锰锌铁氧体

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锰锌铁氧体

本文来自维库电子市场网/news/, 本文地址:/news/html/2007-5-24/38340.html

试制高导锰锌铁氧体

试制:氧化物湿法工艺,原材料按下列配方:Fe2O3:52.1mol%,MnO:23.9mol%,ZnO:24mol%,经湿混砂磨一次喷雾造粒(25kg蒸发量)后,850℃预烧,加入少量微量元素如Bi2O3、Zn2O3、MoO3等,再经二次砂磨二次喷雾干燥造粒(25kg蒸发量),压成φ4×2×1.5环形磁芯。在小型钟罩炉中1400℃烧结4~6小时,烧结过程中严格控制氧含量。磁环的磁导率μi通过HP4284ALCR表测量,用电子显微镜SEM观察磁环表面及断面结构,用EDAX分析表面成份。

选择原辅材料及微量添加元素如Bi2O3、In2O3、MoO3等,获得了初始磁导率达32000的高磁导率MnZn 铁氧体材料。经喷雾干燥后铁氧体粉料颗粒外观形状是实心球状,该粉料具有较好的流动性,同时松装比重较高,对铁氧体毛坯成型非常有利。粉料压制特性对毛坯密度及强度的影响,铁氧体粉料颗粒均已破碎,对应毛坯的密度为3.2g/cm3,较高的毛坯密度对于获得较好的电磁性能如高磁导率和低损耗的铁氧体是十分有益的。铁氧体颗粒形态及成型密度对初始磁导率影响还是比较大的。

微量元素是加入0.02wt%的Bi2O3,0.03wt%的Zn2O3,以及0.04wt%的MoO3,材料起始磁导率为32000,测试条件为:f=1kHz,U=0.05V,N=10Ts,25℃,φ4×2×1.5环。平均晶粒直径为45μm。 Bi2O3及ZnO在烧结过程中的挥发性,向铁氧体中加入过量Bi2O3(为0.08wt%,其中主成份及其它微量元素完全相同)后,由于Bi2O3大量挥发,导致铁氧体磁芯表层存在大量不规则气孔。φ4×2×1.5环内表面和外表面EDAX成份谱线。其中内表面成份是:Fe2O3 : MnO : ZnO : Bi2O3=35.36 : 13.27 : 53.60 : 0.40 mol%;外表面成份是:Fe2O3 : MnO : ZnO : Bi2O3=46.62 : 18.82 : 35.28 : 0.09 mol%,经比较不难发现,内表面Bi2O3和ZnO含量分别是外表面的4倍和1.5倍。说明经过1400℃烧结时,Bi2O3的挥发比ZnO更厉害。料浆参数会影响铁氧体喷雾造粒粉料颗粒形状,以及铁氧体粉料的压制特性,从而影响毛坯的密度及机械强度,并最终影响铁氧体的初始磁导率。

通过精心选择原辅材料,添加微量元素Bi2O3、In2O3 以及MoO3等,并通过严格控制烧结工艺参数在小型钟罩炉中烧结,获得了μi=32000的高磁导率MnZn铁氧体材料。对高密度、轻量化、薄型化的高性能电子元器件的需求量大幅度增长。高磁导率MnZn铁氧体材料由于其特殊的电磁性能,在抗电磁干扰(EMI)噪声滤波器、电子电路宽带变压器、脉冲变压器、综合业务数据网(ISDN)、局域网(LAN)、宽域网(WAN)、背景照明、汽车电子等领域具有非常广泛的应用。高磁导率MnZn铁氧体材料特性主要体现在以下七个方面:高初始磁导率;在宽频下具有较高的磁导率;低损耗因数;低总谐波失真(THD);在宽温下具有较高的磁导率;磁导率减落系数要小;磁导率的应力敏感性要小。不同的应用领域对高磁导率MnZn铁氧体上述某个或几个方面的性能具有更高的要求。

环形铁心Le和Ae的计算方法

磁场强度通过测量励磁电流后计算得到,磁感应强度是通过测量感应磁通后计算得到,参与计算的样品有效参数Le和Ae将直接与测量结果相关。

磁场强度的计算公式:H = N xI / Le式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。

磁感应强度计算公式:B = Φ / (N xAe)式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。

根据样品尺寸计算样品的有效参数Le和Ae,在不同的行业中,计算方法往往不统一,这可能使测试结果缺乏可比性。在SMTest软磁测量软件中,样品有效参数的计算依照行业标准SJ/T10281。

下面以环形样品为例,讲述样品有效磁路长度Le和有效截面积Ae的计算方法。

第一种情况:指定叠片系数Sx,指定样品的外径A、内径B和高度C。根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和Ae,这是严格按照标准执行的计算方法。

第二种情况:指定材料密度De和样品质量W,指定样品的外径A、内径B和高度C。根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和Ae,并可推算叠片系数Sx,这是另外一种计算

方法,与标准有点差别,但计算结果与标准比较接近。

第三种情况:指定材料密度De和样品质量W,指定样品的外径A和内径B,不指定样品的高度。不按SJ/T10281标准求磁芯常数,而是按平常的数学公式来求Le和Ae。这种计算方法与标准相差较大,只有环形样品才有这种计算方法。

粗检测软磁铁氧体磁芯

软磁铁氧体是一种非金属磁性材料,具有容易磁化,又容易退磁的特性。用它做成的铁心,品种繁多,用途广泛。一、按工作频率分低频:几百Hz至几百KHz;中频:几百KHz至2MHz;高频:2~150 MHz;甚高频:150~1000 MHz 二、按材料分材料牌号为:MXO—锰锌铁氧体;NXO—镍锌铁氧体;NQ—镍铅铁氧体;NGO—镍锌高频铁氧体;GTO—甚高频铁氧体参数型号

软磁铁氧体磁芯的检测方法

从上表可以看出,不同频率的软磁铁氧体磁芯具有不同的电阻率。根据电阻率的明显不同,使用万用表的电阻档进行检测,很容易将中频、高频和甚高频软磁铁氧体区分开。

具体检测方法:将万用表置于R*1k档,先在被测软磁铁氧体上确定a、b两个相距约10mm的测量点,然后将两表跨接在a、b两点上测量出电阻值Rab为。若Rab小于几百欧姆,即为中频软磁铁氧体磁芯;Rab为几十k 欧姆至几百k欧姆,则是高频软磁体氧体磁芯;Rab为无穷大,即是甚高频软磁铁氧体磁芯。

注意:使用万用表表笔的金属笔尖直接接触到铁氧体,这样才能准确测出世纪电阻值。测试点应该选在铁氧体的端面上

软磁铁氧体磁芯

20世纪40年代二次世界大战中发明了雷达,要求使用能在中高频和高频领域中工作的软磁材料(指矫顽力小,容易磁化的磁性材料),从而发明了锰锌软磁铁氧体和镍锌软磁铁氧体。由于软磁铁氧体在高频下具有高磁导率、高电阻率、低损耗等特点,并且具有批量生产容易、性能稳定、机械加工性能高,可利用模具制成各种形状的磁芯,特别是成本低等特点,而迅速推广应用于通信、传感、音像设备、开关电源和磁头工业等方面。

如今软磁铁氧体材料已成为一类应用广泛、种类繁多的功能材料。主要表现在三个方面

(一)向高频率发展:随着近年来信息技术和新型绿色照明发展的要求,材料进一步向高频、高磁导率和低损耗发展。器件向小型化、片式化和表面贴装化发展。软磁铁氧体是开关电源变压器中使用比较早的软磁材料,随着开关电源工作频率越来越高,相应的材料一代接一代地开发出来。70年代初,为适应开关电源市场的需要,开发出第一代功率铁氧体材料,只适用于工作频率在20kHz左右的民用开关电源。80年代初,第二代功率铁氧体材料问世,这种材料具有负温度系数功耗,随着温度升高,功耗呈下降趋势,适用的工作频率为10DkHz左右。80年代后期,为适应高频开关电源的发展,开发出第三代功率铁氧体材料,其工作频率为250kHz左右。进入90年代中期,由于信息技术对器件小型化、片式化的要求,第四代功率铁氧体材料得以开发成功,这种材料的工作频率可达500kHz以上,为开关电源进一步的轻、小、薄作出贡献,是今后软磁铁氧体的发展方向。

(二)向高磁导率发展:由于信息产业的高速发展,传统的普通软磁铁氧体已经不能满足新兴的信息网络技术的要求,高磁导率材料成为许多新兴的IT技术不可缺少的组成部分。另外,电子技术应用的日益广泛,特别是数字电路和开关电源应用的普及,电磁干扰问题日趋严重。高磁导率软磁铁氧体磁芯能有效地吸收电磁干扰信号,以达到抗电磁场干扰的目的。随着电子产品向高频、高速、高组装密度发展,在各种电子、电力线路中必须采用EMI磁芯,才能满足抗电磁干扰和电磁兼容的要求。高磁导率软磁铁氧体主要特性是磁导率特别高,一般要求在10000以上,从而可以大大地缩小磁芯体积,并且希望提高工作频率。现在,TDK在过去生产的H5C2(μ>10000)

相关文档
最新文档