组合变形(例题)
材料力学习题组合变形#(精选.)
![材料力学习题组合变形#(精选.)](https://img.taocdn.com/s3/m/39ba1e935fbfc77da269b1ac.png)
组合变形基 本 概 念 题一、选择题1. 偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到 形心的距离e 和中性轴到形心距离d 之间的关系是( )。
A .e = dB .e >dC .e 越小,d 越大D .e 越大,d 越小2.三种受压杆件如图所示,设杆1、杆2和杆3中的最大压应力(绝对值)分别用1max σ、2max σ、3max σ表示,则( )。
A .1max σ=2max σ=3max σB .1max σ>2max σ=3max σC .2max σ>1max σ=3max σD .2max σ<1max σ=3max σ 题2图3.在图示杆件中,最大压应力发生在截面上的( )。
A .A 点B .B 点C .C 点D .D 点题3图 题4图4. 铸铁杆件受力如图4所示,危险点的位置是( )。
A .①点B .②点C .⑧点D .④点5. 图示正方形截面直柱,受纵向力P 的压缩作用。
则当P 力作用点由A 点移至B 点时柱内最大压应力的比值()max A σ﹕()max B σ为( )。
A .1﹕2B .2﹕5C .4﹕7D .5﹕26. 图示矩形截面偏心受压杆件发生的变形为( )。
A .轴向压缩和平面弯曲组合B .轴向压缩,平面弯曲和扭转组合C .轴向压缩,斜弯曲和扭转组合D .轴向压缩和斜弯曲组合-41-题5图 题6图 7. 图所示悬臂梁的横截面为等边角钢,外力P 垂直于梁轴,其作用线与形心轴y 垂直,那么该梁所发生的变形是( )。
A .平面弯曲B .扭转和斜弯曲C .斜弯曲D .两个相互垂直平面(xoy 平面和xoz 平面)内的平面弯曲题7图 8. 图示正方形截面杆受弯扭组合变形,在进行强度计算时,其任一截面的危险点位置有四种答案,正确的是( )。
A .截面形心B .竖边中点A 点C .横边中点B 点D .横截面的角点D 点题8图 题9图9. 图示正方形截面钢杆,受弯扭组合作用,若已知危险截面上弯矩为M ,扭矩为T ,截面上A 点具有最大弯曲正应力σ和最大剪应力τ,其抗弯截面模量为W 。
14-1组合变形-材料力学
![14-1组合变形-材料力学](https://img.taocdn.com/s3/m/707c27f4da38376baf1fae50.png)
Fz F sin
五、自由端的变形
z
A
y
y
FL3 cos
3EI z
z
B y
x
B z
FL3 sin
3EI y
B
z
y
查表7-1(3)
在 Fz B点的位移 z :
例题14.1 图所示屋架结构。已知屋面坡度为1:2, 两屋架之间的距离为4m,木檩条梁的间距为1.5m, 屋面重(包括檩条)为1.4kN/m2。若木檩条梁采
"
Iy
Iy
'
M z y M y z
Iz
Iy
cos sin
M ( y z)
Iz
Iy
四、斜弯曲时的强度条件
1、中性轴的位置
M (
Iz
yo
sin
Iy
zo )
0
tan yo Iz tan
zo
和扭矩图如图c、d
危险截面在杆的根部(固定端)
(3)应力分析
B
M W
T
T Wp
在杆的根部取一单元体分析
y 0, x B , xy T
计算主应力
1
3
B
2
( B
2
)2
2 T
2 0
(4)强度分析
选择第三、第四强度理论
r3
入偏心拉伸的强度条
4
32
件校核
32.4106 32.4MPa 35MPa
满足强度条件,最后选用立柱直 d = 12.5cm
材料力学 第11章 组合变形习题集
![材料力学 第11章 组合变形习题集](https://img.taocdn.com/s3/m/ea3381b9be1e650e53ea992e.png)
横截面m-m上任一点C(y,z)处由 弯矩Mz和My引起的正应力分别为
M z y M cos y M y z M sin z
Iz
Iz
Iy
Iy
38
C点的正应力
' ''
M
cos
Iz
y
sin
Iy
z
悬臂梁固定端截面A的弯矩Mz和My 均达到最大值,故该截
面是危险截面。设yo、zo为中性轴上任一点的坐标,并令σ
算 圆轴表面上与轴线成30°方位上的正应变。
32
解: (1)由内力图知,所有截面均为危险截面,危险点为靠近
轴表面的各点,应力状态如图。计算危险点的主应力。轴力
引起的正应力
FN 4F
A πd 2
扭矩引起的切应力
T M 8F
Wp Wp 5πd 2
危险点处的主应力为
1
2
(
)2
( )2
它在y、z两轴上的截距分别为
y* z* h / 2
该截面惯性半径的平方为
iy2
Iy A
h2 12
iz2
Iz A
b2 12
28
中性轴①对应的核心边界上点1的坐标为
ey1
iz2 y*
0
ez1
iy2 z*
h 6
按上述方法可求得与它们对应的截面核
心边界上的点2、3、4,其坐标依次为:
ey2
b 6
ez2 0
车臂的直径d。
18
解:两个缆车臂各承担缆车重量的一半,如 图。则缆车臂竖直段轴力为FN=W/2=3kN 弯矩为M=Wb/2=540N·m 危险截面发生在缆车臂竖直段左侧,由强度条件
材料力学——8组合变形
![材料力学——8组合变形](https://img.taocdn.com/s3/m/5d02e811c281e53a5802ff65.png)
F m
B
T 15kN m
M max 20kN m
W
15kN· m
D 3
32
(1 )
4
+
r3
20kN· m
-
M2 T2 157.26MPa [ ] W
例题8 传动轴如图所示。在A处作用一个外力偶矩
m=1kN· m,皮带轮直径 D=300mm,皮带轮紧边拉力为 F1,松边拉力为F2。且F1=2F2,L=200mm,轴的许用 应力[]=160MPa。试用第三强度理论设计轴的直径
例3 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, []=100MPa,试按第三强度理论校核此杆的强度。 解:拉扭组合,危险点应力状态如图 T P A T P
P 450 10 3 6.37 MPa A 0.12
T 167000 35 .7MPa 3 Wn 0.1
P
P
1
1
a a
a a
未开槽前 立柱为轴向压缩
N P P P 1 2 A A (2a) 4a2
开槽后 立柱危险截面为偏心压缩;
P
1
P
1
a a
a a
P
1
Pa/2
1
N M P Pa 2 2P 2 2 A W 2 a a 1 2a 2 a a 6 2 P a2 开槽后立柱的最大压应力 8 2 P 4a 未开槽前立柱的最大压应力
2、相当应力计算 第三强度理论,计算相当力
2 0
r 3 1 3 2 4 2
第四强度理论,计算相当应力
r 4 2 3 2
3、强度校核
第8章组合变形及连接部分的计算(答案)
![第8章组合变形及连接部分的计算(答案)](https://img.taocdn.com/s3/m/9f59dd076d175f0e7cd184254b35eefdc8d315bb.png)
第8章组合变形及连接部分的计算(答案)8.1梁的截⾯为2100100mm ?的正⽅形,若kN P30=。
试作轴⼒解:求得约束反⼒24Ax F KN =,9Ay F KN =,9B F KN =为压弯组合变形,弯矩图、轴⼒图如右图所⽰可知危险截⾯为C 截⾯最⼤拉应⼒maxmax 67.5ZM MPa W σ== 最⼤压应⼒max max69.9N Z M FMPa W Aσ=+=8.2若轴向受压正⽅形截⾯短柱的中间开⼀切槽,其⾯积为原来⾯积的⼀半,问最⼤压应⼒增⼤⼏倍?解:如图,挖槽后为压弯组合变形挖槽前最⼤压应⼒挖槽后最⼤压应⼒22222286/)2/(4/2/a P a a Pa a P W M A N c =+=+=σ8//82212==a P a P c c σσ211a P A N c ==σ8.3外悬式起重机,由矩形梁AB (2=bh尺⼨。
解:吊车位于梁中部的时候最危险,受⼒如图解得BC F P =,2Ax F P =,2Ay P F =梁为压弯组合变形,危险截⾯为梁中N F =压),4PL M =(上压下拉)[]max4NZ F PL W A σσ=+≤,代⼊()226Z b b W =,A bh =,由2h b = 解得125b mm =, 250h mm =8.4图⽰为⼀⽪带轮轴(1T 、2T 与3T 相互垂直)。
已知1T 和2T 均为kN 5.1,1、2轮的直径均为mm 300,3轮的直径为mm 450,轴的直径为mm 60。
若M P a 80][=σ,试按第三强度理论校核该轴。
解:由已知条件解得32T KN = 内⼒图如右:最⼤弯矩所在截⾯可能为:1C M KN m ==?1.2D M KN m =?故危险截⾯为D 截⾯32T KN =由第三强度理论[]360r MPa σσ==故安全38.5铁道路标圆信号板装在外径mm D 60=的空⼼圆柱上,若信号板上所受的最⼤风载2/2m kN p =,MPa 60][=σ,试按第三强度理论选择空⼼柱的厚度。
材料力学第七章组合变形
![材料力学第七章组合变形](https://img.taocdn.com/s3/m/a05bda755b8102d276a20029bd64783e09127dd2.png)
P2=406N
外力向形心简化并分解 弯扭组合变形
每个外力分量对应 的内力方程和内力图
M (x)
M
2 y
(
x)M
2 z
(
x)
解续
MMZz ((NNmm)) 71.25
40.6
MMyy ((NNmm)) MT n ((NNmm))
7.05 120 Mn
+
MM ((NNmm)) Mmax=71.3
41.2
核心边界上的一个角点;
截面角点边界
核心边界上的一条直线;
截面曲线边界
核心边界上的一条曲线。
例:
求右图示矩形截面的截面核心。
解:取截面切线 l1作为中性轴,其截距:
b
az
b 2
ay
4
3
a
并注意到: iz2 Iz / A h2 /12 iy2 I y / A b2 /12
故
h
5 21 z
34
ay
iz2 yP
az
iy2 zP
当偏心外力作用在截面 形心周围一个小区域内, 而对应的中性轴与截面周 边相切或位于截面之外时, 整个横截面上就只有压应 力而无拉应力。
2.截面核心的性质及其确定
(1)性质:是截面的一种几何特征,它只与截面的形状、尺
寸有关,而与外力无关。
(2)确定:根据中性轴方程知,截面上中性轴上的点的坐标
cmax
B
Fp A
MB Wz
Fp 6M B 13.4MPa bh bh2
在 B 截面右边缘处
3、最大拉应力
t
max
Fp A
MB Wz
3.4MPa
4、最大剪应力
材料力学 第十章 组合变形(4,5,6)
![材料力学 第十章 组合变形(4,5,6)](https://img.taocdn.com/s3/m/2275da257375a417866f8f49.png)
[例10-7]:偏心拉伸杆,弹 性模量为E,尺寸、受力如图 所示。求: (1)最大拉应力和最大压 应力的位置和数值; (2)AB长度的改变量。 分析:这是偏心拉伸问题
最大拉应力发生在AB线 上各点,最大压应力发 生在CD线上各点。
CL11TU24
解:(1)应力分析
Ph Pb N P, M y , M z 2 2 t N M y Mz c A Wy Wz
3.算例 [例10-4]求高h,宽b的矩形截面的截面核。 b (1)作中性轴Ⅰ,z , a y a 解:
(2)求载荷点① , 2 iy b2 2 b zF ② az 2 6 b 3 z iz ③ yF 0 ① ay ④ (3)作中性轴Ⅱ , h a z , a y 2 b y b (4)求载荷点② , 2 2 2 Ⅰ 2 2 iy iz h h h z F 0, yF ay 6 2 3 az
(1)过截面周边上的一点作切线,以此作为第一 根中性轴; (2)据第一根中性轴的截距求第一个载荷点坐标; (3)过截面周边上相邻的另一点作切线,以此作 为第二根中性轴; (4)按(2)求于第二个中性轴对应的第二个载荷 点坐标; (5)按以上步骤求于切于周边的各特征中性轴对应 的若干个载荷点,依次连接成封闭曲线即截面核心。
中性轴把横截面分为受拉区和受压区,两个 区范围的大小受载荷作用点坐标的控制。 定义:使横截面仅受一种性质的力时载荷作用 的最大范围成为截面核心。
二.截面核心的求法 1.截距与载荷坐标的关系
z F , az ; zF , az
2.作截面核心的方法
zF 0, az ; zF , az 0
解:(1)简化外力:
ch10 组合变形(3rd)
![ch10 组合变形(3rd)](https://img.taocdn.com/s3/m/8a3ac17bb4daa58da0114a68.png)
第十章 组合变形10-2 图a 所示板件,b =20mm ,δ=5mm ,载荷F = 12 kN ,许用应力[σ] = 100 MPa ,试求板边切口的允许深度x 。
题10-2图解:在切口处切取左半段为研究对象(图b ),该处横截面上的轴力与弯矩分别为F F =N)(a b F M -= (a)显然,222xb x b a -=-=(b)将式(b)代入式(a),得2FxM =切口段处于弯拉组合受力状态,该处横截面上的最大拉应力为22N max 432(2a)6 22a Fxa F Fx a F W M A F δδδδσ+=+=+=根据强度要求,在极限情况下,][4322σδδ=+a Fx a F 将式(b)与相关数据代入上式,得01039.61277.042=⨯+--x x由此得切口的允许深度为m m 20.5=x10-3 图示矩形截面钢杆,用应变片测得上、下表面的纵向正应变分别为aε=1.0×10-3与b ε=0.4×10-3,材料的弹性模量E =210GPa 。
试绘横截面上的正应力分布图,并求拉力F 及其偏心距e 的数值。
题10-3图解:1.求a σ和b σ截面的上、下边缘处均处于单向受力状态,故有MPa84Pa 104.010210 MPa 210Pa 100.1102103939=⨯⨯⨯===⨯⨯⨯==--b b a a E εσE εσ偏心拉伸问题,正应力沿截面高度线性变化,据此即可绘出横截面上的正应力分布图,如图10-3所示。
图10-32.求F 和e将F 平移至杆轴线,得 Fe M F F ==,N于是有 a za E εW Fe A F σ=+=E εW Fe AF σzb =-=代入相关数据后,上述方程分别成为 26250240=+Fe F 10500240=-Fe F 经联立求解,于是得mm 786.1m 10786.1kN 38.18N 183753=⨯=≈=-e F ,10-6 图示直径为d 的圆截面铸铁杆,承受偏心距为e 的载荷F 作用。
组合变形
![组合变形](https://img.taocdn.com/s3/m/d72056dcaef8941ea76e054e.png)
第10章组合变形§10-1 组合变形的概念1.组合变形的概念组合变形:构件往往会发生两种或两种以上的基本变形的这类变形。
在前面各章分别讨论了杆件在拉(压)、剪切、扭转和弯曲基本变形时的应力和强度计算。
工程实际中,杆件在荷载作用下所发生的变形,经常是两种或两种以上基本变形的组合,这种变形称为组合变形。
例如图10.1(a)所示屋架檩条的变形,是由y/z两个方向的平面弯曲变形组成的斜弯曲;如图10.1(b)所示厂房柱,在偏心力F作用下,会发生压缩和弯曲的组合变形;如图10.1(c)所示的卷扬机轴在力F作用下,则发生弯曲和扭转的组合变行。
2.组合变形的分析方法及计算原理处理组合变形问题的方法:1.将构件的组合变形分解为基本变形;2.计算构件在每一种基本变形情况下的应力;3.将同一点的应力叠加起来,便可得到构件在组合变形情况下的应力。
叠加原理是解决组合变形计算的基本原理叠加原理应用条件:即在材料服从胡克定律,构件产生小变形,所求力学量定荷载的一次函数的情况下,计算组合变形时可以将几种变形分别单独计算,然后再叠加,即得组合变形杆件的内力、应力和变形。
计算原理:(1)圣维南原理以静力等效力系代替构件原有的荷载,为此,要求构件为细长杆,且所求应力的截面远离外力作用点;(2)叠加原理 按各基本变形计算后进行叠加,为此,要求构件处于线弹性范围内,且变形很小,可按构件的原始形状的尺寸进行计算。
在小变形和线弹性条件下,杆件上各种力的作用彼此独立,互不影响,即杆上同时有几种力作用时,一种力对杆的作用效果(变形或应力),不影响另一种力对杆的作用效果(或影响很小可以忽略)。
因此组合变形下杆件内的应力,可视为几种基本变形下杆件内应力的叠加。
本章中组合变形下杆件的应力计算,将以各基本变形的应力及叠加法为基础。
叠加法的主要步骤:a 、将组合变形按照各基本变形的条件,分解为几种基本变形,简称分解。
b 、利用基本变形的应力计算公式,分别计算各点处的正应力和切应力。
组合变形习题
![组合变形习题](https://img.taocdn.com/s3/m/09f4daed580216fc710afd48.png)
第九章 组合变形部分填空题01. ( 5 ) 偏心压缩实际不就是 ________ 和 ___________ 的组合变形问题 02.( 5 ) 铸铁构件受力如图所示,其危险点的位置有四中种答案: ( A ) ① 点; ( B ) ② 点; ( C )③ 点; ( D ) ④ 点。
正确答案是 ____________03.(5)图示矩形截面拉杆中间开一深度为 h/2 的缺口,与不开口的拉杆相比,开中处的最大应力的增大倍数有 四种答案:(A) 2 倍; (B) 4 倍; (C) 8 倍; (D) 16 倍;正确答案是 ____________表示,它们之间的关系有四种答案:正确答案是___________04.三种受压杆件如图,设杆 1、2、和杆 3 中的最大压应力 (绝对值) 分别用max1 max2 和max3A )max1< max2 < m ax3 ; m ax1 < max2 = max3 ;max1 max3 max2max1 max3 max205. 一空间折杆受力如图所示,则 AB 杆的变形有四种答案:(A) 偏心拉伸; ( B ) 纵横弯曲; ( C ) 弯扭组合; ( D ) 拉弯扭组合; 正确答案是 _________________ 。
06. 图示正方形截面杆承受弯扭组合变形,在进行强度计算时,其任一截面的危险点位置有四种答案:(A) 截面形心; ( B ) 竖边中点 A 点; ( C ) 横边中点 B 点; ( D ) 横截面的角点 D点; 正确答案是 _________ 。
08 用第三强度理论校核图示杆的强度时,有四种答案:(A) P/ A [(M /W z )24(T /W t )2]1/2 [ ] ;(B) P/ A M /W z T /W t [ ] ; (C) [(P/ A M /W z )2(T /W t )2]1/2 [ ];07. 折杆危险截面上危险点的应力状态,现有四种答案: 正确答案是 。
(整理)题10-组合变形
![(整理)题10-组合变形](https://img.taocdn.com/s3/m/0f3225ba195f312b3169a59e.png)
组合变形1. 偏心压缩杆,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到形心的距离e 和中性轴到形心的距离d 之间的关系有四种答案:(A) e d =; (B) e d >; (C) e 越小,d 越大; (D) e 越大,d 越大。
答:C2. 三种受压杆件如图所示,杆1、杆2与杆3中的最大压应力(绝对值)分别为max1σ、max 2σ和max 3σ,现有下列四种答案:(A)max1max 2max 3σσσ==; (B)max1max 2max 3σσσ>=; (C)max 2max1max 3σσσ>=; (D)max1max3σσσ<=max2。
答:C3.重合)。
立柱受沿图示a-a(A)斜弯曲与轴向压缩的组合; (B)平面弯曲与轴向压缩的组合; (C)斜弯曲; (D)平面弯曲。
答:B4. (A) A 点; (B) B 点; (C) C 点; (D) D 点。
答:C5. 图示矩形截面拉杆,中间开有深度为/2h 的缺口,与不开口的拉杆相比,开口处最大正应力将是不开口杆的 倍: (A) 2倍; (B) 4倍; (C) 8倍; (D) 16倍。
答:C6. 三种受压杆件如图所示,杆1、杆2与杆3中的最大压应力(绝对值)分别为max1σ、max 2σ和max 3σ,现有下列四种答案:(A)max1max 2max3σσσ<<; (B)max1max 2max3σσσ<=; (C)max1max3max 2σσσ<<; (D)max1max 3max 2σσσ=<。
答:C7. 正方形等截面立柱,受纵向压力F移至B 时,柱内最大压应力的比值max maxA B σσ(A) 1:2; (B) 2:5; (C) 4:7; (D) 5:2。
答:C8. 图示矩形截面偏心受压杆,其变形有下列四种答案:(A)轴向压缩和平面弯曲的组合; (B)轴向压缩、平面弯曲和扭转的组合; (C)缩和斜弯曲的组合;(D)轴向压缩、斜弯曲和扭转的组合。
材料力学组合变形习题
![材料力学组合变形习题](https://img.taocdn.com/s3/m/96c1f6fd6137ee06eef9180c.png)
材料力学组合变形习题L1AL101ADB (3)偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点 到形心之距离e和中性轴到形心距离d之间的关系有四种答案:(A ) e=d; (B ) e>d;(C ) e越小,d越大; (D ) e越大,d越小。
正确答案是______。
答案(C )1BL102ADB (3)三种受压杆件如图。
设杆1、杆2和杆3中的最大压应力(绝对值)分别用 max1σ、max 2σ和max3σ表示,现有下列四种答案:(A )max1σ=max 2σ=max3σ; (B )max1σ>max 2σ=max3σ;(C )max 2σ>max1σ=max3σ; (D )max 2σ<max1σ=max3σ。
正确答案是______。
答案(C )1BL103ADD (1)在图示杆件中,最大压应力发生在截面上的哪一点,现有四种答案:(A )A点; (B )B点; (C )C点; (D )D点。
正确答案是______。
答案(C )1AL104ADC (2)一空心立柱,横截面外边界为正方形, 内边界为等边三角形(二图形形心重 合)。
当立柱受沿图示a-a线的压力时,此立柱变形形态有四种答案:(A )斜弯曲与中心压缩组合; (B )平面弯曲与中心压缩组合;(C )斜弯曲; (D )平面弯曲。
正确答案是______。
答案(B )1BL105ADC (2)铸铁构件受力如图所示,其危险点的位置有四种答案:(A )①点; (B )②点; (C )③点; (D )④点。
正确答案是______。
答案(D )1BL106ADC (2)图示矩形截面拉杆中间开一深度为h/2的缺口,与不开口的拉杆相比,开口处的最大应力的增大倍数有四种答案:(A )2倍; (B )4倍; (C )8倍; (D )16倍。
正确答案是______。
答案(C )1BL107ADB (3)三种受压杆件如图,设杆1、杆2和杆3中的最大压应力(绝对值)分别用 max1σ、max 2σ和max3σ表示,它们之间的关系有四种答案:(A )max1σ<max 2σ<max3σ; (B )max1σ<max 2σ=max3σ;(C )max1σ<max3σ<max 2σ; (D )max1σ=max3σ<max 2σ。
组合变形练习题
![组合变形练习题](https://img.taocdn.com/s3/m/f1ff3279a9956bec0975f46527d3240c8447a113.png)
组合变形练习题一、选择1、应用叠加原理旳前提条件是:。
A:线弹性构件;B:小变形杆件;C:线弹性、小变形杆件;D:线弹性、小变形、直杆;2、平板上边切h/5,在下边相应切去h/5,平板旳强度。
A:减少一半; B:减少不到一半;C:不变; D:提高了;3、AB杆旳A处靠在光滑旳墙上,B端铰支,在自重作用下发生变形,AB杆发生变形。
A:平面弯曲B:斜弯;C:拉弯组合; D:压弯组合;4、简支梁受力如图:梁上。
A:AC段发生弯曲变形、CB段发生拉弯组合变形B:AC段发生压弯组合变形、CB段发生弯曲变形C:两段只发生弯曲变形D:AC段发生压弯组合、CB段发生拉弯组合变形5、图示中铸铁制成旳压力机立柱旳截面中,最合理旳是。
6、矩形截面悬臂梁受力如图,P2作用在梁旳中间截面处,悬臂梁根部截面上旳最大应力为: 。
A:σmax=(My2+M z2)1/2/WﻩﻩﻩB:σmax=M y/W y+MZ/WZC:σmax=P1/A+P2/A ﻩﻩﻩD:σmax=P1/W y+P2/W z7、塑性材料制成旳圆截面杆件上承受轴向拉力、弯矩和扭矩旳联合伙用,其强度条件是。
A:σr3=N/A+M/W≤|σ| B:σr3=N/A+(M2+T2)1/2/W≤|σ|C:σr3=[(N/A+M/W)2+(T/W)2]1/2≤|σ|D:σr3=[(N/A)2+(M/W)2+(T/W)2]1/2≤|σ|8、方形截面等直杆,抗弯模量为W,承受弯矩M,扭矩T,A点处正应力为σ,剪应力为τ,材料为一般碳钢,其强度条件为: 。
A:σ≤|σ|, τ≤|τ| ;B: (M2+T2)1/2/W≤|σ| ;C:(M2+0.75T2)1/2/W≤|σ|; D:(σ2+4τ2)1/2≤|σ| ;9、圆轴受力如图。
该轴旳变形为:A:AC段发生扭转变形,CB段发生弯曲变形B:AC段发生扭转变形,CB段发生弯扭组合变形C:AC段发生弯扭组合变形,CB段发生弯曲变形D:AC、CB均发生弯扭组合变形二、填空1、图示构造中,m-m面发生变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
P 450
A
0.12
103
6.37MPa
T Wn
16700.1030
35
.7MPa
3
24 2
故,安全。
6.372435.72
71.7MPa
p.8
例题
习题6.
例题
图示皮带轮传动轴传递功率N=7kW,转速n=200r/min。皮带轮重量Q=1.8kN。左端齿轮
上的啮合力Pn与齿轮节圆切线的夹角(压力角)为20o。轴的材料为45钢, [] =80MPa。
例题
b
P
25 e
a
P
5
解:(1)将外力向轴线简化,如图所示;
b
其中:M=Pe,这属于拉弯组合变形;
P
a
P
(2)求出a、b点的应力;
a
P A
Pe W
,
b
P A
Pe W
(3)二点均属单向应力状态,求出二点的轴向应变;
a
a E
P 1 e EA W
b
b E
P E
1 A
e W
(4)解方程组得 P EAa b 18.4kN
力是水平方向,B轮上胶带的张力是垂直方向,大小如图示;圆轴的许用应力[σ]=80MPa;试按
第三强度理论求轴所需的直径。
5kN
(3)求可能危险截面C和B上的合成弯矩:
AC
B
D
2kN
MC
M
2 yC
M zC 2
1.52 2.12 2.58kNm
2kN
5kN
300
500
500
MB
M
2 yB
M zB2
xz平面的弯矩图为 代入第三强度理论的强度条件得
p.11
(2)求出约束反力,并画出内力图; a.xz平面内弯曲的弯矩图
zy
AC 5kN ZC
B 12kN
Dx ZD
Z 12.5kN, Z 4.5kN
C
D
b.xy平面内弯曲的弯矩图
z
y 7kN
YC
AC
B
YD Dx
Y 9.1kN, Y 2.1kN
C
D
c.扭矩图
zy 1.5kNm
1.5kNm
AC
B
Dx
1.5kNm
论校核此杆的强度。
P1
80ºP2 z
x
解:
①外力分析:
A 150
B 200 C 100 D
y
P1 A 150
Mx B 200
z
P2z
Mx
P2yx
C 100 D
y
弯扭组合变形
p.6
例题
例题
例8-4 图示空心圆杆,内径d=24mm,外径D=30mm,P1=600N,[]=100MPa,试用第三强度
理论校核此杆的强度。
x
X
Xx
* 3
M
2 m
axM
2 n
W
3.312407.10.3332(11200.824 ) xx
97.5MPa
Xx
安全
p.7
例题
例题
例8-5 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, []=100MPa,试按第三强度理论校核此杆
的强度。
T
P
P
A
T
解:拉扭组合,危险点应力状态如图
例题
3
2
4
例题
组合变形
1
5
p.1
例题
例题
例8-1 图示一简易起重架由No.18工字钢和拉杆组成;滑车自重及载重共为P=25kN,梁AB的许
用应力σ=120 MPa;当滑车移动到梁中点时,校核梁AB的强度。
C
解:(1)研究AB,受力分析,求约束反力
XB
D SA
A
300 A BP
l=2.6m
B
YB
P
X B 21.65kN , YB 12.5kN , SA 25kN
80º P2 z
P1
②内力分析:危险面内力为:
A 150
B 200
C 100
MZ (Nm)
My (Nm)
71.25
My
Mz
((NNmm) )
40
M (Nm) Mn n
(Nm)
120 Mn
7.05
M
M
((NNmm) )
7M1m.3ax
5.5 40.6
x
M max71.3Nm
D y
M n 120 Nm
③应力分析:
(2)杆属压缩与弯曲的组合变形,画内力图;
N(kN)
M(kNm)
16.25
(-)
(+)
21.65
(3)危险截面是D截面,危险点是D截面的上边缘,最大压应力的值为:
c max
N A
M max W
查型钢表得:A=3060 mm2,Wt=185000 mm3,则
c max
21.65 103 3060 106
2kN
5kN
300
500
zy 7kN
YC
AC
2kN
500
1.5kNm B
YD Dx
5kN ZC
12kN
ZD
My(kNm)
2.25 x
1.5
Mz(kNm) 2.1 1.05 x
T(kNm) 1.5
x
p.4
例题
例题
例8-3 钢制圆轴上装有胶带轮A和B,二轮的直径都是D=1 m,重量是P=5 kN,A轮上胶带的张
16.25103 185000 109
94.9MPa
(4)强度校核:
max
所以强度是足够的;
p.2
例题
例8-2 承受偏心载荷的矩形截面杆,用实验方法测得杆二侧的纵向应变分别是εa=1×10-3 和 εb=0.4×10-3 ,材料的弹性模量E=210GPa ;求拉力P和偏心矩e的值。
2
e EW a b 1.78mm
2P
p.3
例题
例题
例8-3 钢制圆轴上装有胶带轮A和B,二轮的直径都是D=1 m,重量是P=5 kN,A轮上胶带的张
力是水平方向,B轮上胶带的张力是垂直方向,大小如图示;圆轴的许用应力[σ]=80MPa;试按
第三强度理论求轴所需的直径。
5kN
AC
B
D
解:(1)将外力向轴线简化,得计算简图;
2.252 1.052 2.48kNm
可见C截面是危险截面;
My(kNm)
2.25
(4)强度计算:
x 1.5
Mz(kNm)
1
r3 W
M2 C
T2
32 d 3
M2 C
T2
2.1 1.05
32 d 3
M2 C
T2
72mm
x T(kNm)
1.5
x
p.5
例题
例题
例8-4 图示空心圆杆,内径d=24mm,外径D=30mm,P1=600N,[]=100MPa,试用第三强度理
试分别在忽略和考虑皮带轮重量的两种情况下,按第三强度理论估算轴的直径
解:(1)传动轴的计算简图 求传动轴的外力偶矩及传动力
p.9
Байду номын сангаас
例题
(2)强度计算 a.忽略皮带轮的重量(Q=0)
轴的扭矩图为
xz平面的弯矩图为
xy平面的弯矩图为 所以B截面最危险
例题 p.10
例题
例题
第三强度理论
b.考虑皮带轮的重量