] 70°;[应用] 35【分析】[探究]如图②,根据AB ∥CD ,∠AEP=50°,∠PFC=120°,即可求∠EPF 的度数.[应用]如图③所示,在[探究]的条件下,根据∠PEA 的平分线和∠PFC 的平分线交于点G ,可得∠G 的度数.【详解】解:[探究]如图②,过点P 作PM ∥AB ,∴∠MPE=∠AEP=50°(两直线平行,内错角相等)∵AB∥CD(已知),∴PM∥CD(平行于同一条直线的两直线平行),∴∠PFC=∠MPF=120°(两直线平行,内错角相等).∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性质).答:∠EPF的度数为70°;[应用]如图③所示,∵EG是∠PEA的平分线,PG是∠PFC的平分线,∴∠AEG=12∠AEP=25°,∠GCF=12∠PFC=60°,过点G作GM∥AB,∴∠MGE=∠AEG=25°(两直线平行,内错角相等)∵AB∥CD(已知),∴GM∥CD(平行于同一条直线的两直线平行),∴∠GFC=∠MGF=60°(两直线平行,内错角相等).∴∠G=∠MGF-MGE=60°-25°=35°.答:∠G的度数是35°.故答案为:35.【点睛】本题考查了平行线的判定与性质、平行公理及推论,解决本题的关键是掌握平行线的判定与性质.10.(1)① ②;(2);(3)不变,,理由见解析;(4)【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1)①116,︒②CBN;(2)58︒;(3)不变,:2:1∠∠=,理由见解析;APB ADB(4)29.︒【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;∠ABN,即可求出结果;(2)由角平分线的定义可以证明∠CBD=12(3)不变,∠APB:∠ADB=2:1,证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论;(4)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数.【详解】解:(1)①∵AM//BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,故答案为:116°;②∵AM//BN,∴∠ACB=∠CBN,故答案为:CBN;(2)∵AM//BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣64°=116°,∴∠ABP+∠PBN=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;(3)不变,∠APB:∠ADB=2:1,∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM//BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°,故答案为:29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.三、解答题11.(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BA 解析:(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BAQ与∠ABQ 的和,最后在△ABQ中,根据三角形的内角各定理可求∠AQB的大小.第(2)题求∠P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解.【详解】解:(1)∠AQB的大小不发生变化,如图1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分别是∠BAO和∠ABO的角平分线,∴∠BAQ=12∠BAC,∠ABQ=12∠ABO,∴∠BAQ+∠ABQ=12 (∠ABO+∠BAO)=190452⨯=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如图2所示:①∠P的大小不发生变化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分别是∠BAE和∠ABP的角平分线,∴∠PAB=12∠EAB,∠PBA=12∠ABF,∴∠PAB+∠PBA=12 (∠EAB+∠ABF)=12×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不变,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=12∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题.12.【现象解释】见解析;【尝试探究】BEC 70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】β= 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.13.(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD解析:(1)∠A;70°;35°;(2)∠A=2n∠A n(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律;(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)当∠A为70°时,∵∠ACD-∠ABD=∠A,∴∠ACD-∠ABD=70°,∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,∴∠A1CD-∠A1BD=12(∠ACD-∠ABD)∴∠A1=35°;故答案为:A,70,35;(2)∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠A n,故答案为:∠A=2∠A n.(3)∵∠ABC+∠DCB=360°-(∠A+∠D),∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,∴360°-(α+β)=180°-2∠F,2∠F=∠A+∠D-180°,∴∠F=12(∠A+∠D)-90°,∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)①∠Q+∠A1的值为定值正确.∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD-∠A1BD=12∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=12(∠AEC+∠ACE)=12∠BAC,∴∠Q=180°-(∠QEC+∠QCE)=180°-12∠BAC,∴∠Q+∠A1=180°.【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.14.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求的结论得出∠α、∠1、∠2之间的关系即可;(3)利用三角外角的性质,得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出∠α、∠1、∠2之间的关系.试题分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案为140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案为∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如图③,设DP与BE的交点为M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如图④,设PE与AC的交点为F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α点睛:本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练掌握三角形外角的性质是解决问题的关键.15.(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.【分析】(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;(2)根据角平分线的定义得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.【分析】(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;(2)根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入计算即可;(3)与(2)的证明方法一样得到∠P=(2∠C+∠B).(4)根据三角形内角与外角的关系可得∠B+∠A=∠1,∠C+∠D=∠2,再根据四边形内角和为360°可得答案.【详解】解:(1)在图2中有3个以线段AC为边的“8字形”,故答案为3;(2)∵∠CAB和∠BDC的平分线AP和DP相交于点P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠BAC,∠BDP=∠BDC,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(∠B+2∠C),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为360°.。

2022-2023学年七年级数学下册期末模拟测试卷 解析卷

2022-2023学年七年级数学下册期末模拟测试卷  解析卷

2022-2023学年七年级数学下册期末模拟测试卷一、选择题(本大题共10小题,每一小题3分,共30分)1.在实数中,无理数是( )A.B .C .D .【答案】B【分析】无限不循环小数就是无理数,根据定义可得答案.【详解】解:无限不循环小数就是无理数,根据定义可得:是无理数.故选B.【点睛】本题考查的是无理数的认识,掌握无理数的定义即表现形式是解题关键.2.9的平方根是()A 、3B 、C 、D 、【答案】B.【解析】试题分析:此题主要考查了平方根的定义,易错点正确区别算术平方根与平方根的定义.根据平方根的定义:若一个数的平方等于a ,那么这个数就是数a 的平方根.∵(±3)2=9,∴±3是9的平方根.故选B.考点:平方根的定义.3.根据下列表述,能确定位置的是()A .人民剧院6排B .某市青年路C .北偏东50°D .东经118°,北纬38°【答案】D【解析】【分析】根据位置的确定需要两个条件对各选项分析判断即可得解.【详解】解:A 、人民剧院6排,没有说明列数,具体位置不能确定,故本选项错误;B 、某市青年路,没有具体位置(如多少号之类的信息)不能确定,故本选项错误;C 、北偏东50°,没有具体距离,位置不能确定,故本选项错误;D 、东经118°,北纬38°,位置明确,能确定位置,故本选项正确;1, 3.14,03-13 3.14-03±33±故选D .【点睛】本题考查了坐标确定位置,理解位置的确定需要两个条件是解题的关键.4.如图,,交于,,则的度数为( )A .54°B .46°C .45°D .44°【答案】D【分析】根据邻补角的定义可得,再根据两直线平行,同位角相等求解.【详解】解:∵,,∴,∵,∴.故选:D .【点睛】本题考查了平行线的性质和邻补角的定义,正确观察图形,熟练掌握平行线的性质是解题的关键.5.如图所示,把44张形状、大小完全相同的小长方形(长是宽的2倍)卡片既不重叠又无空隙地放在一个底面为长方形(长与宽的比为)的盒子底部边沿,则盒子底部未被卡片覆盖的长方形的长与宽的比为( )A .B .C .D .【答案】C【分析】设在长上放了x 张小长方形卡片,在宽上放了y 张小长方形卡片,根据四边共放了44张小长方形卡片且长与宽的比为6:5,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入【详解】解:设在长上放了x 张小长方形卡片,在宽上放了y张小长方形卡片,//AB CD AE CD C 136ECF ∠=︒A ∠18044ECD ECF ∠=︒-∠=︒180ECD ECF ∠+∠=︒136ECF ∠=︒18044ECD ECF ∠=︒-∠=︒//AB CD 44A ECD ∠=∠=︒6:55:410:914:137:6依题意,得:,解得:,∴盒子底部未被卡片覆盖的长方形的长与宽的比===,故选:C .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.6.在新型冠状病毒疫情期间,为阻断疫情向校园蔓延,确保师生生命安全和身体健康,全区坚持做到“停课不停学、学习不延期”,帮助学生制定科学的生活指南和学习指南,通过钉钉、微信、电子教材、在线课堂、网上批阅和答疑等现代信息技术手段帮助、指导学生在家有效复习和预习,确保学习成效.为最大限度地减轻延期开学对学生学业的影响,研究高效的在线课堂,某校数学教研组从全校名学生中随机抽取了部分学生对试行的某一课堂进行了“在线课堂学习效果”调查研究,把学习效果分成“优、良、中、差”四个等级,并进行统计,绘制了如图所示的两幅统计图,下列四个选项中错误的是( )A .抽取的样本容量为B .C .得到“良”和“中”的总人数占抽取人数的百分比为D .全校得到“差”的人数估计有人【答案】D【分析】由条形图可知总人数即可判断A ;由优的人数总人数再乘以360度可求得优的圆心角,即可判断B ;由良和中的人数和总人数再乘以100%可求得百分比,即可判断C ;由差的人数除以总人数再乘以全校总人数可求得答案,即可判断D .【详解】解:A.由图知,共有:7+10+8+5=30,此项正确;22444265x y x y +-=⎧⎪⎨=⎪⎩915x y =⎧⎨=⎩()222x y --()292152⨯--141315003084a =o 60%300÷÷B.,此项正确;C. 得到“良”和“中”的总人数占抽取人数的百分比为,此项正确;D. 全校得到“差”的人数估计有人,此项错误.故选D .【点睛】本题考查了条形图及扇形统计图的综合,能够从图中得出相关信息是解题的关键.7.若m <n ,则下列不等式不成立的是( )A .B .C .D .【答案】B【解析】【分析】根据不等式的基本性质分别对每一项进行分析,即可得出答案.【详解】A .∵m <n ,∴1+m <1+n ,∴1+m <2+n ,正确,不合题意;B .∵m <n ,∴2﹣m >2﹣n ,故此选项错误,符合题意;C .∵m <n ,∴3m <3n ,正确,不合题意;D .∵m <n ,∴,正确,不合题意.故选B .【点睛】本题考查了不等式的基本性质.掌握不等式的基本性质是本题的关键,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.8.如图,一个机器人从点O 出发,向正西方向走2m 到达点A 1;再向正北方向走4m 到达点A 2,再向正东方向走6m 到达点A 3,再向正南方向走8m 到达点A 4,再向正西方向走10m 到达点A 5,按如此规律走下去,当机器人走到点A 9时,点A 9在第( )象限7=360=8430α∠⨯︒︒108100%=60%30+⨯51500=25030⨯1m 2n+<+2m 2n -<-3m 3n <m n 55<55m n <A .一B .二C .三D .四【答案】C【分析】每个象限均可发现点A 脚标的规律,再看点A 9符合哪个规律即可知道在第几象限.【详解】由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n ;第二象限的规律为:2,6,10,14,18,22,26,…,2+4n ;第三象限的规律为:1,5,9,13,17,21,25,…,1+4n ;第四象限的规律为:4,8,12,16,20,24,…,4n ;所以点A 9符合第三象限的规律.故选:C .【点睛】本题考查规律型:点的坐标问题,解题的关键是发现规律,利用规律解决问题,本题的突破点是判定A 9在第三象限,属于中考常考题型.9.二元一次方程组的解为( )A .B .C .D .【答案】C【解析】试题分析:根据加减消元法,可得方程组的解.①+②,得 3x=9,解得x=3,把x=3代入①,得3+y=5,y=2,所以原方程组的解为考点:二元一次方程组的解.10.如果关于的不等式组仅有四个整数解:-1,0,1,2,那么适合这个为等式组的整数组成的有序实数对最多共有()x 2030x m n x -≥⎧⎨-≥⎩m n 、(),m nA .2个B .4个C .6个D .9个【答案】C【分析】先求出不等式组的解集,得出关于m 、n 的不等式组,求出整数m 、n 的值,即可得出答案.【详解】∵解不等式得:,解不等式得:,∴不等式组的解集是,∵关于x 的不等式组的整数解仅有-1,0,1,2,∴,,解得:,,即的整数值是-3,-2,的整数值是6,7,8,即适合这个不等式组的整数m ,n 组成的有序数对(m ,n)共有6个,是(-3,6),(-3,7),(-3,8),(-2,6),(-2,7),(-2,8).故选:C .【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出m 、n 的值.二、填空题(本大题共6小题,每一小题3分,共18分)11.某数的平方根是2a+3和a-15,则这个数为______ .【答案】49【分析】一个正数有两个平方根,且互为相反数,由于互为相反数的两个数相加得0,因此列出关于a 的方程,求出方程的解得到a 的值,确定出平方根的值,即可求出这个数.【详解】解:根据题意得:2a+3+a−15=0,解得:,当时,,所以这个数为49.故答案为49.20x m -≥2m x ≥30n x -≥3n x ≤23m n x ≤≤212m -<≤-233n ≤<42m -<≤-69n ≤<m n 4a =4a =212417a -=⨯-=【点睛】本题主要考查了平方根,熟练掌握平方根的定义是解题的关键.12.已知点,点的坐标为,直线轴,则的值是__________.【答案】【分析】根据AB ∥y 可知,A 点和B 点横坐标相等,然后把B 点横坐标代入A 点即可求出a 值.【详解】根据AB ∥y 可知,A 点和B 点横坐标相等,都为1,所以a-2=1,a=3【点睛】本题考查直线与坐标的位置关系,学生们掌握当与y 轴平行时,横坐标是相等的.13.某校学生来自A 、B 、C 三个地区,其人数比是2:5:3,如图,扇形图表示上述分布情况,代表C 地区扇形圆心角是_____.【答案】108°【分析】用C 地区所占百分比乘以360°即可求得答案.【详解】解:代表C 地区扇形圆心角的度数为:故答案为:108°.【点睛】本题考查扇形统计图、解题的关键是熟练掌握基本知识,属于中考基础题.14.若关于,的方程组的解满足,则的值为_____.【答案】3【分析】把方程组的两个方程相加,得到3x+3y=6m ,结合x+y=6,即可求出m 的值.【详解】∵,(2,27)A a a -+B (1,5)//AB y a 33360108,253︒⨯=︒++x y 225y x m x y m +=⎧⎨+=⎩6x y +=m 225y x m x y m +=⎧⎨+=⎩∴3x+3y=6m,∴x+y=2m,∵x+y=6,∴2m=6,∴m=3,故答案为3.【点睛】本题主要考查了二元一次方程组的解.解答本题的关键是把方程组的两个方程相加得到x,y与m的一个关系式. 15.如图,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35°,那么∠BED的度数为_______.【答案】70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为70°.【点睛】本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题16.为积极响应党和国家精准扶贫战略计划,某公司在农村租用了 720亩闲置土地种植了乔 木型、小乔木型和灌木型三种茶树. 为达到最佳种植收益,要求种植乔木型茶树的面积是小乔木型茶树面积的2倍,灌木型茶树的面积不得超过乔木型茶树面积的倍,但种植乔木型茶树的面积不得超过270亩. 到茶叶采摘季节时,该公司聘请当地农民进行采摘,每人每天可以采摘0.4亩乔木型茶叶,或者采摘0.5亩小乔木型茶叶,或者采摘0.6亩灌木型茶叶. 若该公司聘请一批农民恰好20天能采摘完所有茶叶,则种植乔木型茶树的面积是________亩.【答案】260.【分析】设种植小乔木型茶树x 亩,根据种植乔木型茶树的面积是小乔木型茶树面积的2倍,灌木型茶树的面积不得超过乔木型茶树面积的倍列出不等式,从而求出x 的取值范围;再所设公司聘请农民m 人,采摘乔木型茶叶a 天,采摘小乔木型茶叶b 天,采摘灌木型茶叶(20-a-b )天,列出相应等式,消去a 和b 得出m 与x 关系,再代入前面所求的x 的取值范围,求出m 的取值范围,利用m 为整数的特征最终求出m 的值,再求出x 的值.【详解】解:设种植小乔木型茶树x 亩,则乔木型茶树2x 亩、和灌木型茶树(720-3x )亩;公司聘请农民m 人,采摘乔木型茶叶a 天,采摘小乔木型茶叶b 天,采摘灌木型茶叶(20-a-b )天,依题意得:解得∵每人每天可以采摘0.4亩乔木型茶叶,或者采摘0.5亩小乔木型茶叶,或者采摘0.6亩灌木型茶叶,∴∴∴∴∵m 为人数,应为整数,∴m=73∴=130∴2x=260∴种植乔木型茶树的面积是260亩.故答案为260.757577203252270x x x ⎧-≤⨯⎪⎨⎪≤⎩360013529x ≤≤()0.420.50.6207203ma x mb x m a b x ⎧=⎪=⎨⎪--=-⎩10600x m =-36001060013529m ≤-≤72.473.5m ≤≤1073600x =⨯-本题考查了不等式的实际应用,假设辅助未知数列出不等式和方程,利用未知数的整数特征是解题的关键,本题难度较大.三、解答题(本大题共9小题,其中第17、18题各6分,第19、20、21、22题各8分,第23、24题各9分,第25题10分,共72分)17.解下列方程组:(1) (2)【答案】(1);(2)【分析】(1)利用代入消元法即可容易求得;(2)整理化简后,利用加减消元法即可容易求得.【详解】(1)把,代入,可得,解得,将代入,可得.故方程组的解为.(2)把两边同时乘以6可得,与相减可得,解得;代入,可得.故方程组的解为.【点睛】本题考查方程组的求解,属基础题.18.解不等式组,并把它的解集在数轴上表示出来.【答案】2<x <4,数轴见解析21437x y x y =-⎧⎨+=⎩11233210x y x y +⎧-=⎪⎨⎪+=⎩11x y ==,30.5x y ==,21x y =-437x y +=8437y y -+=1y =1y =21x y =-1x =1.1x y =⎧⎨=⎩1123x y +-=328x y -=3210x y +=42y -=-0.5y =328x y -=3x =3.0.5x y =⎧⎨=⎩3(2)64113x x x x -->⎧⎪-⎨+>⎪⎩【分析】先求出不等式组的解集,再在数轴上表示不等式组的解集即可.【详解】∵解不等式①得:x >2,解不等式②得:x <4,∴不等式组的解集为:2<x <4,在数轴上表示为:【点睛】此题主要考查不等式组的解集以及数轴的表示,熟练掌握,正确计算是解题的关键.19.如图,将三角形ABC 向右平移3个单位长度,再向下平移2个单位长度,得到对应的三角形A 1B 1C 1.(1)画出三角形A 1B 1C 1并写出点A 1、B 1、C 1的坐标.(2)求三角形A 1B 1C 1的面积.【答案】A 1(1,3)、B 1(-2,-4)、C 1(6,1)(2)【分析】(1)根据平移规律找到A 1,B 1,C 1,顺次连接即可,(2)三角形A 1B 1C 1的面积等于矩形减去四周三个直角三角形的面积.【详解】解:见下图,3(2)64113x x x x -->⎧⎪⎨-+>⎪⎩①②412有图可知A 1(1,3)、B 1(-2,-4)、C 1(6,1)(2)S △A1B1C1=8×7---=【点睛】本题考查了三角形的平移,属于简单题,作出平移之后的图形,熟悉坐标系中三角形的面积可以通过矩形减去四周的三个直角三角形来表示是解题关键.20.年底至年初我国爆发了新冠肺炎疫情.为了增加学生对疫情和新冠肺炎预防知识的了解,某学校利用网络开展了相关知识的宣传教育活动,为了解这次的宣传效果,学校从全校名学生中随机抽取名学生进行知识测试(满分分,得分均为整数),并根据这人的测试成绩,绘制如下统计图表:名学生成绩的扇形统计图名学生成绩的频数表等级成绩/分频数/人(1)_____,_____;(2)成绩最好的等级所占的百分比______;等级在扇形图中所对应的圆心角的度数为_______.(3)如果分以上(包括分)为优秀,请估计全校名学生中成绩优秀的人数.522⨯582⨯732⨯412201920203600200100200200200E5060a ≤<20D 6070a ≤<30C 7080a ≤<m B 8090a ≤<n A90100a ≤≤30m =n =A E 80803600【答案】(1),;(2);;(3)人【分析】(1)根据扇形统计图中B 占的度数,结合题意,即可计算得n 的值;再根据随机抽取名学生进行知识测试,即可计算得m 的值;(2)等级对应学生数量和随机抽取名学生的比值,即可得成绩最好的等级所占的百分比;等级对应学生数量和随机抽取名学生的比值,乘以 ,即可得等级在扇形图中所对应的圆心角的度数;(3)根据用样本估计总体的性质计算,即可得到答案.【详解】(1)根据题意得: ∵故答案为:,;(2)成绩最好的等级所占的百分比为:等级在扇形图中所对应的圆心角的度数为;故答案为:;(3)随机抽取名学生中,分以上(包括分)的比例为: 则全校名学生中成绩优秀的人数估计为∴估计全校名学生中成绩优秀的人数为人.【点睛】本题考查了抽样调查的知识;解题的关键是熟练掌握扇形统计图、频率、样本估计总体的性质,从而完成求解.21.若关于x 、y 的二元一次方程组和有相同的解,求 的值.【答案】1.【解析】【分析】联立不含a 与b 的方程求出x 与y 的值,代入求出a 与b 的值,即可求出所求式子的值.【详解】解:由题意可知 和 408015%36︒1980200A 200A E 200360 E 14420080360n =⨯= ()2002030803020016040m =-+++=-=40m =80n =A 30100%15%200⨯=E 2036036200⨯= 15%36︒200808080301120020+=3600113600198020⨯=3600198025264x y ax by +=-⎧⎨-=-⎩35368x y bx ay -=⎧⎨+=-⎩2010(2)a b +25263536x y x y +=-⎧⎨-=⎩①②48ax by bx ay -=-⎧⎨+=-⎩将,得解得将,代入①,得∴ 将分别代入得 将,得 ⑤将,得将代入③,得∴ ∴ .故答案为:1.【点睛】本题考查二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.22.近年来,由于土地沙化日渐加剧,沙尘暴频繁,严重影响国民生活. 为了解某地区土地沙化情况,环保部门对该地区进行了连续四年跟踪观测,所记录的近似数据如下表:观测时间第1年第2年第3年第4年沙漠面积90万亩90.2万亩90.4万亩90.6万亩(1)根据表中提供的信息,在不采取任何措施的情况下, 试定出该地区沙漠面积y (万亩)与x (年数)之间的关系式(用含x 的式子表示y ),并计算到第20 年时该地区的沙漠面积;(2)为了防沙治沙,政府决定投入资金,鼓励农民植树种草,经测算,植树1亩需资金200元,种草1亩需资金100元.某组农民计划在一年内完成2400亩绿化任务.在实施中,由于实际情况所限,植树完成了计划的90%,种草超额完成了计划的20%,恰好完成了计划的绿化任务,那么所节余的资金还能植树多少亩?【答案】(1) y=0.2x+89.8, 93.8万亩;(2) 80亩.【解析】【分析】(1) 根据每过一年沙漠面积都增加0.2万亩的规律列出一次函数,再根据待定系数法求出函数,最后将x=20代入即可.+①②510x =2x =2x =6y =-26x y =⎧⎨=-⎩26x y =⎧⎨=-⎩48ax by bx ay -=-⎧⎨+=-⎩264268a b b a +=-⎧⎨-=-⎩③④3③×61812a b +=-+④⑤2020b =-1b =-1b =-1a =11a b =⎧⎨=-⎩20102010(2)(21)1a b +=-=(2)由等量关系得出方程组求出农民计划一年的植树量和种草的面积,再计算出计划和实际种树和种草所需费用的差,进而求出节余资金还能植树多少亩.【详解】(1)由表中提供的信息,可得y=90+0.2(x-1),即y=0.2x+89.8.当x=20时,y=0.2×20+89.8=93.8(万亩);(2)设该组农民1年植树x 亩,种草y 亩,依题意,得解得.由此可算出应投入资金为400000元,所用去资金为384000元,节余资金为16000元,还能植树80亩【点睛】此题考查二元一次方程和二元一次方程组的应用,解题的关键是读懂题意,得到二元一次方程和二元一次方程组.23.在括号中填写理由.如图,已知∠B+∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B+∠BCD =180°( )∴AB ∥CD ( )∴∠B = ( )又∵∠B =∠D (已知 ),∴∠D = ( )∴AD ∥BE ( )∴∠E =∠DFE ( )【答案】见详解.【分析】本题主要根据平行线的判定和性质来填写依据.【详解】证明:∵∠B+∠BCD=180°(已知),∴AB ∥CD ( 同旁内角互补,两直线平行)∴∠B=∠DCE ( 两直线平行,同位角相等)又∵∠B=∠D ( 已知 ),∴∠D=∠DCE ( 等量代换)∴AD ∥BE ( 内错角相等,两直线平行)∴∠E=∠DFE ( 两直线平行,内错角相等);故答案为:已知;同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;∠DCE;等量代换;内错角相等,2400,90%(120%)2400.x y x y +=⎧⎨∙++∙=⎩1600800x y =⎧⎨=⎩两直线平行;两直线平行,内错角相等.【点睛】解答此题的关键是注意平行线的性质和判定定理的综合运用.关键是分清角的位置关系.24.如图,点C 为线段AB 上一点,AB =30,且AC - BC =10.(1)求线段AC 、BC 的长.(2)点P 从A 点出发,以1个单位/秒的速度在线段AB 上向B 点运动,设运动时间为t 秒(),点D 为线段PB 的中点,点E 为线段PC 的中点,若CD=DE ,试求点P 运动时间t 的值.(3)若点D 为直线AB 上的一点,线段AD 的中点为E ,且,求线段AD 的长.【答案】(1);(2)或;(3)的长为:或【分析】(1)由, 再两式相加,即可得到 再求解即可;(2)以为原点画数轴,再利用数轴及数轴上线段的中点知识分别表示对应的数,由CD =DE ,利用数轴上两点之间的距离公式建立绝对值方程,解方程可得答案;(3)以为原点画数轴,分三种情况讨论,当在的左侧,当在线段上,当在的右侧,利用数轴与数轴上线段的中点知识,结合数轴上两点之间的距离分别表示 再利用建立方程,解方程即可得到答案.【详解】解:(1) AB =30,①又AC BC =10②,①+②得:20t <2512AD BD CE -=20,1014t =6t =AD 1609160.30AC BC +=10AC BC -=,AC ,BC A ,,,,,A C B P D E 25A D A D AB D B ,,AD BD CE ,1,2AD BD CE -= 30AC BC ∴+=-240,AC =20AC ∴=,10.BC ∴=(2)如图,以为原点画数轴,则对应的数分别为:,点D 为线段PB 的中点,对应的数为: 点E 为线段PC 的中点,对应的数为: , CD =DE , 或 解得:或.由,经检验:或都符合题意.(3)如图,以为原点画数轴,设对应的数为,当在的左侧时,< 舍去,当在上时,A ,,,,A P CB 0,,20,30t D ∴()1130+15,22t t =+ E ∴()1120+10,22t t =+1115205,22CD t t ∴=+-=-11111510151052222DE t t t t ⎛⎫=+-+=+--= ⎪⎝⎭ 251255,25t ∴-=⨯152,2t ∴-=1522t ∴-=152,2t -=-14t =6t =20t <14t =6t =A D m D A AD BD -0,12AD BD CE ∴-≠,D AB线段AD 的中点为E ,对应的数为: 此时在上, 当在的右侧时,如图,同理: 或 解得:(舍去),E ∴()110,22m m +=E AC ,30,AD m BD m ∴==-120,2CE m =-1,2AD BD CE -= ()113020,22m m m ⎛⎫∴--=- ⎪⎝⎭123010,4m m ∴-=-940,4m ∴=160,9m ∴=1609AD ∴=D B ,30,AD m BD m ==-120,2CE m =-1,2AD BD CE -= ()113020,22m m m ∴--=-12060,2m ∴-=120602m ∴-=12060,2m -=-80m =-160,m =160AD ∴=,综上:的长为:或【点睛】本题考查的是线段的和差问题,动点问题,数轴及数轴上线段的中点对应的数,两点之间的距离,绝对值方程,一元一次方程的应用,分类讨论的数学思想,掌握以上知识是解题的关键.25.使方程(组)与不等式(组)同时成立的末知数的值称为此方程(组)和不等式(组)的“理想解”.例:已知方程2x ﹣3=1与不等式x+3>0,当x =2时,2x ﹣3=2x2﹣3=1,x+3=2+3=5>0同时成立,则称“x =2”是方程2x ﹣3=1与不等式x+3>0的“理想解”.(1)已知①x ﹣>,②2(x+3)<4,③,试判断方程2x+3=1的解是否为它与它们中某个不等式的“理想解”;(2)若是方程x ﹣2y =4与不等式的“理想解”,求x 0+2y 0的取值范围;(3)当实数a 、b 、c 满足a <b <c 且a+b+c =0时,x =m 恒为方程ax =c 与不等式组的“理想解”,求t 、s 的取值范围.【答案】(1)方程2x+3=1的解是的“理想解”;(2)2<x 0+2y 0<8;(3)t >﹣3,s≤2.【分析】(1)先解方程2x+3=1的解为x=﹣1,再判断x=﹣1是哪些不等式的解便可得出结论;(2)把代入x ﹣2y=4得x 0与y 0的关系式,再代入不等式组求得y 0的取值范围,进而求得结果;(3)先由a <b <c 且a+b+c=0得出a 、c 的取值范围,把x=m 代入方程ax=c 中,得出m 的取值范围,把x=m 代入不等式组得m 的不等式组,进而根据m 的取值范围得出t 与s 的不等式组,进而用巧妙的办法解此不等式组便可得出答案.【详解】(1)方程2x+3=1的解为x=﹣1,当x=﹣1时,①x ﹣>不成立;②2(x+3)<4不成立;③成立;AD 1609160.1232132x -<00x x y y =⎧⎨=⎩31x y >⎧⎨<⎩1442x t s x t s -≥+⎧⎨-≤+⎩132x -<00x x y y =⎧⎨=⎩31x y >⎧⎨<⎩1442x t s x t s -≥+⎧⎨-≤+⎩1232132x -<∴方程2x+3=1的解是的“理想解”;(2)把代入x ﹣2y=4得﹣2=4,则=2+4,把=2+4代入不等式组,得,解得,﹣<<1,∴﹣1<2<2,则﹣1+4<2<2+4,∴3<x 0<6,∴2<x 0+2y 0<8;(3)∵a <b <c 且a+b+c=0,∴a <0,c >0,把x=m 代入方程ax=c 中,得m=<0,把x=m 代入不等式组得,解得,,∵x=m 恒为方程ax=c 与不等式组的“理想解”,∴x=m 使t+s+1≤m≤恒成立,∴t+s+1<0≤,∴s <﹣t ﹣1,且s≥﹣2t ﹣4或t <﹣s ﹣1,且t≥,∴﹣t ﹣1>﹣2t ﹣4或﹣s ﹣1≥,解得:t >﹣3,s≤2.【点睛】本题主要考查了不等式(组)的解法,一次方程的解法,新定义,关键是根据新定义,正确建立新的不等式组.132x -<00x x y y =⎧⎨=⎩0x 0y 0x 0y 0x 0y 31x y >⎧⎨<⎩002431y y +>⎧⎨<⎩120y 0y 04y +c a1442x t s x t s -≥+⎧⎨-≤+⎩1244m t s t s m ≥++⎧⎪⎨++≤⎪⎩2414t s t s m ++++≤≤1442x t s x t s -≥+⎧⎨-≤+⎩244t s ++244t s ++42s --42s --。

【人教版】数学七年级下学期《期末考试卷》有答案解析

【人教版】数学七年级下学期《期末考试卷》有答案解析

人教版数学七年级下学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列运算,正确的是( )A. (-a3b)2=a6b2B. 4a-2a=2C. a6÷a3=a2D. (a-b)2=a2-b22. 下列图形中不是轴对称图形的是()A. B. C. D. 3. 如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是A. 15° B. 25° C. 35° D. 45°4. 一辆汽车和一辆摩托车分别从A、B两地去同一城市,它们离A地的距离随时间变化的图像如图所示.则下列结论错误..的是( ) A. 摩托车比汽车晚到1 h B. A、B两地的距离为20 km C. 摩托车的速度为45 km/h D. 汽车的速度为60 km/h5. 若一个三角形的两边长分别为5和8,则第三边长可能是( )A. 14B. 10C. 3D. 26. 在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为( ) A. 2 B. 3 C. 4 D. 127. 如图,在△ABC 中,AB =AC,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( ) A. 30°B. 45°C. 50°D. 75° 8. 如图,//AB CD ,BE 和CE 分别平分ABC ∠和BCD ∠,AD 过点E ,且与AB 互相垂直,点P 为线段BC 上一动点,连接PE .若8AD =,则PE 的最小值为( )A . 8B. 6C. 5D. 4 二、填空题9. 已知()22116x m x -++能变形为()24x -,则m 值为_____. 10. 如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是____________.11. 如图,CD 是ABC 的边AB 上的高,且28AB BC ==,点B 关于直线CD 的对称点恰好落在AB 的中点E 处,则BEC △的周长为_____.12. 李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD,设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是_________________.13. 如图,直线EF 与CD 相交于点O ,OA OB ⊥,且OC 平分AOF ∠,若40AOE ∠︒=,则BOD ∠的度数为_____.14. 在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为________.15. 如图,在ABC 中,AB AC =,点D 为BC 中点,35BAD ∠=︒,则C ∠的度数为_____.16. 已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.三、解答题17. 计算:(1)213314()2()22--⨯--÷-;(2)22019201820201-⨯+ (运用整式乘法公式计算).18. 化简:(1)()()211x x x +-+;(2)()()()()222a b a b a b a b +----. 19. 先化简,再求值:()()()()222x y x y x y y x y y ⎡⎤+--⎣-⎦-+÷,其中1x =,3y -=. 20. 如图,已知AD BC ⊥,EF BC ⊥,3C ∠∠=,试说明:12∠∠=.请将以下不完整的推理过程补充完整:解:因AD BC ⊥,EF BC ⊥, 所以90ADC EFC ∠∠︒==,根据“同位角相等,两直线平行”,所以//AD EF ,根据“ ”,所以1CAD ∠∠=. 因为3C ∠∠=,根据“ ”,所以//DG ,根据“ ”,所以2CAD ∠∠=.所以12∠∠=.21. 某数学活动小组在研究蜡烛燃烧时间与剩余长度之间关系时,通过实验得出如表所示的相关数据: 燃烧时间x/分 010 20 30 …剩余长度y/厘米2018 16 14 … (1)蜡烛每分钟燃烧的长度是 cm ;(2)若蜡烛燃烧的长度为p (厘米),写出燃烧的长度p 与燃烧时间x 之间的关系式;(3)写出剩余长度y 与燃烧时间x 之间的关系式;(4)求这只蜡烛多长时间后全部燃尽?22. 如图,BC CA ⊥,BC CA =,DC CE ⊥,DC CE =,直线BD 与AE 相交于点F ,与AC 相交于点G .(1)BCD △与ACE △全等吗?请说明理由;(2)试判断BF 与AE 的位置关系,并说明理由.23. 某商场文具专柜为了吸引顾客,设立了一个可以自由转动的转盘(转盘被等分成16份),如图所示,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、蓝色、绿色区域,顾客获得的奖品分别为玩具熊、童话书、彩色笔、文具盒.若甲顾客购物消费125元,乙顾客购物消费89元,请解答以下问题:(1)甲顾客获得一次转动转盘机会的概率为,乙顾客获得一次转动转盘机会的概率为.(2)甲顾客获得哪种奖品的概率最大?请说明理由.24. 已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,(1)如图1,①线段CD和BE的数量关系是;②请写出线段AD,BE,DE之间的数量关系并证明.(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.参考答案一、选择题1. 下列运算,正确的是( )A. (-a3b)2=a6b2B. 4a-2a=2C. a6÷a3=a2D. (a-b)2=a2-b2【答案】A【解析】A.结果是a6b2,故本选项正确;B.结果是2a,故本选项错误;C.结果是a3,故本选项错误;D.结果是a2−2ab+b2,故本选项错误;故选A.2. 下列图形中不是轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念对各图形分析判断即可.【详解】A、此选项中的图形是轴对称图形,故不符合题意;B、此选项中的图形不是轴对称图形,故符合题意;C、此选项中的图形是轴对称图形,故不符合题意;D、此选项中的图形是轴对称图形,故不符合题意,故选:B.【点睛】本题考查了轴对称图形的概念,理解轴对称图形的概念,寻找到对称轴是解答的关键.3. 如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是A. 15°B. 25°C. 35°D. 45°【答案】C【解析】分析:如图,∵直尺的两边互相平行,∠1=25°, ∴∠3=∠1=25°.∴∠2=60°﹣∠3=60°﹣25°=35°.故选C.4. 一辆汽车和一辆摩托车分别从A、B两地去同一城市,它们离A地的距离随时间变化的图像如图所示.则下列结论错误..的是( )A. 摩托车比汽车晚到1 hB. A、B两地的距离为20 kmC. 摩托车的速度为45 km/hD. 汽车的速度为60 km/h【答案】C【解析】试题分析:分析图象可知A、4-3=1,摩托车比汽车晚到1h,故选项正确;B、因为汽车和摩托车分别从A,B两地去同一城市,从y轴上可看出A,B两地的路程为20km,故选项正确;C、摩托车的速度为(180-20)÷4=40km/h,故选项错误;D、汽车的速度为180÷3=60km/h,故选项正确.故选C.考点:函数的图象.5. 若一个三角形的两边长分别为5和8,则第三边长可能是()A. 14B. 10C. 3D. 2【答案】B【解析】【分析】【详解】设第三边是x,由三角形边的性质可得:8-5<x<8+5,∴3<x<13.所以选B.6. 在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为()A. 2B. 3C. 4D. 12 【答案】B【解析】试题分析:首先设袋中白球的个数为x个,然后根据概率公式,可得15344x++=,解得:x=3.经检验:x=3是原分式方程的解.∴袋中白球的个数为3个.故选B.考点:概率公式.7. 如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A. 30°B. 45°C. 50°D. 75°【答案】B【解析】 试题解析:∵AB =AC ,∠A =30°,∴∠ABC =∠ACB =75°,∵AB 的垂直平分线交AC 于D ,∴AD =BD ,∴∠A =∠ABD =30°,∴∠BDC =60°,∴∠CBD =180°﹣75°﹣60°=45°.故选B . 8. 如图,//AB CD ,BE 和CE 分别平分ABC ∠和BCD ∠,AD 过点E ,且与AB 互相垂直,点P 为线段BC 上一动点,连接PE .若8AD =,则PE 的最小值为( )A. 8B. 6C. 5D. 4【答案】D【解析】【分析】 根据平行线定理判定AD CD ⊥,再有垂线段最短性质,作出辅助线,最后由角平分线性质解题即可.【详解】//AB CD AD AB ⊥,,AD CD ∴⊥,根据垂线段最短的原则,得,当PE BC ⊥时, PE 取最小值,如图,BE 和CE 分别平分ABC ∠和BCD ∠PE AE PE DE ∴==,,8AD =142PE AE DE AD ∴==== 故选:D .【点睛】本题考查平行线定理、垂线段最短性质、角平分线性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.二、填空题9. 已知()22116x m x -++能变形为()24x -,则m 的值为_____. 【答案】3【解析】【分析】根据完全平方公式的结构可知m+1=4,解之即可.【详解】∵()24x -=2816x x -+,∴()22116x m x -++=2816x x -+, ∴2(1)8m -+=-,即m+1=4,解得:m=3,故答案为:3.【点睛】本题考查了完全平方公式,熟记完全平方公式是解答的关键.10. 如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是____________.【答案】4【解析】试题分析:由中线性质,可得AG=2GD,则11212111222232326BGF CGE ABG ABD ABC S S S S S ===⨯=⨯⨯=⨯=,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.考点:中线的性质.11. 如图,CD 是ABC 的边AB 上的高,且28AB BC ==,点B 关于直线CD 的对称点恰好落在AB 的中点E 处,则BEC △的周长为_____.【答案】12.【解析】【分析】由轴对称的性质可知:BC=CE=4,由点E 是AB 的中点可知BE=12AB=4,从而可求得答案. 【详解】解:∵点B 与点E 关于DC 对称,∴BC=CE=4.∵E 是AB 的中点,∴BE=12AB=4. ∴△BEC 的周长12.故答案为:12.【点睛】本题主要考查的是轴对称的性质,由轴对称图形的性质得到BC=CE=4是解题的关键.12. 李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD,设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是_________________.【答案】y =-12x +12(0<x <24) 【解析】【分析】 根据题意可得2y+x=24,继而可得出y 与x 之间的函数关系式,及自变量x 的范围.【详解】解:根据题意可知,AB+BC+CD=24,即:2y+x=24.所以,y=2411222x x -=-+. 且x >0,11202x -+> 解得:0<x <24故答案为1122y x =-+(0<x <24). 【点睛】此题考查了根据实际问题列一次函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.13. 如图,直线EF 与CD 相交于点O ,OA OB ⊥,且OC 平分AOF ∠,若40AOE ∠︒=,则BOD ∠的度数为_____.【答案】20º.【解析】【分析】根据OA ⊥OB 可知∠AOB =90°,根据∠AOE =40°,OC 平分∠AOF ,∠AOF +∠AOE =180°,求出∠BOD 的大小.【详解】解:∵OA ⊥OB ,∴∠AOB =90°,又∵∠AOE =40°,∴∠AOF =180°−40°=140°,又∵OC 平分∠AOF ,∴∠AOC =12×140°=70°,∴∠BOD =180°−90°−70°=20°.故答案为:20°.【点睛】本题考查了角的计算,垂线、角平分线、邻补角.解题的关键的掌握角的计算方法,涉及垂线、角平分线、邻补角等概念,是一道关于角的综合题.14. 在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为________.【答案】14 【解析】试题分析:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据旋转的性质易证阴影区域的面积=正方形面积4份中的一份,故针头扎在阴影区域的概率为14;故答案为14. 考点:几何概率.15. 如图,在ABC 中,AB AC =,点D 为BC 中点,35BAD ∠=︒,则C ∠的度数为_____.【答案】55°【解析】【分析】由等腰三角形的三线合一性质可知∠BAC=70°,再由三角形内角和定理和等腰三角形两底角相等的性质即可得出结论.【详解】解:AB=AC ,D 为BC 中点,∴AD 是∠BAC 的平分线,∠B=∠C ,∵∠BAD=35°,∴∠BAC=2∠BAD=70°,∴∠C=12(180°-70°)=55°. 故答案为:55°.【点睛】本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键. 16. 已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.【答案】1或7.【解析】【分析】存在2种情况满足条件,一种是点P 在BC 上,只需要BP=CE 即可得全等;另一种是点P 在AD 上,只需要AP=CE 即可得全等【详解】设点P 的运动时间为t 秒,当点P 在线段BC 上时,则2BP t =,∵四边形ABCD 为长方形,∴AB CD =,90B DCE ∠=∠=︒,此时有ABP DCE ∆∆≌,∴BP CE =,即22t =,解得1t =;当点P 在线段AD 上时,则2BC CD DP t ++=,∵4AB =,6AD =,∴6BC =,4CD =,∴()()6462162AP BC CD DA BC CD DP t t =++-++=++-=-,∴162AP t =-,此时有ABP CDE ∆∆≌,∴AP CE =,即1622t -=,解得7t =;综上可知当t 为1秒或7秒时,ABP ∆和CDE ∆全等.故答案为:1或7.【点睛】本题考查动点问题,解题关键是根据矩形的性质可得,要证三角形的全等,只需要还得到一条直角边相等即可三、解答题17. 计算:(1)213314()2()22--⨯--÷-;(2)22019201820201-⨯+ (运用整式乘法公式计算).【答案】(1)-5;(2)2.【解析】【分析】(1)先乘方,再乘除,最后算加减,注意负数的偶次方为正,负数的奇次方为负;(2)将20182020⨯转化成(20191)(20191)-+,再结合平方差公式计算即可. 【详解】计算:(1)解:原式=9114428-⨯-÷-() =94-+=-5;(2)解:原式=22019(20191)(20191)1--++=222019201911-++=2.【点睛】本题考查实数的混合运算、平方差公式等知识,是重要考点,难度较易,掌握相关知识是解题关键. 18. 化简:(1)()()211x x x +-+;(2)()()()()222a b a b a b a b +----.【答案】(1)1x +;(2)254ab b -【解析】分析】(1)先利用完全平方公式、单项式乘以多项式运算法则进行计算,再合并同类项即可解答;(2)先利用平方差公式、多项式乘以多项式运算法则进行计算,再去括号合并同类项即可解答.【详解】(1)原式=2221x x x x ++--=1x +;(2)原式=22222()(242)a b a ab ab b ----+=222222242a b a ab ab b --++-=254ab b -.【点睛】本题考查了整式的混合运算,涉及平方差公式、完全平方公式、单项式乘以多项式、多项式乘以多项式、合并同类项等知识,是基础题型,熟练掌握相关知识的运算法则是解答的关键.19. 先化简,再求值:()()()()222x y x y x y y x y y ⎡⎤+--⎣-⎦-+÷,其中1x =,3y -=. 【答案】22x y -,8.【解析】【分析】先根据平方差公式、完全平方公式、单项式乘多项式运算法则对括号内的算式进行计算,再根据多项式除以单项式的运算法则进行运算,最后代值计算即可求解.【详解】解:原式=22222[()(2)(22)]2x y x xy y xy y y ---++-÷=22222(222)2x y x xy y xy y y --+-+-÷=2(44)2y xy y -+÷=22x y -,当1x =,3y =-时,原式=222(6)8x y -=--=.【点睛】本题考查了整式的化简求值,解答的关键是利用乘法公式和整式的混合运算的运算法则对原式进行化简.20. 如图,已知AD BC ⊥,EF BC ⊥,3C ∠∠=,试说明:12∠∠=.请将以下不完整的推理过程补充完整: 解:因为AD BC ⊥,EF BC ⊥,所以90ADC EFC ∠∠︒==,根据“同位角相等,两直线平行”,所以//AD EF ,根据“ ”,所以1CAD ∠∠=. 因为3C ∠∠=,根据“ ”,所以//DG ,根据“ ”,所以2CAD ∠∠=.所以12∠∠=.【答案】两直线平行,同位角相等;同位角相等,两直线平行;AC ;两直线平行,内错角相等.【解析】【分析】根据平行线的判定和性质解题.【详解】解:因为AD⊥BC ,EF⊥BC ,所以∠ADC =∠EFC =90°,根据“同位角相等,两直线平行”,所以AD//EF,根据“两直线平行,同位角相等”,所以∠1=∠CAD .因为∠3=∠C ,根据“同位角相等,两直线平行”,所以DG//AC,根据“两直线平行,内错角相等”,所以∠2=∠CAD .所以∠1=∠2.故答案为:两直线平行,同位角相等;同位角相等,两直线平行;AC ;两直线平行,内错角相等.【点睛】本题考查平行线的判定和性质,根据题目已知条件灵活运用平行线的判定和性质求解是解题关键. 21. 某数学活动小组在研究蜡烛燃烧时间与剩余长度之间关系时,通过实验得出如表所示的相关数据: 燃烧时间x/分 010 20 30 …剩余长度y/厘米 2018 16 14 …(1)蜡烛每分钟燃烧的长度是 cm ;(2)若蜡烛燃烧的长度为p (厘米),写出燃烧的长度p 与燃烧时间x 之间的关系式;(3)写出剩余长度y 与燃烧时间x 之间的关系式;(4)求这只蜡烛多长时间后全部燃尽?【答案】(1)0.2;(2)0.2p x =;(3)200.2y x =-;(4)这只蜡烛100分钟后全部燃尽.【解析】【分析】(1)根据表格中的数据,可以计算出蜡烛每分钟燃烧的长度;(2)根据(1)中的结果和题意,可以写出燃烧的长度p 与燃烧时间x 之间的关系式;(3)根据(1)中的结果和题意,可以写出剩余长度y 与燃烧时间x 之间的关系式;(4)令(3)中的y=0,然后求出相应的x 值,即可解答本题.【详解】解:(1)蜡烛每分钟燃烧的长度是:(20−18)÷10=0.2(cm),故答案为:0.2;(2)由题意可得,p=0.2x ,即燃烧的长度p 与燃烧时间x 之间的关系式为p=0.2x ;(3)由题意可得,剩余长度y 与燃烧时间x 之间的关系式为y=20−0.2x ;(4)当y=0时,0=20−0.2x ,解得,x=100,即这只蜡烛100分钟后全部燃尽.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.22. 如图,BC CA ⊥,BC CA =,DC CE ⊥,DC CE =,直线BD 与AE 相交于点F ,与AC 相交于点G .(1)BCD △与ACE △全等吗?请说明理由;(2)试判断BF 与AE 的位置关系,并说明理由. 【答案】(1)△BCD ≌△ACE ,理由见解析;(2)BF ⊥AE ,理由见解析.【解析】【分析】 (1)根据等角的余角相等证明∠BCD=∠ACE ,进而证明△BCD ≌△ACE (SAS );(2)由(1)中的结论,结合全等三角形对应角相等的性质,得到∠CBG=∠CAF ,再由三角形内角和180度定理,证明∠BCA=∠AFG ,据此解题可得BF ⊥AE .【详解】解:(1)△BCD≌△ACE.理由如下:∵BC⊥CA,DC⊥CE,∴∠BCA=∠DCE=90°,∵∠BCD=∠BCA-∠DCG,∠ACE=∠DCE-∠DCG,∴∠BCD=∠ACE,在△BCD和△ACE中,BC=CA,∠BCD=∠ACE,DC=CE,∴△BCD≌△ACE(SAS);(2)BF⊥AE.理由如下:由(1)可知:∠BCA=90°,△BCD≌△ACE,∴∠CBG=∠CAF,∵∠BCA =180°-∠BGC-∠CBG,∠AFG =180°-∠AGF-∠CAF,∵∠BGC=∠AGF,∴180°-∠BGC-∠CBG=180°-∠AGF-∠CAF,∴∠BCA=∠AFG,∴∠AFG=90°,即BF⊥AE.【点睛】本题考查余角性质、全等三角形的判断与性质、三角形内角和定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.23. 某商场文具专柜为了吸引顾客,设立了一个可以自由转动的转盘(转盘被等分成16份),如图所示,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、蓝色、绿色区域,顾客获得的奖品分别为玩具熊、童话书、彩色笔、文具盒.若甲顾客购物消费125元,乙顾客购物消费89元,请解答以下问题:(1)甲顾客获得一次转动转盘机会的概率为 ,乙顾客获得一次转动转盘机会的概率为 . (2)甲顾客获得哪种奖品的概率最大?请说明理由.【答案】(1)1,0;(2得奖品文具盒的概率最大,理由见解析.【解析】【分析】(1)根据规定, 比较125、89与100的大小即可做出判断,进而求得概率;(2)分别求出获得各个奖品的概率,比较大小即可解答.【详解】解:(1)由125﹥100知,甲顾客一定获得一次转盘机会,是必然事件,所以甲顾客获得一次转动转盘机会的概率为1,由89﹤100知,顾客乙不可能获得一次转动转盘机会,是不可能事件,所以乙顾客获得一次转动转盘机会的概率为0,故答案为:1,0;(2)∵转盘被等分成16份,其中红色占1份,黄色占1份,蓝色占2份,绿色占4份,∴P (获得奖品玩具熊)=116, P (获得奖品童话书)=116, P (获得奖品彩色笔)=21=168, P (获得奖品文具盒)=41=164, ∵1114816>>, ∴甲顾客获得文具盒的概率最大.【点睛】本题考查了求等可能事件的概率,解答的关键是熟练掌握简单几何概率的求法:概率=相应的份数与总份数的比值.24. 已知:∠ACB =90°,AC =BC ,AD ⊥CM ,BE ⊥CM ,垂足分别为D ,E,(1)如图1,①线段CD 和BE 的数量关系是 ;②请写出线段AD ,BE ,DE 之间的数量关系并证明.(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD ,BE ,DE 之间的数量关系.【答案】(1)①CD =BE ;②AD =BE +DE .证明见解析;(2)②中的结论不成立.DE =AD +BE .【解析】【分析】(1)①此题可证明出△ACD 和△CBE 全等即可;②由①全等求解即可;(2)此时的结论不成立,此时变成DE =AD+BE ,依然用△ACD 和△CBE 全等证明即可.【详解】(1)①CD =BE .理由:∵AD ⊥CM ,BE ⊥CM ,∴∠ACB =∠BEC =∠ADC =90°,∴∠ACD+∠BCE =90°,∠BCE+∠CBE =90°,∴∠ACD =∠B ,在△ACD 和△CBE 中,ADC BEC ACD BAC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△CBE ,∴CD =BE .②AD =BE+DE .理由:∵△ACD ≌△CBE ,∴AD =CE ,CD =BE ,∵CE =CD+DE =BE+DE ,∴AD =BE+DE .(2)②中的结论不成立. DE =AD+BE . 理由:∵AD ⊥CM ,BE ⊥CM ,∴∠ACB =∠BEC =∠ADC =90°, ∴∠ACD+∠BCE =90°,∠BCE+∠CBE =90°, ∴∠ACD =∠B ,在△ACD 和△CBE 中,ADC BEC ACD BAC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△CBE ,∴AD =CE ,CD =BE ,∵DE =CD+CE =BE+AD ,∴DE =AD+BE .【点睛】此题考查全等三角形的性质及判定定理,灵活运用是关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


玉龙中学2012—2013学年下学期期末模拟四
七年级 数学试卷
一、选择题
1 下列计算正确的是( )
A、x 5+x 5=x 10 B、x 5·x 5=x 10 C、(x 5)5=x 10 D、x 20÷x 2= x 10
2、下列说法中的不正确的是( ) A 、两直线平行,内错角相等 B 、两直线平行,同旁内角相等 C 、同位角相等,两直线平行
D 、平行于同一条直线的两直线平行
3、图中所示的几个图形是国际通用的交通标志。

其中不是轴对称图形的是( )
4、有10张分别写着0至9的大小完全相同的数字卡片,将它们背面朝上洗匀后任意抽出一张,结果抽到了数字6的概率为( )
A 、101
B 、51
C 、2
1
D 、1
5、下列多项式乘法中,可以用平方差公式计算的是( )
A 、(2a+b)(2a-3b)
B 、(x+1)(1+x)
C 、(x-2y)(x+2y)
D 、(-x-y)(x+y) 6有两根木棒,长分别是40㎝和50㎝,若要钉成一个三角形木架,则下列四根木棒应 取( )A 、10㎝ 的木棒 B 、40㎝的木棒 C 、90㎝的木棒 D 、100㎝的木棒 7、如下图,若m ∥n ,∠1 = 105°,则∠2 =( ) A 、55° B 、60° C 、65° D 、75°
8、小狗在如图所示的方砖上走来走去,随意停在黑色方砖上的概率为( )
A 、81
B 、97
C 、92
D 、167
9、如图,一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,
最省事的办法是( ) .A 、带①去 B 、带②去 C 、带③去 D 、带①和②去
10、我国西部干旱缺水,在全国开展献爱心、建母亲水窖的活动,如图是某母亲水窖的横断面示意图,如果这个母亲水窖以固定的流量注水下面能大致表示水的深度h 和时间t 之间的关系的图象是( ).

二、填空题
1、计算(-2xy 3z 2
)4
= ;
2、在△ABC 中,如果∠A:∠B:∠C =1:2:3,按角分,这是一个 三角形.
3、把0.000056用科学计数法表示为________
4、单项选择题中,当你遇到一道有4个备选答案而且你还不会做的情况下,那么你答对的概率是 .
5、如果∠1与∠2互为余角,∠1=72º,∠2= º ,若∠3=∠1 ,则∠3的补角 º.
6、如图,AE=AD ,请你添加一个条件: 或 ,使△ABE ≌△ACD
7、如图,B 、C 、D 三点共线,CE ∥AB ,∠1=51°,∠2=46°,则∠A= °,∠B= °. 8、一盒装有5个红球,3个黄球和2个白球,任意摸出一球,摸到______球的可能性较大,摸到________色球的可能性较小.
三、解答题 1、计算:
(1) (3x+2)-2(x 2-x+2) (2) (a+b)2-(a-b)2
(3) 20112012125.08 (4)(9 x 3 y 2- 6x 2 y + 3xy 2)÷(-3xy)
8题图 9题图
2
1A
B
D
E
C
第10题图
A B C D
!A
B
C
D
2、由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在图中再将两个空白的小正方形涂黑,使它成为轴对称图形.
3、据图填空:如图,已知∠B=∠C,AD=AE,说明AB与AC相等.
解:在△ABE和△ACD中
∠B=_______()
∠BAE=___________()
AE=_______ ______()
∴△ABE≌△ACD()
∴AB=AC()
4、如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,
求∠DBC的度数.
5、先化简,再求值:(x+2) (x-2) –x (x-1),其中x= -1.
6、图为一位旅行者在早晨8时从城市出发到郊外所走的路程与时间的变化图.根据图回答问题.
(1)9时,10时30分,12时所走的路程分别是多少?
(2)他休息了多长时间?
(3)他从休息后直至到达目的地这段时间的平
均速度是多少?
7、如图AB、CD相交于点O,AO=DO,AC∥DB。

那么OC与OB相等吗?说明你的理由.
8、如图,在△ABC中,已知DE是AC的垂直平分线,AB=8,BC=10,求△ABD的周长.
A
C
D
O
B
2。

相关文档
最新文档