互联网大数据案例分享
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
互联网大数据案例
手中握有数据的公司站在金矿上,挖掘用户的行为习惯和喜好,凌乱纷繁的数据背后找到更符合用户兴趣和习惯的产品和服务,并对产品和服务进行针对性地调整和优化,这就是大数据的价值。
有某互联网咨询公司,其手中有大量用户行为数据,希望建立用户行为分析系统,但面临数据量大,无法做到分析的实时性。也曾组建过Hadoop团队,但基于Hive 的分析系统不够实时,且项目预算有限。
这家咨询公司后来通过Yonghong Z-Suite搭建大数据分析平台,完成了大数据量下的用户行为实时分析,那么下面就介绍下这个互联网大数据案例:
首先需要分析的数据量是90 天细节数据约50 亿条数据,硬盘存储空间10TB左右。这些数据已经存储在Hadoop上,只是Hadoop无法做到实时分析,需要将其导入到Data Mart 中。考虑到数据压缩到Data Mart中后所需存储空间会变小,10TB的数据导入到Data Mart 中会经过压缩后大致需要900G的存储空间。假设900G的数据中有1/3是热数据需要分析的,则认为系统内存量需要300G,假设每台机器有64G内存,则大致需要5台机器。于是有如下配置:
90天的50亿详细数据已经导入到Data Mart中,经过系统调优,基于这些数据做的电商用户行为分析,互联网视频分析,互联网金融网站访问分析等等都可以在秒级响应。
之后进行每日数据增量更新,并删除超过90天的数据,保存用于分析的数据为90天。
如何达到高性能计算呢?
目前很多产品都是通过分布式并行计算来处理大数据计算,需要的技术有分布式文件系统,分布式通讯,计算任务拆解为可分布执行的分布式任务,需要库内计算等技术;另外列存储也是大数据高性能计算所需要的技术。
上述互联网大数据案例的大数据分析平台的架构
有了大数据,还要从大数据中提取价值,离不开分析工具,通过丰富的分析功能,在繁杂的数据中找到其中的价值。而大数据给分析提供了一定的挑战,需要高性能计算做支撑,才能在大数据的金矿中挖到金子。