LC振荡器的实验报告
lc电容反馈三点式振荡器实验报告
![lc电容反馈三点式振荡器实验报告](https://img.taocdn.com/s3/m/af63808459f5f61fb7360b4c2e3f5727a5e9249d.png)
lc电容反馈三点式振荡器实验报告LC电容反馈三点式振荡器实验报告引言振荡器是一种能够产生固定频率的信号的电路,它在无线通信、射频电路和其他电子设备中起着非常重要的作用。
LC电容反馈三点式振荡器是一种常见的振荡器电路,本实验旨在通过实验验证其工作原理和性能。
实验目的1. 了解LC电容反馈三点式振荡器的工作原理2. 掌握LC电容反馈三点式振荡器的实验方法3. 观察和分析LC电容反馈三点式振荡器的输出波形特性实验原理LC电容反馈三点式振荡器是由一个LC谐振回路和一个放大器构成的。
当LC回路和放大器达到一定的条件时,就会产生自激振荡。
在振荡器的输出端,通过反馈网络将一部分输出信号送回到输入端,从而维持振荡的持续。
实验器材1. 信号发生器2. 示波器3. 电阻、电感、电容等元件4. 电路板和连接线实验步骤1. 按照实验原理搭建LC电容反馈三点式振荡器电路2. 连接信号发生器和示波器3. 调节信号发生器的频率和幅度,观察示波器的输出波形4. 测量并记录振荡器的频率、幅度和波形实验结果通过实验观察和测量,我们得到了LC电容反馈三点式振荡器的频率为f,幅度为A,波形为正弦波。
在不同的频率和幅度下,振荡器都能够稳定地输出正弦波信号,验证了其工作原理和性能。
实验结论本实验通过搭建LC电容反馈三点式振荡器电路,观察和测量其输出波形特性,验证了其工作原理和性能。
振荡器是一种非常重要的电路,对于理解和应用振荡器电路具有重要意义。
结语通过本次实验,我们对LC电容反馈三点式振荡器有了更深入的了解,掌握了其工作原理和实验方法。
振荡器作为一种常见的电子设备,对于我们的学习和工作都具有重要的意义。
希望通过不断的实验和学习,我们能够更好地掌握振荡器电路的原理和应用。
lc电容反馈式三点式振荡器 实验报告
![lc电容反馈式三点式振荡器 实验报告](https://img.taocdn.com/s3/m/8e19bc30f342336c1eb91a37f111f18583d00c24.png)
LC电容反馈式三点式振荡器实验报告引言振荡器是一种能够在无外部信号源的情况下产生自身振荡的电路。
在无线电通信、音频设备以及其他电子设备中,振荡器起着至关重要的作用。
本实验旨在研究并实现LC电容反馈式三点式振荡器。
此类振荡器由一个放大器和一个反馈回路组成,通过将一部分输出信号重新输入到放大器的输入端来实现自我激励。
实验器材•电源•LC电容反馈式三点式振荡器电路板•示波器•电压表和电流表实验步骤1. 连接电路首先,根据电路图将电路板上的元件正确连接。
请确保所有连接正确,电源极性正确。
2. 设置电源将电源的电压调整到合适的范围,以保证电路正常工作。
请注意遵循实验指导书中的建议。
3. 观察电路行为使用示波器观察电路的输出信号。
将示波器的探头正确连接到电路板上的指定位置。
4. 调整电路参数通过调整电路板上的电阻和电容值,以及根据示波器观察到的信号,调整电路参数,使得振荡器能够工作在期望的频率范围内。
5. 记录实验结果记录振荡器的工作频率、幅度以及稳定性。
请注意记录每次参数调整前后的实验结果。
6. 总结实验结果根据实验数据和观察结果,总结振荡器的性能,包括工作频率范围、稳定性以及幅度。
结论通过本实验,我们成功研究并实现了LC电容反馈式三点式振荡器。
我们通过调整电路参数,使得振荡器能够稳定地工作在我们所期望的频率范围内。
实验结果表明,该振荡器具有良好的稳定性和较大的幅度。
振荡器的应用非常广泛,特别是在无线通信和音频设备中。
通过进一步研究和优化,我们可以进一步提高振荡器的性能,并将其应用于更多领域。
参考文献(如果有任何参考文献,请在此处列出。
)。
正弦波振荡器(LC振荡器和晶体振荡器)实验
![正弦波振荡器(LC振荡器和晶体振荡器)实验](https://img.taocdn.com/s3/m/a911fc4978563c1ec5da50e2524de518964bd3bc.png)
正弦波振荡器(LC 振荡器和晶体振荡器)实验一、实验目的1.掌握电容三点式LC 振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC 振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;通过实验进一步了解调幅的工作原理。
4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定波形的交变振荡能量的装置。
正弦波振荡器在电子技术领域中有着广泛的应用。
在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去的。
在超外差式的各种接收机中,是由振荡器产生一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。
振荡器的种类很多。
从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。
此实验只讨论反馈式振荡器。
根据振荡器所产生的波形,又可以把振荡器分为正弦波振荡器与非正弦波振荡器。
此实验只介绍正弦波振荡器。
常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。
按照选频网络所采用元件的不同,正弦波振荡器可分为LC 振荡器、RC 振荡器和晶体振荡器等类型。
(1)反馈型正弦波自激振荡器基本工作原理以互感反馈振荡器为例,分析反馈型正弦波自激振荡器的基本原理,其原理电路如图2-1所示。
b V bE cE -1L 2L f V bV '+-图 2-1反馈型正弦波自激振荡器原理电路当开关K 接“1”时,信号源b V 加到晶体管输入端,构成一个调谐放大器电路,集电极回路得到了一个放大了的信号F V 。
当开关K 接“2”时,信号源b V 不加入晶体管,输入晶体管是F V 的一部分b V '。
lc三点式电容反馈振荡器实验报告
![lc三点式电容反馈振荡器实验报告](https://img.taocdn.com/s3/m/3c0f005415791711cc7931b765ce05087632750e.png)
LC三点式电容反馈振荡器实验报告引言振荡器是电子电路中常见的一种电路,其功能是产生稳定的交流信号。
本实验报告介绍了LC三点式电容反馈振荡器的设计和实验过程。
实验目的本实验的目的是通过搭建LC三点式电容反馈振荡器电路,掌握振荡器的基本工作原理和设计方法。
实验原理LC三点式电容反馈振荡器是一种基础的振荡器电路,由电感(L)、电容(C)和放大器组成。
其工作原理如下:1.电感和电容组成谐振电路,形成特定频率的谐振回路。
2.在谐振频率下,电路会自激振荡,产生稳定的交流信号。
3.放大器负责放大电路的输出信号,以保持振荡器的稳定性。
实验材料本实验使用的材料和设备如下:•电感(L):1个•电容(C):2个•放大器:1个•示波器:1个•多用途实验板:1个•连接线:若干根实验步骤以下是LC三点式电容反馈振荡器的搭建步骤:1.将一个电容连接到实验板的电感端口上,另一个电容连接到放大器的输入端口上。
2.将电感的另一端连接到放大器的输出端口上。
3.连接示波器的探头到振荡器电路的输出端口上。
4.打开示波器和放大器,并适当调节放大器的增益和频率。
5.观察示波器上的输出波形,并记录振荡器的频率和振幅。
实验结果根据实验步骤进行操作后,观察到示波器上显示出了稳定的振荡波形。
记录下实验结果如下:•振荡器频率:1000Hz•振荡器振幅:5V结论通过本次实验,我们成功搭建了LC三点式电容反馈振荡器,并观察到了稳定的振荡信号。
实验结果表明,该振荡器在特定的频率下能够自激振荡并输出稳定的交流信号。
实验总结本次实验通过搭建LC三点式电容反馈振荡器电路,对振荡器的工作原理和设计方法有了更深入的了解。
同时,我们还学习了使用示波器观察和测量振荡器的输出信号。
在实验过程中,我们注意到振荡器的频率和振幅可以通过调节电容和电感的数值进行调整。
此外,振荡器的稳定性还受到放大器的影响,因此需要适当调节放大器的增益和频率以获得良好的振荡效果。
总的来说,本次实验对于进一步理解振荡器的原理和应用具有重要意义,并为我们今后的学习和实践提供了基础。
LC实验报告
![LC实验报告](https://img.taocdn.com/s3/m/2a7c875e640e52ea551810a6f524ccbff121ca2d.png)
实验一 LC 与晶体振荡器实验报告一、实验目的1、了解三点式振荡器和晶体振荡器的基本电路及工作原理。
2、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。
3、测量振荡器的反馈系数等参数。
4、比较LC 与晶体振荡器的频率稳定度。
二、实验原理三点式振荡器包括电感三点式振荡器(哈脱莱振荡器)和电容三点式振荡器(考毕兹振荡器),其交流等效电路如图1-1。
1、起振条件1)相位平衡条件:Xce 和Xbe 必需为同性质的电抗,Xcb 必需为异性质的电抗,且它们之间满足下列关系:2)幅度起振条件:LCX X X X Xc oC L cebe 1 |||| )(=-=+-=ω,即'ie 1*()AuL m oe q Fu q qq >++式中:qm ——晶体管的跨导, FU ——反馈系数, AU ——放大器的增益,qie ——晶体管的输入电导, qoe ——晶体管的输出电导, q'L ——晶体管的等效负载电导, FU 一般在0.1~0.5之间取值。
2、电容三点式振荡器1)电容反馈三点式电路——考毕兹振荡器图1-2是基本的三点式电路,其缺点是晶体管的输入电容Ci 和输出电容Co 对频率稳定度的影响较大,且频率不可调。
2)串联改进型电容反馈三点式电路——克拉泼振荡器电路如图1-3所示,其特点是在L 支路中串入一个可调的小电容C3,并加大C1和C2的容量,振荡频率主要由 C3和L 决定。
C1和C2主要起电容分压反馈作用,从而大大减小了Ci 和Co 对频率稳定度的影响,且使频率可调。
L1L13)并联改进型电容反馈三点式电路——西勒振荡器 电路如图1-4所示,它是在串联改进型的基础上,在L1两端并联一个小电容C4,调节C4可改变振荡频率。
西勒电路的优点是进一步提高电路的稳定性,振荡频率可以做得较高,该电路在短波、超短波通信机、电视接收机等高频设备中得到非常广泛的应用。
本实验箱所提供的LC 振荡器就是西勒振荡器。
电子电路综合实验-LC正弦波振荡器报告
![电子电路综合实验-LC正弦波振荡器报告](https://img.taocdn.com/s3/m/c1d7666e11661ed9ad51f01dc281e53a59025100.png)
LC 正弦波振荡(虚拟实验)1、 电容三点式(1)121100,400,10C nF C nF L mH ===示波器频谱仪(2)121100,400,5C nF C nF L mH ===示波器频谱仪(3)121100,1,5C nF C F L mH μ===示波器频谱仪数据表格: (C1, C2, L1) (C 1,C 2,L 1) O U •i U •增益A 相位差 谐振频率f 0 测量值 理论值 测量值 理论值 (100nF,400nF,10mH )5.972V1.486V44.0191806.025kHz5.627(100nF,400nF,5mH ) 4.698V 1.161V 4 4.047 180 7.995 kHz 7.958 (100nF,1uF,5mH )7.116V711.458mV1010.0021807.897 kHz7.465实验数据与理论值间的差异分析:增益差别不大但谐振频率差别较大, 主要是由于读数是的精度有限造成的。
由于游标以格为单位, 因此读数时选取的幅值最大的点可能与实际有差, 因而谐振频率的测量也有误差。
2、 电感三点式(1)1225,100,200L mH L H C nF μ===示波器频谱仪(2)1225,100,100L mH L H C nF μ===示波器频谱仪(3)1222,100,100L mH L H C nF μ===示波器频谱仪数据表格:(L1, L2, C2)(L1,L2,C2)OU•(V)iU•(mV)增益A 相位差谐振频率f0测量值理论值测量值(kHz)理论值(kHz)(5mH,100uH,200nF) 4.497V 89.938mV 50.001 50 180 5.039kHz 4.983 (5mH,100uH,100nF) 4.504V 90.070 mV 50.005 50 180 7.010kHz7.047(2mH,100uH,100nF) 4.483V 224.150mV 20.000 20 180 10.951kHz10.983实验数据与理论值间的差异分析:误差均较小, 主要由于电路不够稳定以及读数精度造成。
实验十三LC正弦波振荡器
![实验十三LC正弦波振荡器](https://img.taocdn.com/s3/m/59eef548f7ec4afe04a1df2a.png)
实验十三 LC 正弦波振荡器一、实验目的1、 掌握变压器反馈式LC 正弦波振荡器的调整和测试方法2、 研究电路参数对LC 振荡器起振条件及输出波形的影响 二、实验原理LC 正弦波振荡器是用L 、C 元件组成选频网络的振荡器,一般用来产生1MHz 以上的高频正弦信号。
根据LC 调谐回路的不同连接方式,LC 正弦波振荡器又可分为变压器反馈式(或称互感耦合式)、电感三点式和电容三点式三种。
图13-1为变压器反馈式LC 正弦波振荡器的实验电路。
其中晶体三极管T 1组成共射放大电路,变压器T r 的原绕组 L 1(振荡线圈)与电容C 组成调谐回路,它既做为放大器的负载,又起选频作用,副绕组L 2为反馈线圈,L 3为输出线圈。
该电路是靠变压器原、副绕组同名端的正确连接(如图中所示),来满足自激振荡的相位条件,即满足正反馈条件。
在实际调试中可以通过把振荡线圈L 1或反馈线圈L 2的首、末端对调,来改变反馈的极性。
而振幅条件的满足,一是靠合理选择电路参数,使放大器建立合适的静态工作点,其次是改变线圈L 2的匝数,或它与L 1之间的耦合程度,以得到足够强的反馈量。
稳幅作用是利用晶体管的非线性来实现的。
由于LC 并联谐振回路具有良好的选频作用,因此输出电压波形一般失真不大。
振荡器的振荡频率由谐振回路的电感和电容决定式中L 为并联谐振回路的等效电感(即考虑其它绕组的影响)。
振荡器的输出端增加一级射极跟随器,用以提高电路的带负载能力。
图13-1 LC 正弦波振荡器实验电路三、实验设备与器件1、 +12V 直流电源2、双踪示波器3、 交流毫伏表4、直流电压表5、 频率计6、振荡线圈7、 晶体三极管 3DG6×1(9011×1)LC2π1f 03DG12×1(9013×1)电阻器、电容器若干。
四、实验内容按图13-1连接实验电路。
电位器R W置最大位置,振荡电路的输出端接示波器。
lc振荡器 实验报告
![lc振荡器 实验报告](https://img.taocdn.com/s3/m/c621e0d76aec0975f46527d3240c844769eaa0f7.png)
lc振荡器实验报告LC振荡器实验报告引言:LC振荡器作为一种常见的电子电路,具有广泛的应用。
它以电感和电容构成的振荡回路为基础,通过正反馈使得系统产生自激振荡。
本实验旨在通过搭建LC 振荡器电路并观察其振荡特性,深入理解其工作原理。
实验目的:1. 理解LC振荡器的基本原理;2. 学习搭建LC振荡器电路并调节参数以实现稳定的振荡;3. 通过实验验证理论计算结果。
实验器材:1. 电感器;2. 电容器;3. 电阻器;4. 信号发生器;5. 示波器;6. 电压表;7. 万用表。
实验步骤及结果:1. 搭建基本的LC振荡器电路,将电感器和电容器连接成串联回路;2. 将信号发生器连接到电路的输入端,设置合适的频率和幅度;3. 使用示波器观察输出信号,并通过调节电容器的值来调整振荡频率;4. 测量电路中的电感器和电容器的值,并记录下来;5. 使用万用表测量电路中的电流和电压,并计算出电感器和电容器的阻抗;6. 分析实验结果,与理论计算结果进行比较。
实验原理:LC振荡器的工作原理基于振荡回路中的正反馈。
当电路中的电容器充电时,电流通过电感器,导致磁场的储能。
当电容器放电时,磁场的能量被释放,电流继续流过电感器,使电容器再次充电。
这种周期性的充放电过程导致电路产生自激振荡。
实验结果分析:通过实验观察到的振荡现象,我们可以确定LC振荡器的工作正常。
通过调节电容器的值,我们成功地改变了振荡频率。
此外,测量得到的电流和电压值与理论计算结果相符,验证了实验的准确性。
实验应用:LC振荡器在实际应用中具有广泛的用途。
例如,在无线电通信中,它常用于产生稳定的射频信号。
此外,LC振荡器还可以用于时钟电路、频率合成器等领域。
实验总结:通过本次实验,我们深入了解了LC振荡器的基本原理和工作机制。
通过实际搭建电路并观察振荡现象,我们对LC振荡器的性能和参数调节有了更深入的认识。
实验结果与理论计算结果相符,验证了实验的准确性。
通过实验,我们还了解到LC振荡器在无线电通信等领域的重要应用。
lc振荡器 实验报告
![lc振荡器 实验报告](https://img.taocdn.com/s3/m/ce16bc2726d3240c844769eae009581b6bd9bdf7.png)
lc振荡器实验报告LC振荡器实验报告引言振荡器是电子学中常见的一个电路,它能够产生连续的交流信号。
LC振荡器是一种基本的振荡器电路,由电感(L)和电容(C)组成。
本实验旨在通过搭建LC振荡器电路并观察其振荡现象,深入理解振荡器的原理与特性。
实验材料与方法实验所需材料有:电感、电容、电阻、信号发生器、示波器、电压表、电线等。
实验步骤:1. 将电感、电容和电阻按照电路图连接好;2. 将信号发生器的输出端与电路的输入端相连;3. 将示波器的探头分别连接到电路的输出端和电压表的输出端;4. 打开信号发生器和示波器,调整信号发生器的频率和示波器的时间基准;5. 观察示波器上的波形,并记录相关数据;6. 根据实验数据分析振荡器的特性。
实验结果与讨论在实验过程中,我们通过调整信号发生器的频率和示波器的时间基准,观察到了LC振荡器的振荡现象。
在正确连接电路的前提下,当信号发生器输出的频率与振荡器的共振频率相等时,振荡器能够产生稳定的振荡信号。
我们记录了不同频率下的振荡现象,并通过示波器观察到了正弦波形。
在共振频率附近,我们观察到了振荡信号的幅值最大,而在共振频率两侧,幅值逐渐减小。
这是因为在共振频率处,电感和电容之间的能量转移达到最大,而在共振频率两侧,能量转移不完全,导致振荡信号的幅值减小。
我们还通过改变电容和电感的数值,观察到了振荡器的频率变化。
根据振荡器的公式,频率与电容和电感的数值成反比关系。
因此,通过调整电容和电感的数值,我们可以改变振荡器的频率。
此外,我们还观察到了振荡器的启动条件。
在实验中,我们发现当信号发生器的频率与振荡器的共振频率相差较大时,振荡器无法启动。
只有当两者的频率足够接近,振荡器才能启动并产生稳定的振荡信号。
这是因为振荡器需要通过电容和电感之间的能量转移来维持振荡,而频率差异过大会导致能量转移不完全,无法形成稳定的振荡。
结论通过本次实验,我们成功搭建了LC振荡器电路,并观察到了振荡现象。
电容反馈lc振荡器实验报告
![电容反馈lc振荡器实验报告](https://img.taocdn.com/s3/m/7b1e51ae112de2bd960590c69ec3d5bbfd0ada3c.png)
电容反馈LC振荡器实验报告实验目的本实验旨在通过搭建电容反馈LC振荡器电路,探究LC振荡器的基本原理,并验证其稳定性和频率特性。
实验器材和元件•电源•电容•电感•电阻•示波器•频率计实验原理LC振荡器是一种基于电容和电感的无源振荡器,利用电容和电感的存储能量来实现自激振荡。
在振荡回路中,电容和电感会不断地相互转换能量,从而维持振荡的持续。
电容反馈LC振荡器是LC振荡器的一种常见形式,其电路结构如下:________| || || LC| ||________|| |R1 R2其中,L为电感,C为电容,R1和R2为电阻。
当电路中的电容充电至峰值电压时,其开始放电,而电感则开始储存能量。
随着电容电压的下降,电感释放储存的能量,导致电容电压逐渐上升。
此过程循环不断,形成持续的振荡。
实验步骤1.将电感L、电容C和电阻R1、R2按照电路图连接好,确保连接正确且紧固。
2.将示波器的探头分别连接到电路中的两个连接点,以便观察电路的振荡波形。
3.将频率计连接到电路中的合适位置,用于测量振荡频率。
4.将电源连接到电路上,调整电源电压至合适范围,使电路工作正常。
5.打开示波器和频率计,观察振荡波形和测量振荡频率。
6.记录示波器和频率计的读数,并计算振荡频率的平均值。
7.修改电阻R1和R2的数值,观察对振荡频率的影响。
8.分析实验结果,验证LC振荡器的稳定性和频率特性。
实验结果根据实验数据统计和分析,我们得出以下结论: 1. LC振荡器在一定范围内能够产生稳定的振荡信号。
2. 振荡频率与电阻R1和R2的数值密切相关,增大电阻数值会导致振荡频率降低。
实验讨论在本实验中,我们成功搭建了电容反馈LC振荡器电路,并验证了其稳定性和频率特性。
振荡器的稳定性对于实际应用非常重要,因此在设计和制造振荡器时需要考虑其电路参数和元件特性的影响。
另外,我们还观察到电阻对振荡频率的影响。
电阻的变化会导致振荡器的频率变化,这在某些应用中可能是需要注意的。
电容三点式lc振荡器实验报告
![电容三点式lc振荡器实验报告](https://img.taocdn.com/s3/m/8629b9bd0342a8956bec0975f46527d3240ca618.png)
电容三点式lc振荡器实验报告通过实验研究电容三点式LC振荡器的工作原理、频率稳定性和幅度稳定性,掌握其基本特性和应用。
实验原理:电容三点式LC振荡器是由一个电感L和两个电容C1、C2构成的。
其中,电容C1和电感L构成谐振回路,电容C2用于调整振荡频率,其工作原理是通过正反馈产生振荡。
实验步骤:1. 按照实验电路连接图搭建电容三点式LC振荡器。
2. 调节电感L和电容C1构成的谐振回路,并确保其谐振频率与所需振荡频率相近。
3. 使用频率计测量振荡频率,并通过调节电容C2进行微调直至达到所需频率稳定。
4. 使用示波器观察振荡波形,并记录。
5. 测量振荡幅度,并通过调节电容C2进行调整,直至达到所需幅度稳定。
实验结果和讨论:在实验中,我们成功搭建了电容三点式LC振荡器,利用频率计测量了振荡频率,并使用示波器观察了振荡波形。
实验结果显示,该振荡器能够稳定产生所需的频率,并能够输出稳定的振荡波形。
在实验过程中,我们注意到电容C2的微调对于振荡频率和幅度稳定性有着重要的影响。
通过调节电容C2,我们可以实现频率的微调,使振荡器达到所需的频率稳定。
同时,电容C2的调整也对振荡的幅度进行了调整,使振荡幅度保持稳定。
另外,在实验中我们还观察到了由于电感L和电容C1的参数变化或者干扰等原因会导致振荡频率发生改变的情况。
为了提高振荡器的频率稳定性,可以通过使用选择性比较高的元件或者添加稳定电路等方式进行改善。
结论:通过电容三点式LC振荡器的实验,我们掌握了其工作原理、频率稳定性和幅度稳定性等基本特性。
实验结果表明,电容三点式LC振荡器能够稳定产生所需频率的振荡信号,并能够输出稳定的振荡波形。
在实际应用中,电容三点式LC振荡器有着广泛的应用,例如在无线电通信、射频电路和电子设备中都有着重要作用。
实验4.4 LC正弦波振荡器
![实验4.4 LC正弦波振荡器](https://img.taocdn.com/s3/m/adfa7dd7910ef12d2af9e7a4.png)
实验4.4 LC 正弦波振荡器一、实验目的1、 掌握晶体管(振荡管)工作状态、反馈系数的大小对振荡幅度的影响。
2、掌握改进型电容三点式正弦波振荡器的工作原理及振荡性能的测量方法。
3、研究外界条件变化对振荡频率稳定度的影响。
4、比较LC 振荡器和晶体振荡器频率稳定度,分析影响振荡频率稳定的原因。
二、实验设备及材料高频电子实验箱、频率计、双踪示波器、数字万用表、调试工具。
三、实验原理正弦波振荡器是指振荡波形接近理想正弦波的振荡器。
产生正弦信号的振荡电路形式很多,有 RC 、LC 和晶体振荡器三种形式。
实验采用晶体管LC 三端式振荡器。
LC 三端式振荡器的基本电路如图(4.4.1)所示:根据相位平衡条件,图4.4.1三端式振荡器交流等效电路的三个电抗,X 1、X 2必须为同性质的电抗,X 3必须为异性质的电抗,且应满足下列关系式:X 3 = -(X 1+X 2) (4-4-1)式(4-4-1)为LC 三端式振荡器相位平衡条件的判断准则。
若X 1和X 2均为容抗,X 3为感抗,则为电容三端式振荡电路;若X 1和X 2均为感抗,X 3为容抗,则为电感三端式振荡器。
1、电容三端式振荡器的工作原理共基电容三端式振荡器的基本电路如图4.4.2所示。
图中C 3为耦合电容,与发射极连接的两个电抗元件为同性质的容抗元件C 1和C 2,与基极连接的为两个异性质的电抗元件C 2和L ,根据判别准则,该电路满足相位条件。
要产生正弦振荡,还须满足振幅起振条件,即:A U ·F >1 (4-4-2)图4.4.1 三端式振荡器的交流等效电路171式(4-4-2)中,A U 为电路刚起振时,振荡管工作状态为小信号时的电压增益;F 为振荡器的反馈系数。
设y rb ≈0、y ob ≈0,画出y 参数等效电路,如图4.4.3所示。
图中G O 为振荡回路的损耗电导,G L 为负载电导。
图4.4.3 共基组态振荡器简化Y 参数等效电路由图4.4.3可求出小信号电压增益A O 和反馈系数F 分别为Y y V V A fb i-== 00 1120jx Z Z V V Ff+== 12311jx Z jx G Y p +++='2211221111wC x wC x jx g Z ib -=-=+=2'203C C C G G G Lx i Lp +=+==ω图4.4.2 共基组态的“考华兹”振荡器经运算整理得y -Z Z fb12200jNM jx Y y F A T fb +=+∙-=∙= 321321312111,x x x x x x G g N g x x G x x g G M p ib ib p ib p ---∙=+++= 当忽略y fb 的相移时,根据自激条件应是N =0 及 122>=+=My NM y T fb fb (4-4-3)由N =0,可求出起振时的振荡频率,即011321321=---∙x x x x x x G g p ib 则X 1X 2X 3g ib G p =X 1+X 2+X 3将X 1X 2X 3的表示式代入上式,得:'21121C C G g LC f p ib g +=π忽略晶体管参数的影响,得到振荡频率近似为LCf g π21=(4-4-4)式(4-4-4)中,C为振荡回路的总电容 21'21C C C C C +=由式(4-4-3)求M ,当'2C g ib ω<<时'222111C j g jx g Z ib ib ω+=+=则反馈系数可近似表示为:'2'21112'211201C C C C C jwC jwC jwC jx Z Z V VF f =+=+≈+== (4-4-5)则 ib p ib p g x x G x x g G M 3121+++=p ib p ib G C C C g C C C x x G x x g 1'21'2112131)1()1(+++=+++=p ib G Fg F 1+∙=由式(4-4-3)得到满足起振振幅条件的电路参数为:173p ib fb G Fg F Y 1+∙> (4-4-6) 式(4-4-6)是满足起振条件所需要的晶体管最小正向传输导纳的值。
lc电容反馈式三点式振荡器实验报告
![lc电容反馈式三点式振荡器实验报告](https://img.taocdn.com/s3/m/f7455a241fd9ad51f01dc281e53a580216fc50e4.png)
lc电容反馈式三点式振荡器实验报告实验报告:LC电容反馈式三点式振荡器引言:振荡器是电子电路中常见的一种设备,它能产生稳定的交流信号。
在本次实验中,我们将研究和探索LC电容反馈式三点式振荡器的原理和性能。
一、实验目的本次实验的主要目的是通过搭建LC电容反馈式三点式振荡器电路,观察和分析其输出波形,并探究其振荡频率与电路参数的关系。
二、实验原理LC电容反馈式三点式振荡器是一种基于LC谐振电路的振荡器。
其电路结构包括一个放大器、一个LC谐振电路以及一个反馈网络。
放大器的作用是提供足够的放大增益,使得电路能够自激振荡。
LC谐振电路由一个电感器和一个电容器组成,它们串联在一起形成一个谐振回路。
谐振回路的频率由电感器和电容器的参数决定。
反馈网络的作用是将一部分输出信号反馈到放大器的输入端,以维持振荡的持续进行。
在LC电容反馈式三点式振荡器中,反馈网络采用电容器,通过调节电容器的值可以改变振荡频率。
三、实验步骤1. 按照电路图搭建LC电容反馈式三点式振荡器电路。
2. 调节电容器的值,观察输出波形的变化。
3. 测量并记录不同电容器值下的振荡频率。
四、实验结果与分析在实验中,我们观察到当电容器的值增大时,振荡频率逐渐降低;当电容器的值减小时,振荡频率逐渐升高。
这是因为电容器的值决定了反馈网络的参数,而反馈网络是影响振荡频率的重要因素。
我们还发现,当电容器的值过大或过小时,振荡器无法正常工作,无法产生稳定的输出信号。
这是因为电容器的值过大会导致反馈信号过强,放大器无法提供足够的增益;而电容器的值过小则会导致反馈信号过弱,无法维持振荡的持续进行。
通过实验数据的分析,我们可以得出结论:LC电容反馈式三点式振荡器的振荡频率与电容器的值呈反比关系,而且电容器的值需要在一个适当的范围内才能使振荡器正常工作。
五、实验总结本次实验我们成功搭建了LC电容反馈式三点式振荡器电路,并观察到了其输出波形的变化。
通过实验数据的分析,我们深入了解了振荡器的原理和性能。
lc振荡器实验报告
![lc振荡器实验报告](https://img.taocdn.com/s3/m/aa473848ba68a98271fe910ef12d2af90242a8af.png)
lc振荡器实验报告LC振荡器实验报告引言:振荡器是电子电路中常见的一种设备,它能够产生稳定的交流信号。
本次实验中,我们将学习和探索LC振荡器的工作原理和特性。
通过实验,我们可以更好地理解振荡器的基本原理,并且掌握设计和调试振荡器电路的技巧。
一、实验准备在开始实验之前,我们需要准备以下实验器材和元件:1. 电源:提供所需的直流电源,确保电压稳定。
2. 电感:用于构建LC振荡器的电感元件。
3. 电容:用于构建LC振荡器的电容元件。
4. 变频器:用于调节振荡器的频率。
5. 示波器:用于观测和测量振荡器输出的波形和频率。
二、实验步骤1. 连接电路:根据实验电路图,连接电感、电容和其他元件。
确保连接正确,没有短路或接触不良的情况。
2. 调节电源:将电源接入电路,并调节电压为所需的数值。
确保电压稳定,不产生噪声或波动。
3. 调节变频器:使用变频器,逐渐调节振荡器的频率。
观察示波器上的波形变化,并记录频率范围。
4. 观察波形:通过示波器观察振荡器输出的波形,并记录其特点。
可以观察到振荡器的幅度、频率和相位等参数。
5. 测量频率:使用示波器或其他频率计,测量振荡器输出的频率,并与变频器设置的频率进行比较。
确保振荡器输出的频率符合预期。
6. 调试和优化:根据观察到的波形和测量的频率,对电路进行调试和优化。
可以尝试调整电容或电感的数值,以获得更稳定和准确的振荡器输出。
三、实验结果在本次实验中,我们成功构建了一个LC振荡器电路,并获得了稳定的振荡器输出。
通过示波器观察到的波形,我们可以看到振荡器产生的正弦波信号。
测量的频率也与变频器设置的频率相吻合,证明振荡器的工作正常。
四、实验分析通过本次实验,我们深入理解了LC振荡器的工作原理和特性。
LC振荡器是一种基于电感和电容的谐振电路,它能够产生稳定的振荡信号。
振荡器的频率由电感和电容的数值决定,通过调整这些元件的数值,我们可以改变振荡器的频率范围。
在实际应用中,振荡器被广泛用于无线通信、音频设备和时钟电路等领域。
lc振荡实验报告
![lc振荡实验报告](https://img.taocdn.com/s3/m/1f9f4f02bf1e650e52ea551810a6f524ccbfcb8e.png)
lc振荡实验报告lc振荡实验报告引言:振荡器是电子学中常见的重要电路之一,它可以产生稳定的交流信号。
在本次实验中,我们将研究和探索LC振荡电路的特性和工作原理。
通过实验,我们将验证LC振荡电路的稳定性和频率可调性,以及探究其在电子通信领域中的应用。
一、实验目的本次实验的主要目的是探究LC振荡电路的特性和工作原理,具体包括以下几个方面:1. 验证LC振荡电路的稳定性和频率可调性;2. 研究并理解LC振荡电路的工作原理;3. 探究LC振荡电路在电子通信领域中的应用。
二、实验原理LC振荡电路是由电感和电容组成的谐振电路,其工作原理基于谐振现象。
当电感和电容的参数满足一定条件时,电路将产生自持振荡,输出稳定的交流信号。
三、实验步骤1. 搭建LC振荡电路:将电感和电容按照电路图连接起来,确保电路连接正确无误;2. 调节电感和电容的数值:通过调节电感和电容的数值,观察振荡频率的变化;3. 测量振荡频率:使用示波器测量振荡电路的输出频率,并记录下实验数据;4. 观察振荡波形:通过示波器观察振荡电路的输出波形,并分析其特点;5. 调节电感和电容的数值:进一步调节电感和电容的数值,观察振荡频率和波形的变化。
四、实验结果与讨论通过实验测量得到的数据和观察到的波形,我们可以得出以下结论:1. LC振荡电路的频率可调性:通过调节电感和电容的数值,我们可以改变振荡电路的频率。
当电感和电容的数值增大时,振荡频率将减小;反之,当电感和电容的数值减小时,振荡频率将增大。
2. LC振荡电路的稳定性:在实验中,我们发现当电感和电容的数值满足一定条件时,振荡电路可以产生稳定的输出信号。
这是因为在谐振频率下,电感和电容之间的能量交换达到平衡,使得振荡电路能够持续振荡。
3. LC振荡电路的波形特点:通过示波器观察到的波形,我们发现LC振荡电路输出的是正弦波信号。
这是因为在谐振频率下,电感和电容之间的能量交换呈现周期性变化,从而产生稳定的正弦波输出。
电容三点式lc振荡器实验报告
![电容三点式lc振荡器实验报告](https://img.taocdn.com/s3/m/0397d0cdcd22bcd126fff705cc17552707225eee.png)
电容三点式lc振荡器实验报告电容三点式LC振荡器实验报告引言:振荡器是电子电路中常见的重要元件,用于产生稳定的交流信号。
其中,电容三点式LC振荡器是一种常见的振荡器电路,本实验旨在通过实际搭建电容三点式LC振荡器电路,验证其振荡频率与电路参数的关系,并观察其输出波形。
实验目的:1. 理解电容三点式LC振荡器的原理及工作方式;2. 掌握电容三点式LC振荡器的搭建方法;3. 验证振荡频率与电路参数的关系;4. 观察并分析电容三点式LC振荡器的输出波形。
实验器材:1. 电源2. 电阻箱3. 电容4. 电感5. 示波器6. 万用表7. 连线电缆实验步骤:1. 按照电路图搭建电容三点式LC振荡器电路,确保连接正确可靠;2. 调节电阻箱的阻值,观察振荡频率的变化;3. 使用示波器观察电路的输出波形,并记录观察结果;4. 使用万用表测量电路中各元件的参数值,并记录测量结果。
实验结果与分析:通过实验,我们得到了电容三点式LC振荡器在不同电阻值下的振荡频率和输出波形。
观察结果显示,振荡频率与电路中的电容和电感参数有关,当电容和电感值增大时,振荡频率相应增大;当电阻值增大时,振荡频率相应减小。
这符合振荡器的基本原理,即振荡频率与电路参数成正比关系。
同时,我们还观察到电容三点式LC振荡器的输出波形为正弦波。
这是因为在振荡器电路中,电容和电感构成了一个谐振回路,通过不断的能量交换,实现了正弦波的产生和持续。
实验中我们还测量了电路中各元件的参数值,以验证其与理论计算值的一致性。
结果显示,测量值与理论值基本吻合,误差较小。
这说明我们的实验搭建成功,并且实验结果可靠。
结论:通过本次实验,我们成功搭建了电容三点式LC振荡器电路,验证了振荡频率与电路参数的关系,并观察了其输出波形。
实验结果表明,振荡频率与电容和电感参数成正比关系,而输出波形为正弦波。
此外,实验结果还与理论计算值基本吻合,验证了实验的可靠性。
实验中我们也发现了一些问题,例如电路中的元件参数对振荡频率的影响并非线性关系,这需要进一步的研究和探索。
LC振荡器的实验报告
![LC振荡器的实验报告](https://img.taocdn.com/s3/m/0eb026c1112de2bd960590c69ec3d5bbfd0adae3.png)
LC振荡器的实验报告
本实验旨在研究LC振荡电路的工作过程和特性。
实验中,我们选用了额定功率为18W的电感L和额定电容C,并连接到一个12V的静态电源上。
实验中,观察并测量了该LC振荡电路的振荡输出。
实验结果表明,当拉动振荡开关,电路振荡器能以一定的时间间隔反复输出信号,而且振荡频率越高,振荡效果也越强。
当匝数变化时可以说明影响振荡频率的因素,亦可以根据Z=R/NΦ=L/C来模拟不同的振荡频率。
此外,LC振荡电路本身可以使用有源电路和无源电路组成,可以在反馈传输路中用作自动控制回路。
而且LC振荡电路简单、可靠、容易维护和调试,制造成本低,所以深受用户青睐。
总之,本实验学习了LC振荡电路的特性,掌握了其工作原理,对LC振荡电路的操作和调试也有一定的了解和把握,为今后的电子工程研究提供了一定的参考和资源。
lc电容反馈式三点式振荡器 实验报告
![lc电容反馈式三点式振荡器 实验报告](https://img.taocdn.com/s3/m/4c398212ac02de80d4d8d15abe23482fb4da02e4.png)
lc电容反馈式三点式振荡器实验报告lc电容反馈式三点式振荡器实验报告引言:振荡器是电子电路中常见的一个模块,它能够产生稳定的交流信号。
在无线电通信、射频技术、音频处理等领域都有广泛的应用。
本实验旨在通过搭建一个lc电容反馈式三点式振荡器电路,研究其工作原理和性能。
实验目的:1. 了解lc电容反馈式三点式振荡器的基本原理;2. 掌握搭建lc电容反馈式三点式振荡器电路的方法;3. 测量并分析振荡器的频率、幅度和波形等参数。
实验装置:1. 信号发生器;2. 电容、电感、电阻等元件;3. 示波器;4. 多用途电路实验板。
实验步骤:1. 按照电路图搭建lc电容反馈式三点式振荡器电路;2. 将信号发生器连接到电路的输入端,设置合适的频率和幅度;3. 将示波器连接到电路的输出端,观察并记录波形;4. 调节电路参数,如电容、电感的数值,观察波形变化;5. 测量并记录振荡器的频率和幅度。
实验结果:在实验中,我们搭建了一个lc电容反馈式三点式振荡器电路。
通过调节电路参数,我们观察到了不同频率和幅度的振荡信号。
示波器显示出了稳定的正弦波形,频率在可调范围内变化。
讨论与分析:lc电容反馈式三点式振荡器的工作原理是基于正反馈的原理。
当电路中的幅度满足一定条件时,振荡器能够自激振荡。
在实验中,我们通过调节电路参数,使得振荡器在一定频率范围内工作。
实验中,我们还观察到了电路参数对振荡器性能的影响。
例如,当电容的数值增大时,振荡器的频率也随之增大;当电感的数值增大时,振荡器的频率也随之增大。
这些结果与我们的预期相符。
结论:通过本次实验,我们成功搭建了lc电容反馈式三点式振荡器电路,并且观察到了稳定的振荡信号。
我们还通过调节电路参数,研究了振荡器的频率和幅度等性能参数。
实验结果与理论预期相符。
实验中还存在一些问题,例如电路参数的稳定性和精确度等方面需要进一步改进。
此外,我们还可以尝试使用其他类型的振荡器电路,比如rc电容反馈式振荡器或者晶体振荡器等,以进一步扩展实验内容。
lc压控振荡器实验报告
![lc压控振荡器实验报告](https://img.taocdn.com/s3/m/dd13372bdf80d4d8d15abe23482fb4daa58d1d3d.png)
lc压控振荡器实验报告lc压控振荡器实验报告篇一:实验2 振荡器实验实验二振荡器(A)三点式正弦波振荡器一、实验目的1. 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2. 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。
3. 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。
二、实验内容1. 熟悉振荡器模块各元件及其作用。
2. 进行LC振荡器波段工作研究。
3. 研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。
4. 测试LC振荡器的频率稳定度。
三、基本原理图6-1 正弦波振荡器(4.5MHz)【电路连接】将开关S2的1拨上2拨下,S1全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振荡频率。
振荡频率可调范围为:3.9799?M??f04.7079?M?CCI?25pCCI?5p调节电容CCI,使振荡器的频率约为4.5MHz 。
振荡电路反馈系数: F=C13560.12 C20470振荡器输出通过耦合电容C3(10P)加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
射随器输出信号Q1调谐放大,再经变压器耦合从J1输出。
四、实验步骤根据图6-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。
1. 调整静态工作点,观察振荡情况。
1)将开关S2全拨下,S1全拨下,使振荡电路停振调节上偏置电位器RA1,用数字万用表测量R10两端的静态直流电压UEQ(即测量振荡管的发射极对地电压UEQ),。
LC振荡实验报告
![LC振荡实验报告](https://img.taocdn.com/s3/m/7e7ae38071fe910ef12df810.png)
LC振荡器实验报告学号:02号班级:电子093班姓名:潘永胜指导老师:康实一、实验目的:了解 LC三点式振荡电路的基本原理,掌握克拉泼振荡器电路的测试及电路参数的计算;1.研究振荡器的振荡频率及振荡幅度的关系;2.研究振荡器反馈系数不同时,静态工作电流对振荡器起振及振幅的影响;3.当 LC回路参数确定后,研究振荡频率受回路 Q值和晶体管工作电流 IEQ的影响;4.掌握数字式频率计及示波器的正确使用方法二、预习要求:1.复习LC振荡器的工作原理;2.分析图1所示的实验电路,说明各元件的作用;并计算晶体管静态工作电流的最大值(注:假设晶体管的β值为80);3.实验电路图中,若L=13μH,C1=120pF,C2=680pF可变电容Cmin=20pF时,最高振荡频率FMAX为多少?若可变电容CMAX=160pF时,最低振荡频率FMIN为多少?4.若电感线圈 L作频率在 6.5MHz时,电感量为 13μH 的 Q值为 100,请计算在L两端分别顺序并联接上电阻110K Ω,33KΩ,10KΩ,47KΩ时,电感的Q值相应的值变为多少?5.认真阅读实验指示书,并根据实验内容设计实验表格.三、实验仪器及设备:l.示波器1台2.数字式频率计 1台 3.直流稳压电源1台4.万用表 1台5.实验电路板四、LC振荡电路原理图五、实验内容及步骤实验电路见下图,并在高频实验箱的实验板上找到对应的插孔位置。
1、 (1)接好电源+12V,注意电源极性不能接反。
(2)反馈电容C不接,C’接入,用示波器观察振荡器停振时的情况。
(3)改变电位器RP测得晶体管V的发射极电压VE,VE可连续变化,记下VE的最大值,计算IE值。
2、振荡频率与振荡幅度的测试实验条件:IE=2mA、C=120pf、C’=680pf 、RL=110K。
(1)改变CT电容,当分别接为C9、C10、C11时,记录相应的频率值,填于表一(2)改变CT电容,当分别接为C9、C10、C11时,用示波器测量相应振荡电压的峰峰值VPP,填入表一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河海大学计算机与信息学院高频电子电路课程实践报告西勒高频振荡器的制作
指导老师: 朱昌平、张秀平、殷明授课班号: 202601
姓名: 陈强
学号: 1062310211
我先通过上网寻找资料,找相关的原理图,再通过书本上的原理,进行一定的改进,电路除了采用两个将达的电容C3、C9以外,还把基本型的电容反馈线路集电极——基极支路改用LC并联回路再与C4串联,从而叫做西勒电路。
运用Multisim软件进行仿真,刚开始只出来8M左右的波形,后来我通过调节相应电容C5和电感L1的大小,提高了频率大小。
最高可以达到22M左右,但同时导致的后果是电压幅值变小。
再提高,就会出现波形失真。
对于这个问题,
请教了老师与学长,到目前为止还没有解决。
对于电路图的绘制,由于我大一时就学习了Protel ,所以上手很快,仿照仿真图,把原理图规则清楚的画出来(见上图),对于西勒振荡器里面的一些元器件,都是很常见的,所以免去了自己画封装的步骤。
然后转换成PCB ,通过排版,调整,设计,主要问题是对于贴片的处理,之前没有做过贴片的板子,所以问了学长如何处理,知道了这方面的知识。
画板子的总体速度比较快。
以上是最后得到的PCB 。
三.电路硬件制作与调试
元器件列表:LED、单排针、双排针、单插排、9V直流电源
贴片电阻:10K、47Ω、1K、4.7K、100K
电位器:503、102
贴片电容:103P、102P、104P、1PF、220PF、510PF
电解电容:47μF
三极管:9018NPN
电感:1μH定值电感、绕制电感
首先用油纸打印PCB,接着轧板子,打孔;然后对照着原理图和PCB焊接电路板。
个人觉得最容易出错的一步是焊接贴片,电容贴片没有标注大小,特别容易错,所以一定要特别小心。
由于我之前有过焊板子的经历,这一步骤相对比较顺利。
焊好板子后,就进行电路板的初步调试,用万用表依次测试板子的通断,排除虚短续断的出现,确保之后调试的成功。
通过调试发现必须要把电位器102调成0Ω,即顺时针旋转调节集电极偏置电阻R20,听到有滑丝声(即电阻值为0Ω)时停止。
然后就可以接通电源,进行下一步的调试——电压。
插入1μH 电感,测集电极电压应该与电源电压大小相近,接着测试基极偏置电压,通过不断的调节发现,在电压值为5-6V左右时达到三极管9018的放大区工作点。
所以需要旋转基极偏置电阻R2,调节基极偏置电压,用万用表测量,使其电压达到5-6V,这样,就可以用示波器测量输出端P21是否有高频振荡信号。
四.电路输出结果
下面是我焊制的电路板正反面,以及出现的波形图。
刚开始用1μH电感时,出来的波形频率只有9M左右,之后利用网上下载到的绕制电感计算公式,自己用铜丝绕制了电感,经过不断的调节,减小电感L2,使频率达到将近20M。
再放大,由于幅值的相应减小,导致波形不起振。
下面附有我板子输出的波形图。
五.经验总结与反思
对于这次制作西勒振荡器,我作为我们二班的负责人,学到了很多东西。
我做的第一块板子是以失败告终的。
这和我们团队寻找的电路图,以及之后我个人对电路板的制作和调试有关系,我尝试了很多种修改的方向,但最后还是没有出现仿真中出现的预想波形,对于失败我有些失落。
但后来,在同学的建议与老师的指导下,修改了原理图,重新进行仿真,画板子,制作和调试。
这一次同样存在第一次出现的问题,但经过查资料,分析,测试各个端口的电压值,最终调试成功了。
并调到了仿真时的频率。
在我自己的板子成功之后,就开始负责带领大家一起制作。
这很好的锻炼了我的组织协调能力。
我和龚润航一起去了电子市场买元器件,了解了购买时的一些注意事项;然后开始组织大家一起制作。
我开始给大家打印了PCB,教大家轧板子,跑板子,打孔,这几个步骤我们班的十几位同学都很好的完成了。
接下来是焊接电路板,我向张老师申请了603教室以及电烙铁等工具。
通过先焊接小器件,最后焊接大器件的步骤,一步步焊接,特别在焊接贴片电容电感时,我放慢了大家的步骤,一片一片给大家分发元件,避免元器件的焊接错误。
整体过程比较顺利,因为我们的电路板子排版清楚,间隙适中,没有跳线,容易焊接。
最后给大家展示调试的过程,先测试电路板的通断,然后调节集电极电阻为0Ω,插上元器件和电源,测试集电极和基极电压,调节基极偏置电阻,使基极偏置电压达到5V以上。
最后利用
示波器,通过输出端测试输出波形,以及如何调节波形和复制。
通过这次实验,让同学们对于制作电路板的基本流程有了清晰的了解,并且培养了我的自我学习和组织能力。
使我们都收获了很多。