随机过程(超容易理解+配套例题)(课堂PPT)
随机过程例题(课堂PPT)
2020/4/26
10
4谱分析
例3 设随机序列X(n) = W(n) +W(n-1),其中W(n)是高斯随
机序列,mW=0, RW(m)=2(m),求X(n)的均值、自相关 函数和谱密度 GX () .
[解]
mX (n) E[X (n)] E[W (n) W (n 1)] 0
mZ (t) 0
n
RZ (s, t)
e 2 jk (st ) k
k 1
2020/4/26
4
3平稳过程
例1
• 设有随机相位过程 X (t) = a sin(t+),a, 为常数, 为
(0, 2)上服从均匀分布的随机变量,试讨论随机过程 X (t) 的平稳性。
[解]
2
E[ X (t)] E[a sin(t )] a sin(t ) f ( )d
cos
RX ( )
RY (t,t
)(t)和 Y (t)均是平稳过程。
RXY (t, t ) E[ X (t)Y (t )] E{a cos(t )b sin[(t ) ]}
ab sin
2
RXY ( )
所以
2020/4/26
X
(t)和
Y
(t)
是联合平稳的。
0
a
2
sin(t )d 0
2 0
RX (t,t ) E[ X (t) X (t )]
2 a2 sin(t ) sin[(t ) ]d a2 cos
0 2
2
2020/4/26 因此 X (t)是平稳随机过程。
5
3平稳过程
例2(白噪声序列)
• 设 { Xn , n = 0, 1, 2, } 是实的互不相关随机变量
随机过程_课件---第三章
随机过程_课件---第三章第三章随机过程3.1 随机过程的基本概念1、随机过程定义3-1 设(),,F P Ω是给定的概率空间,T 为一指标集,对于任意t T ∈,都存在定义在(),,F P Ω上,取值于E 的随机变量()(),X t ωω∈Ω与它相对应,则称依赖于t 的一族随机变量(){},:X t t T ω∈为随机过程,简记(){}tX ω,{}tX 或(){}X t 。
注:随机过程(){,:,}X t t T ωω∈Ω∈是时间参数t 和样本点ω的二元函数,对于给定的时间是()00,,t T X t ω∈是概率空间(),,F P Ω上的随机变量;对于给定样本点()00,,X t ωω∈Ω是定义在T 上的实函数,此时称它为随机过程对应于0ω的一个样本函数,也成为样本轨道或实现。
E 称为随机过程的相空间,也成为状态空间,通常用""t X x =表示t X 处于状态x 。
2、随机过程分类:随机过程t X 按照时间和状态是连续还是离散可以分为四类:连续型随机过程、离散型随机过程、连续随机序列、离散随机序列。
3、有穷维分布函数定义3-2 设随机过程{}t X ,在任意n 个时刻1,,n t t 的取值1,,nt tX X 构成n 维随机向量()1,,n t t XX ,其n 维联合分布函数为:()()11,,11,,,,nnt t nt t nF x x P X x Xx ≤≤其n 维联合密度函数记为()1,,1,,n t tn f x x 。
我们称(){}1,,11,,:1,,,nt t n n Fx x n t t T ≥∈ 为随机过程{}t X 的有穷维分布函数。
3.2 随机过程的数字特征1、数学期望对于任何一个时间t T ∈,随机过程{}t X 的数学期望定义为()()tX t t E X xdF x μ+∞-∞==?()t E X 是时间t 的函数。
2、方差与矩随机过程{}t X 的二阶中心矩22()[(())],tX t t t Var X E X E X t T σ==-∈称为随机过程{}t X 的方差。
概率论与数理统计经典课件随机过程
一维、二维或一般的多维随机变量的研究是概率论的研究内容,而 随机序列、随机过程则是随机过程学科的研究内容。从前面的描述中看 到,它的每一样本点所对应的,是一个数列或是一个关于t的函数。
定义:设T是一无限实数集,X (e,t), e S,t T是对应于e和t的实数,
即为定义在S 和T 上的二元函数。
DX
(t)
E
[ X (t) X (t)]2
---方差函数
X (t)
2 X
(t
)
---标准差函数
又设任意t1,t2 T RXX (t1,t2 ) E[ X (t1) X (t2 )] (自)相关函数
CXX (t1,t2 ) Cov[ X (t1), X (t2 )]
E [ X (t1) X (t1)][ X (t2 ) X (t2 )] (自)协方差函数
定义: X (t),t T是一随机过程,若它的每一个有限维分布
都是正态分布,即对任意整数n 1及任意t1,t2,
X (t1), X (t2 ), X (tn )服从n维正态分布, 则称X (t),t T是正态过程
tn T ,
正态过程的全部统计特性完全由它的均值函数和自协方差函数所确定。
16
例3:设A, B是两个随机变量,试求随机过程:
当A
N 1,4, B
U 0, 2时,E(A) 1, E( A2 ) 5, E(B) 1, E(B2)
4 3
又因为A, B独立, 故E(AB) E(A)E(B) 1
X (t) t 3, RX (t1, t2 ) 5t1t2 3(t1 t2 ) 12 t1, t2 T
17
例4:求随机相位正弦波X (t) acos(t ) t ,
《随机过程》课件
f1(x1, t1)
F1(x1, t1) x1
4
● 随机过程 (t) 的二维分布函数:
F2 (x1, x2 ;t1,t2 , ) P (t1) x1, (t2 ) x2
● 随机过程 (t)的二维概率密度函数:
f2
(x1,
x2 ; t1, t2
)
2F2 (x1, x2;t1,t2 ) x1 x2
Dξ t Eξ 2 t 2atξ t a2 t
E[ξ 2 (t)] 2at Eξ t a2 (t)
E[ξ 2 (t)] a2 (t)
于
均
值
所以 a(t
,) 的方偏差离等程于x度2均f。1方(
x值,
t与)d均x值平[a方(t之)]差2
,
它
表
示
随
机
过
程
在
时
刻
t
对
均方值
均值平方
8
● 相关函数
在通信系统中所遇到的信号及噪声,大多数可视为平稳的随机过程。 因此,研究平稳随机过程有着很大的实际意义。
13
● 2.2 各态历经性 ● 问题的提出:我们知道,随机过程的数字特征(均值、相关函数)是对随 机过程的所有样本函数的统计平均,但在实际中常常很难测得大量的样本, 这样,我们自然会提出这样一个问题:能否从一次试验而得到的一个样本 函数x(t)来决定平稳过程的数字特征呢? ● 回答是肯定的。平稳过程在满足一定的条件下具有一个有趣而又非常有用 的特性,称为“各态历经性”(又称“遍历性”)。具有各态历经性的过 程,其数字特征(均为统计平均)完全可由随机过程中的任一实现的时间 平均值来代替。 ● 下面,我们来讨论各态历经性的条件。
R(t1,t2 ) E[ (t1) (t2 )]
《数学随机过程》PPT课件
几何直观意义
3.3 随机分析初步
附注C—关于赋范线性空间概念的回顾
设V是一个线性空间,若 V,存在一个实数|| ||与
之对应,且具有下列性质:
(1) || ||0 , 且|| ||=0 =0 ; (2) ||c· ||= |c|·|| || , 特别 ||- ||= || ||; c R (3) || + || || ||+ || ||; V 则称|| || 为V中元素 的范数(norm)(模、长度),此时线
CXX (t1, t2 ) cov{ X (t1), X (t2 )} E{[ X (t1) mX (t1)][ X (t2 ) mX (t2 )]} | CXX (t1, t2 ) |2 | cov{ X (t1), X (t2 )} |2 | E{[ X (t1) mX (t1)][ X (t2 ) mX (t2 )]} |2 {E | [ X (t1) mX (t1)][ X (t2 ) mX (t2 )] |}2 E | X (t1) mX (t1) |2 E | X (t2 ) mX (t2 ) |2 D[ X (t1)]D[ X (t2 )]
3.3 随机分析初步
附注A—关于线性空间概念的回顾
设V是一个非空的集合,K是一个数域,又设
(a)在V中定义加法: , V : + V ; (b)在V中定义数乘: V, k K: k · V ; 且 , , V , k,l K , 满足 (1) k ,l K, , V : (2) +( +)= ( + )+ ; (3) + = + ; (4)0V, V: +0= ; (5) V, V: +=0 (6) 1 K: 1· = ; (7) k ,l K, V: (kl)· =k·(l) ; (8)k ,l K, V: (k+l) = k +l ; (9) k K, , V : k( + )= k + k .
随机过程随机过程的基本概念ppt课件
6
2.1 随机过程的定义
例2.1.2 电子元件或器件由于内部微观粒子 (电子)的随机热噪声引起的端电压称为热 噪声电压,它在任一确定时刻的值是随机变 量,记为V(t). 如果t 从0变到+∞,t 时刻的热 噪声电压需要用一族随机变量{V(t), t ∈[0, +∞]}来表示,则该随机变量就是一个随机过 程. 对某种装置做一次试验,便可得到一个 “电压—时间函数”v(t) . 这个“电压—时间 函数”是不可能预先确知的,只有通过测量才 能得到. 如果在相同的条件下独立地再进行一 次测量,则得到的记录是不同的.
; 取V=0,则
x(t)=0;取V3=1,则x(3t)=cosωt. 这些都是 t 的
确定函数,即随机过程的样本函数.
12
2.1 随机过程的定义
(2) 当t=0时,X(0)=V,故X(0)的概率密度函 数就是V的概率密度函数,即
1,0 x 1 fX (0) (x) 0,其他
当 故
1,0 v 1 fV (v) 0,其他
(1) 画出{X(t) ,﹣∞<t<+∞}的几条样本曲线;
(率2)密求度t 函 0数, 4;
,
3 4
,
时随机变量X(t)的概
(3)求
t
2
时X(t)的分布函数
11
2.1 随机过程的定义
解
(1) 取 V 2 则x(t) 2 cost
定义2.1.3 设{X(t), t ∈T }是随机过程,则 当ω ∈ Ω固定时, X(t)是定义在上T不具有 随机性的普通函数,记为x(t), 称为随机过 程的一个样本函数. 其图像成为随机过程 的一条样本曲线(轨道或实现).
《随机过程》教程.ppt
无穷大的分类
0, 1 ,2 ,3,……(自然数集合的无限多 为0, 0集合的所有子集构成的集合的 “无限多(势)”为1 , 1集合的所有 子集构成的集合的势为2 , ……),在数 学上已经严格证明: 0, 1 ,2 ,3,等之 间不能建立双射的关系。
对于无穷大,“整体大于部分”的直觉不再成立
对于自然数集 N 1,2,3,4,5,L ,偶数集合
原像集
像集 单射(不同的原
f
像具有不同的像)
f a1 f a2
满射(每一个像都有原像)
原像集
像集
f
b, a, s.t.
b f a
双射(既是单射,又是满射)
原像集
像集
f
从直觉上承认能建立双射关系的两 个集合,其所含元素的“个数”一样多。
可数和不可数的定义
凡是能和自然数集合或者自然数集合的 一个子集建立双射关系的集合称为可数 集合;否则称为不可数集合。 可数和不可数是人类认识“无穷”所产 生的概念,是对无穷的分类。 已经证明连续的区间,和实数集等都是 不可数集合:[1,2],(0.1,0.01),R,等等
事件和Borel集
事件:样本空间中满足一定条件的全体 元素构成子集,“一定条件”有事件的 意义,因此称样本空间的子集为事件。
(举例说明)
不可能事件 必然事件 基本事件:可数和不可数 Borel集:规定了事件的全体及其相容性
概率空间的定义
阅读讲解p.16定义2.1 理解概率空间
概率空间是对随机现象的基本建模方法 概率空间有三个要素:样本空间、Borel事
《随机过程》教程
第三讲 随机对象(一)
本章要义(阅读引言部分)
本章介绍如何对随机现象建立数学模型。
随机过程_课件---第四章
随机过程_课件---第四章第四章 Poisson 过程4.1 齐次Poisson 过程到达时间间隔与等待时间的分布1、定理4-1强度为λ的齐次Poisson 过程{,0}t N t≥的到达时间间隔序列{},1,2,n X n = 是独立同分布的随机变量序列,且是具有相同均值1λ的指数分布。
证:事件{}1X t >发生当且仅当Poisson 过程在区间[]0,t 内没有事件发生,即事件{}1X t >等价于{0}tN =,所以有()(0)t t t P X t P N e λ->===因此,1X 具有均值为1λ的指数分布,再求已知1X 的条件下,2X 的分布。
(](](]211(|)(|)((0tP X t X s P X s P P e λ->====在s,s+t 内没有事件发生(由独立增量性)在s,s+t 内没有事件发生)(由平稳增量性)在,t 内没有事件发生)上式表明2X 与1X 相互独立,而且2X 也是一个具有均值为1λ的指数分布的随机变量,重复同样的推导可以证明定理4-1的结论。
2、定理4-2等待时间n S 服从参数为n ,λ的Γ分布,即分布密度为1()(),(1)!n tt f t e n λλλ--=- 0t ≥证:因为第n 个事件在时刻t 或之前发生当且仅当到时间t 已发生的事件数目至少是n ,即事件{}{}t n N n S t ≥?≤是等价的,因此()()()!j tn t j nt P S t P N n ej λλ∞-=≤=≥=∑上式两边对t 求导得n S 的分布密度为11()()()!(1)!(),0(1)!j j tt j nj nn tt t f t e e j j t et n λλλλλλλλλ-∞∞--==--=-+-=≥-∑∑注:定理4-2又给出了定义Poisson 过程的另一种方法。
从一列均值为1/λ的独立同分布的指数随机变量序列{},1n X n ≥出发,定义第n 个事件发生的时刻为n S ,则12n n S X X X =+++这样就定义了一个计数过程,且所得计数过程{},0t N t ≥就是参数为λ的Poisson 过程。
随机过程(超容易理解+配套例题)
令 m(t)
(s)ds
0
t
例 设某设备的使用期限为10年,在前5年内它平均2.5年需要维修一次, 后5年平均2年需要维修一次,求它在使用期内只维修过一次的概率。 解 考虑非齐次泊松过程,强度函数
1 2.5 (t ) 1 2
10
0t 5 5 t 10
, X n 1 in 1 , X n i )
2、转移概率
定义
i, j S ,
称
P X n 1 j X n i pij n
为n时刻的一步转移概率。若
i, j S , pij n pij
即pij与n无关,则称{Xn,n≥0}为齐次马尔可夫链。记P=(pij),称P为 {Xn,n≥0}的一步转移概率矩阵.
2、Poisson过程 计数过程 {N(t),t 0}称为参数为 ( 0)的Poisson 过程,如果 (1)N(0)=0; (2)过程有独立增量; (3)对任意的 s, t 0, P{N(t s) N(s) n} e t , n 0,1, 2.....
0 1 2 1 P 4 0 0 0 1 2 0 1 4 0 0 0 1 2 1 2 0 1 1 2 0 0 0 1 4 0 0 0 0 0 1 4 0 0 1 0 0 0 0 1 2 0
2 5 1 3
6
4
假定某大学有一万人,每人每月使用一支牙膏,并且只使用“中华”牙膏和 “黑妹”牙膏两者之一。根据本月的调查,有3000人使用黑妹牙膏,7000人使 用中华牙膏。又据调查,使用黑妹牙膏的3000人中 ,有60%的人下月将继续使 用黑妹牙膏,40%的人将改用中华牙膏;使用中华牙膏的7000人中,有70%的 人下月将继续使用中华牙膏,30%的人将改用黑妹牙膏。 1)我们可以得到转移概率矩阵
《随机过程教程》PPT课件幻灯片PPT
主要教学成果
编写出版了教材?通信与信息工程中的随 机过程? 开设的?随机过程?课程2002年12月被评为 江苏省优秀研究生课程 至今培养了7名硕士研究生获得硕士学位, 目前正在指导13名硕士研究生 协助指导5名博士研究生获得博士学位 指导本科毕业设计20名
教学理念
教者方面 认真、尽职 教的过程也是学的过程 学者方面 “贤良、喜悦、勤奋〞可使学习者臻于完善的 境地 共同方面 互换角度、互相尊重 互相配合、互相理解、互相学习
科研方向
主要科研方向
无线通信中的各种信号处理问题 无线通信系统中的无线资源管理问题
具体涉及的研究领越
DS/CDMA通信系统中的多用户检测 智能天线技术 MIMO系统中的空时编码技术 HSDPA技术 无线网络规划
完成的科研工程
1997年1月到12月,作为工程负责人完成了国 家863高技术开展工程“多址干扰抑制技术〞 1998年4月到2001年3月,作为工程技术负责人, 完成了本室与芬兰NOKIA移动 公司的国际合作 工程“移动通信中的新方法〞 2001年7月到2002年5月,作为工程负责人,完 成了深圳华为公司的委托工程 “WCDMA/HSDPA系统仿真分析〞
科研方向主要科研方向?无线通信中的各种信号处理问题?无线通信系统中的无线资源管理问题具体涉及的研究领越?dscdma通信系统中的多用户检测?智能天线技术?mimo系统中的空时编码技术?hsdpa技术?无线网络规划完成的科研项目1997年1月到12月作为项目负责人完成了国家863高技术发展项目多址干扰抑制技术1998年4月到2001年3月作为项目技术负责人完成了本室与芬兰nokia移动电话公司的国际合作项目移动通信中的新方法2001年7月到2002年5月作为项目负责人完成了深圳华为公司的委托项目wcdmahsdpa系统仿真分析2001年4月至今作为项目技术负责人负责本室与芬兰nokia移动电话公司的国际合作项目3g以后系统的基带算法研究2003年1月至今作为项目负责人正在进行深圳华为公司委托的开发项目hsdparrm调度算法建模和网络规划的建模2003年2月至今作为项目负责人正在进行和中国移动集团总公司的委托研究项目ngsobsss卫星系统和地面wcdma系统的干扰分析2002年9月至今作为项目副组长负责国家863高技术发展项目新型天线和分集技术研究的基带研究部分在研的科研项目主要教学成果编写出版了教材通信与信息工程中的随机过程开设的随机过程课程2002年12月被评为江苏省优秀研究生课程至今培养了7名硕士研究生获得硕士学位目前正在指导13名硕士研究生协助指导5名博士研究生获得博士学位指导本科毕业设计20名教学理念教者方面?认真尽职?教的过程也是学的过程学者方面?贤良喜悦勤奋可使学习者臻于完善的境地共同方面?互换角度互相尊重?互相配合互相理解互相学习一张去年的照片内容提要教者简介所教内容简介教学方式约定考核方式劝勉勤奋学习随机过程的内容随机对象
《随机过程》课件
泊松过程
定义
泊松过程是一种计数随机过程,其事件的发生是 相互独立的,且具有恒定的平均发生率。
例子
放射性衰变、电话呼叫次数、交通事故等。
应用领域
物理学、工程学、保险学等。
03
随机过程的变换与函数
随机过程的线性变换
线性变换的定义
线性变换是指对随机过程中的每个时间点,将该点的随机变量或随机向量乘以一个常数 或矩阵,并加上另一个常数或矩阵。
应用
微分在随机过程的理论和应用中非常重要,例如在金融 领域中,可以通过计算股票价格的导数来预测股票价格 的变动趋势。
积分的定义
随机过程的积分是指对随机过程中的每个时间点,将该 点的随机变量进行积分。
积分的性质
积分运算可以改变随机过程的统计特性,例如期望、方 差和协方差等。
应用
积分在随机过程的理论和应用中也有重要应用,例如在 信号处理中,可以通过对信号进行积分来提取信号的特 征或进行信号的合成。
连续随机过程
01
定义
连续随机过程是在时间或空间上 连续取值的随机现象的数学模型 。
02
03
例子
应用领域
电子信号、温度波动、随机漫步 等。
物理、工程、金融等。
马尔可夫过程
定义
马尔可夫过程是一种特殊的随机过程,其未来状态只依赖于当前 状态,与过去状态无关。
例子
赌徒输赢的过程、天气变化等。
应用领域
统计学、计算机科学、人工智能等。
将随机信号视为随时间变化的随机变量序列,具有时间和概率的统 计特性。
随机模型
根据实际需求建立信号的随机模型,如高斯过程、马尔可夫过程等 。
信号的滤波与预测
滤波器设计
根据随机模型设计滤波 器,用于提取有用信号 或抑制噪声。
《随机过程》PPT课件
主要内容
随机过程的定义
随机过程的分类
按统计特性是否变化分为平稳随机过程和非平稳随机过程 按照是否具有记忆性分为纯粹随机过程、Markov过程、独 立增量过程 按照一阶变差是否有限分类:若随机过程{t}t≥0的一阶 变差有限,称为有界变差过程。 按照二阶矩是否有限分类:若随机过程的均值和方差都有 限,称为二阶矩过程,例如前面提到的宽平稳过程。 3 按照概率分布特征分类:如Weiner过程,Poission过程等。
随机过程的分类——平稳随机过程
按统计特性是否变化分为平稳随机过程和
非平稳随机过程
统计特性不随时间变化而变化的随机过程,
称为平稳过程,否则,统计特性随时间变化而变化
的随机过程,称为非平稳过程。
平稳过程的严格定义为:对于时间t 的n个
任意的时刻t1,t2,…,tn 和任意实数C,若随机过程
{t }t≥0的分布函数满足
例如:如果有两列时间序列数据表现出一致的 变化趋势(非平稳的),即使它们没有任何有意义 的关系,但进行回归也可表现出较高的可决系数。
在现实经济生活中:
情况往往是实际的时间序列数据是非平稳的, 而且主要的经济变量如消费、收入、价格往往表现 为一致的上升或下降。这样,仍然通过经典的因果 关系模型进行分析,一般不会得到有意义的结果。12
宽平稳的不变性表现在统计平均的一、二阶
矩上,而平稳过程的不变性表现在统计平均的概率
分布上,所以二者不同,并且不能由平稳随机过程
得到宽平稳随机过程。二阶矩存在的平稳随机过程
一定是宽平稳随机过程。
6
§3.1 时间序列的平稳性及其检验
一、问题的引出:非平稳变量与经典回归模型 二、时间序列数据的平稳性 三、平稳性的单位根检验 四、单整、趋势平稳与差分平稳随机过程
《概率论与数理统计》课件-随机过程
06
随机过程的未来发展与挑战
随机过程理论的发展趋势
随机过程与大数据的结合
随着大数据技术的快速发展,如何将随机过程与大数据分 析相结合,挖掘出更多有价值的信息和模式,是未来的一 个重要研究方向。
复杂系统中的随机过程
研究复杂系统中的随机过程,如金融市场、生态系统、社 交网络等,以揭示其内在的运行规律和动态特性。
02
随机过程的基本ቤተ መጻሕፍቲ ባይዱ型
独立增量过程
总结词
描述随机过程中事件发生次数随时间变化的过程,其中每次事件的发生都是独立 的。
详细描述
独立增量过程是指随机过程中事件发生次数在不相重叠的时间区间内相互独立, 即每次事件的发生与其他时间点的事件无关。这种过程在保险、金融等领域有广 泛应用。
马尔科夫过程
总结词
描述一个随机系统在给定当前状态的情况下,未来状态只依 赖于当前状态的过程。
详细描述
马尔科夫过程是一种特殊的随机过程,其中下一个状态只与 当前状态有关,而与过去状态无关。这种过程在自然现象、 社会现象和工程领域中都有广泛的应用,如天气预报、股票 价格波动等。
泊松过程
总结词
描述随机事件在单位时间内按照恒定速率独立发生的随机过程。
该方法通过大量随机抽样,得到概率分布的近似结果,具有简单、灵活和通用性强 的特点。
蒙特卡洛方法在金融、物理、工程等领域有广泛应用,如期权定价、核反应堆模拟 等。
离散事件模拟方法
离散事件模拟方法是一种基于 事件驱动的模拟方法,适用于 描述离散状态变化的过程。
该方法通过跟踪系统中的事件 发生和状态变化,来模拟系统 的动态行为。
离散事件模拟方法在交通运输 、生产制造、通信网络等领域 有广泛应用。
随机过程第十一章PPT课件
17
例8.赌徒输光问题: 甲乙两人玩抛硬币游戏,一开始甲带有 a元钱,乙带有m a元钱,独立重复抛 一枚均匀硬币,若第n次出现正面,则 甲赢1元,否则甲输1元。游戏一直到某人 输光结束。计算最后甲输光的概率。
18
解 : 以 Sn表 示 抛 n次 硬 币 后 甲 所 拥 有 的 钱 数 。 则 {Sn}是 一 时 齐 M arkov链 , 状 态 空 间 是 {0,1,...,m },一 步 转 移 概 率 为 :
p ijP X n 1j|X n i q pjj ii
i,j 0 ,1
p
p
一 步 转 移 矩 阵 P q pq p , 状 态 转 移 图 : 0
q q
1
9
例 3 ( . 随 机 游 动 )
1
2
3
4
5
设 一 醉 汉 在 I{1, 2, 3, 4, 5}作 随 机 游 动 : 如 果 现 在 位 于 点 ( i 1i5),则 下 一 时 刻 各 以 1/3概 率 向 左 或 向 右 移 动 一 格 , 或 以 概 率 1/3呆 在 原 处 ; 如 果 现 在 位 于 点 1( 或 点 5) , 则 下 一 时 刻 以 概 率 1移 到 点 2( 或 点 4) 。
令 h i P ( 最 终 被 7 吸 收 |X 0 i ) , 则 h 7 1 , h 3 0 .
利 用 对 称 性 , h1h5h91 2.
利用Markov性和全概率公式:
h2
13h1
13h5
13h3
1. 3
22
§2 有 限 维 分 布 CK方 程
pijs,suv piks,supkjsu,suv
离去者
系统
现用马氏链来描述这个服务系统:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、实际背景: 在许多实际问题中,不仅需要对随机现象做 特定时间点上的一次观察,且需要做多次的 连续不断的观察,以观察研究对象随时间推 移的演变过程.
Ex.1 对某城市的气温进行n年的连续观察,记 录得 : {X (t),a t b},
研究该城市气温有无以年为周期的变化规律?
2020/4/27
2020/4/27
2
随机过程x(t,e)四种不同情况下的意义: .当t固定,e固定时,x(t)是一个确定值; .当t固定,e可变时,x(t)是一个随机变量; .当t可变,e固定时,x(t)是一个确定的时间函数; .当t可变,e可变时,x(t)是一个随机过程;
平稳过程
1)严平稳过程:
若 t1, t2 ,L tn T , 及h 0, ( X t1 ,X t2 ,L , X tn )
(3)对任意的s,t 0,
n
t P{N(t s) N(s) n} t
, n 0,1, 2.....
e n!
称为Poisson过程的强度或者速率,也就 是说单位事件内事件发生的次数。
2020/4/27
6
例:顾客到达某商店服从 =4的Poisson分布
已知商店上午9:00开门,试求到9:30时 仅到一位顾客,而到11:30时总计已达5位 顾客的概率。
当Poisson过程的强度 不再是常数,而与时间t有关时,
Poisson过程被推广为非齐次Poisson过程。一般来说,非 齐次Poisson过程不具有平稳增量。
非齐次Poisson过程
计数过程{N(t), t 0}称做强度函数为 (t) 0(t 0) 的非齐次 Poisson过程,如果
(1)N(0)=0;
解:
设 N (t)表示在时间t时到达的顾客数
P(N(0.5) 1, N(2.5) 5)
P(N(0.5) 1, N(2.5) N(0.5) 4)
P(N(0.5) 1)P(N(2) 4)
(4 0.5)1 e40.5 (4 2)4 e42
1!
4!
0.0155 2020/4/27
7
Poisson过程的推广
(1)N(t) 0 且取值为整数; (2)s t 时,N(s) N(t)且N(t) N(s)表示(s, t]时间内事件A发生的次数。
2020/4/27
5
2、Poisson过程
计数过程 {N(t),t 0}称为参数为 ( 0)的Poisson 过程,如果
(1)N(0)=0;
(2)过程有独立增量;
研究随机过程的一个重要切入点就是研究一个随机信号的数字特征,数 字特征主要包括数学期望、相关函数、方差、协方差、均方值。其中数 学期望是一阶矩,后面四个是二阶矩。可以通过研究随机过程的二阶矩 特征来判断随机过程是否平稳等等。
2020/4/27
4
Poisson过程
1、计数过程: 随机过程N(t),t 0称为计数过程,如果N(t) 表 示从0到t时刻某一特定事件A发生的次数, 它具备以下两个特点:
与( X t1h ,X t2 h ,L , X tn h )
有相同的联合分布,也就是说主要性质
只与变量之间的时间间隔有关。
2020/4/27
3
2)宽平稳过程: 如果随机过程{x(t),t T }所有二阶矩都存在, 并且E[x(t)]= ,协方差函数 (t,s) 只与时间差 t-s有关,那么称{x(t), t T}为宽平稳过程。
(2)过程有独立增量;
(3)对任意实数 t 0, s 0, N(t s) N(t)为具有参数
ts
m(t s) m(t) t () d 的Poisson分布。
t
m(t) 令 2020/4/27 (s) ds 0
8
例 设某设备的使用期限为10年,在前5年内它平均2.5年需要维修一次, 后5年平均2年需要维修一次,求它在使用期内只维修过一次的概率。
设随机试验E的样本空间为S={e},对其每一个元素 ei (i=1,2,…)都以某种法 则确定一个样本函数x(t, ei ),由全部元素{e}所确定的一族样本函数x(t,e)
称为随机过程,记为x(t)。
设有一个过程x(t),若对每一个固定的时刻t j (j=1,2…),X(t j)是一个随 机变量,则x(t)称为随机过程。
1
Ex.2 从杂乱电讯号的一段观察{Y(t),0< t< T} 中,研究是否存在某种随机信号S(t )?
随机过程直观解释: 对随机信号或者噪声信号作一次观测相当于做一次随机试 验,每次随机试验所得到的观测记录结果 xi(t)是一个确定 的函数,称为样本函数,所有的样本函数的全体构成了随 机过程。
2、随机过程的定义
称{N(t),t≥0}更新过程。
一个典型的更新过程的例子就是机器零件的更换。在0时刻,安装上一
个新零件并开始运行,当零件在X1时刻发生损坏,马上用一个新的来
替换(假设替换零件不需要时间),当第二个零件从X1时间开始运行,
到X2时间发生损坏时,我们马上换第三个零件….这些零件的使用寿命
Nt
X t Yi i 1
称{X(t),t≥0}为复合泊松过程。
条件Poisson过程
1、定义:设 是一个正的随机变量,分布函数为G(x),设N(t) 是一个计数过程,
在 的条件下, {N(t),t≥0}是参数为 的泊松过程,即对任意的 s, t≥0,有
PN t s N s n tn et
n!
则称{N(t),t≥0}为条件泊松过程。
2020/4/27
10
更新过程
1、更新过程的定义
设{Xn,n≥1}是独立同分布的非负随机变量,分布函数为F(x),且F(0)<1,令
n
T0 0, Tn X k
k 1
记
EX
=
n
0
xdF(x), 0
N t supn;Tn t 或 N t ITnt n1
解 考虑非齐次泊松过程,强Fra bibliotek函数1
(t )
2.5 1
2
0t 5 5 t 10
m(10)
10
(t)dt
5
1
dt
10 1 dt 4.5
0
0 2.5
52
P{N (10)
N (0)
1}
(4.5)1
e4.5
9
9
e2
1!
2
2020/4/27
9
复合Poisson过程
设{Yi,i≥1}是一族独立同分布的随机变量, {N(t),t≥0}是泊松过程,且{Yi,i≥1}与 {N(t),t≥0}独立,记