2FSK调制与解调59825
实验三2FSK调制与解调实验一、实验目的
实验三2FSK调制与解调实验一、实验目的1、了解二进制移频键控2FSK 信号的产生过程及电路的实现方法。
2、了解非相干解调器过零检测的工作原理及电路的实现方法。
3、了解相干解调器锁相解调法的工作原理及电路的实现方法。
二、实验内容1、了解相位不连续2FSK 信号的频谱特性。
2、了解2FSK(相位不连续)调制,非相干、相干解调电路的组成及工作理。
3、观察2FSK 调制,非相干、相干解调各点波形。
4、改变f1、f2的频率大小,观察不同调制指数下的调制解调效果。
(选作)5、利用实验模块的电路,设计出其它解调方法,并自行验证。
(选作)三、预习要求1)画出实验电路中2FSK调制器采用的原理框图;2)根据实验指导书的相关资料,说明本实验2FSK调制的载波频率分别是多少?用什么方法产生的?3)本实验2FSK载波是方波还是正弦波?如何实现的?4)用什么方法可以将方波变成正弦波?5)FSK调制器可以用哪两种基本方法实现?本实验用的是哪一种?6)用什么方法实现的FSK信号的相位是连续的?7)实验中,信息的码速率是多少?可以用什么方法测量?8)可以用什么方法来测量2FSK的两个载波频率?9)当用“10101010………”不断重复的信息码进行FSK调制,用计数法测量FSK调制输出信号的频率,测量得到的频率可能是多少?为什么?10)本实验中,2FSK 信号带宽是多少?如何计算的?公式中的各个量代表什么?11)本实验中,2FSK 信号的频谱会是单峰还是双峰?为什么?12)用示波器同时观测FSK调制器的输入数据、FSK调制器输出的已调信号,要能稳定的观测应该用这两个信号中的哪一个作为示波器的触发信号?13)画出2FSK过零检测解调的原理框图;14)实验中,FSK过零检测解调方案采用数字电路如何实现;15)脉冲的宽度相同,有些时刻的脉冲密一些,有些时刻的脉冲少一些,可以用什么具体的方法区分出每一个单位时刻内脉冲是多还是少?16)测试接收端的各点波形,需要与什么波形对比,才能比较好的进行观测?示波器的触发源该选哪一种信号?为什么?17)采用过零检测解调的方法时,将f1和f2倍频的电路是如何设计的?18)采用过零检测解调的方法时,解调电路中哪一点的波形是f1和f2的倍频?19)2FSK 信号经过整形变成方波2FSK 信号,频谱有什么变化?为什么?20)解调时将f1和f2倍频有何好处?如何通过仪器测量来说明?21)2FSK 信号解调时将f1和f2倍频之后,频谱有什么变化?为什么?22)解调电路各点信号的时延是怎么产生的?23)解调出的信码和调制器的绝对码之间的时延是怎么产生的?24)解调的信号为什么要进行再生?25)理论上,能否实现出一个没有时延的解调器?为什么?26)解调的信号是如何实现再生的?27)再生过程中,是什么环节会对解调的输出造成延时?为什么?28)画出2FSK 锁相PLL 解调的原理框图;29)PLL 解调2FSK 信号的原理是什么?30)为什么2FSK 锁相解调可以实现相干解调?31)要实现2FSK 锁相解调,锁相环需要工作在什么跟踪方式?为什么?32)解调电路中T31(放大出)没有信号输出,可能的原因有哪些?33)T19(2FSK 过零检测出)信号异常,如何判断故障点在哪?34)解调输出信号与发送端的数据信号对比,为什么会有延时,是哪些原理造成的?四、实验原理二进制频率调制(2FSK )是数据通信中使用较早的一种通信方式。
2FSK的调制和解调(键控调制 相干解调)
用SYSTEMVIEW实现2FSK键控调制与相干解调实验报告01091036 贺冰涛01091037 罗名川用SystemView仿真实现2FSK键控的调制1、实验目的:(1)了解2FSK系统的电路组成、工作原理和特点;(2)分别从时域、频域视角观测2DPSK系统中的基带信号、载波及已调信号;(3)熟悉系统中信号功率谱的特点。
2、实验内容:以PN码作为系统输入信号,码速率Rb=20kbit/s。
(1)采用键控法实现2FSK的调制;分别观测绝对码序列、差分编码序列,比较两序列的波形;观察调制信号、载波及2FSK等信号的波形。
(2)获取主要信号的功率谱密度。
3、实验原理:数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。
2FSK信号便是符号“1”对应于载频,而符号“0”对应于载频(与不同的另一载频)的已调波形,而且与之间的改变是瞬间完成的。
2FSK键控法利用受矩形脉冲序列控制的开关电路对两个不同的独立频率源进行选通。
键控法的特点是转换速度快、波形好、稳定度高且易于实现,故应用广泛。
2FSK信号的产生方法及波形示例如图所示。
图中s(t)为代表信息的二进制矩形脉冲序列,即是2FSK信号。
abcde 2FSK信号ttttt二进制移频键控信号的时间波形根据以上2FSK 信号的产生原理,已调信号的数字表达式可以表示为(5-1)其中,s(t)为单极性非归零矩形脉冲序列(5-2)(5-3)g(t)是持续时间为、高度为1的门函数;为对s(t)逐码元取反而形成的脉冲序列,即(5-4)是的反码,即若 =0,则 =1;若=l,则 =0,于是(5-5)分别是第n个信号码元的初相位。
一般说来,键控法得到的与序号n无关,反映在上,仅表现出当与改变时其相位是不连续的;而用模拟调频法时,由于与改变时的相位是连续的,故不仅与第n 个信号码元有关,而且之间也应保持一定的关系。
由式(5-1)可以看出,一个2FSK信号可视为两路2ASK信号的合成,其中一路以s(t)为基带信号、为载频,另一路以为基带信号、为载频。
基于MATLAB的二进制移频键控调制(2FSK)与解调分析
基于MATLAB的二进制移频键控调制(2FSK)与解调分析武汉理工大学《信号分析处理》课程设计目录摘要 ........................................................................... . (1)1.通信技术传输模型 ........................................................................... ........................................ 2 2.Matlab工具箱Simulink简介 ........................................................................... ......................... 4 3.二进制移频键控调制2FSK原理分析 ........................................................................... ...... 5 4. 移频键控2FSK调制与解调仿真 ........................................................................... . (8)4.1Simulink仿真模型图 ........................................................................... ........................... 8 4.2仿真电路各部分参数设置 ........................................................................... .................... 9 4.3调制及解调仿真波形图 ........................................................................... . (11)5.Matlab2FSK仿真程序代码 ........................................................................... .. (13)5.1 2FSK信号产生程序代码及运行结果 ...........................................................................13 5.2 2FSK调制解调程序代码及运行结果 (16)心得体会 ...................................................................................................................................... 19 参考文献 ........................................................................... .. (20)武汉理工大学《信号分析处理》课程设计摘要移频键控(2FSK)是数据通信中最常用的一种调制方式。
2fsk相干解调法
2fsk相干解调法2FSK相干解调法是一种常用的调制解调技术,用于数字通信系统中将数字信号转换为模拟信号进行传输和接收。
本文将介绍2FSK相干解调法的原理、应用以及其在通信系统中的优缺点。
我们来了解一下2FSK相干解调法的原理。
2FSK相干解调法是通过将数字信号转换为两个不同频率的正弦波进行调制,接收端利用相干解调的方法将接收到的信号转换回数字信号。
在2FSK相干解调法中,两个频率分别代表两个二进制数字,例如0和1,通过改变频率来表示不同的数字。
在实际应用中,2FSK相干解调法广泛应用于无线通信系统和调频广播系统中。
无线通信系统中,2FSK相干解调法可以提供高效可靠的数据传输,适用于需要高速传输和抗干扰能力的场景。
调频广播系统中,2FSK相干解调法可以实现多个频道的切换,使得广播系统能够同时传输多个信号。
2FSK相干解调法的优点之一是具有较高的抗干扰能力。
由于数字信号转换为模拟信号进行传输,抗干扰能力较强,可以有效地抵抗信道噪声和干扰信号的影响。
同时,2FSK相干解调法还具有较高的传输速率,可以满足大容量数据传输的需求。
然而,2FSK相干解调法也存在一些缺点。
首先,由于在解调过程中需要进行相干解调,对于接收端的要求较高,需要较复杂的电路设计和算法实现。
其次,2FSK相干解调法对于频率误差较为敏感,如果发射端和接收端的频率不一致,会导致解调错误。
为了克服2FSK相干解调法的一些缺点,还有一种改进的方法,即非相干解调法。
非相干解调法不需要进行相干解调,可以简化接收端的设计,提高系统的鲁棒性。
但是非相干解调法的传输速率较低,抗干扰能力较弱。
2FSK相干解调法是一种常用的调制解调技术,具有较高的传输速率和抗干扰能力。
它在无线通信系统和调频广播系统中得到广泛应用。
尽管2FSK相干解调法存在一些缺点,但通过不断的改进和优化,可以进一步提高系统的性能和可靠性。
未来随着通信技术的发展,相信2FSK相干解调法将继续在各种应用场景中发挥重要作用。
2FSK调制与解调电路
一、设计基本原理和系统框图2FSK 系统分调制和解调两部分。
①调制部分:2FSK 信号的产生方法主要有两种。
第一种是用二进制基带矩形脉冲信号去调制一个调频器,如(a)图所示,使其能够输出两个不同频率的码元。
第二种方法是用一个受基带脉冲控制的开关电路去选择两个独立频率源的振荡作为输出,如(b)图所示。
这两种方法产生的2FSK 信号的波形基本相同,只有一点差异,即由调频器产生的2FSK 信号,在相邻码元之间的相位是连续的,如(c)图所示;而开关法产生的2FSK 信号,则分别由两个独立的频率源产生不同频率的信号,故相邻码元的相位不一定是连续,如(d)图所示。
本次设计用键控法实现2FSK 信号。
(c)相位连续 (d)相位不连续②解调部分:2FSK 信号的接收主要分为相干和非相干接收两类,本次设计采用非相干法(即包络解调法),其方框图如下。
用两个窄带的分路滤波器分别滤出频率为1f 和2f 的高频脉冲,经过包络检波后分别取出它们的包络。
把两路输出同时送到抽样判决器进行比较,从而判决输出基带数字信号。
FSK 信号包络解调方框图设频率1f 代表数字信号1;2f 代表数字信号0,则抽样判决器的判决准则:式中x1和x2分别为抽样判决时刻两个包络检波器的输出值。
这里的抽样判决器,要比较x1、x2的大小,或者说把差值x1-x2与零电平比较。
因此,有时称这种比较判决器的判决电平为零电平。
当FSK 信号为1f 时,上支路相当于接收“1”码的情况,其输出x1为正弦波加窄带高斯噪声的包络,它服从莱斯分布。
而下支路相当于接收“0”码的情况,输出x2为窄带高斯噪声的包络,它服从瑞利分布。
如果FSK 信号为2f ,上、下支路的情况正好相反,此时上支路输出的瞬时值服从瑞利分布,下支路输出的瞬时值服从莱斯分布。
无论输出的FSK 信号是1f 或2f ,两路输出的判决准则不变,因此可以判决出FSK 信号。
二、各单元电路设计2.1 2FSK调制单元要将NRZ码经过2FSK调制成为2FSK信号,我们采用一个受基带脉冲控制的开关电路去选择两个独立频率源的振荡作为输出。
2FSK调制及解调器的设计与实现设计
2FSK调制与解调一、设计目的1. 经历工程设计与实现过程,为后续进行毕业设计奠定工作基础;2.掌握2FSK的调制与解调的实现方法;3.遵循本系统的设计原则,理顺基带信号、传输频带及两个载频三者间相互间的关系;4.加深理解2FSK调制器与解调器的工作原理,学会对2FSK工作过程进行检查及对主要性能指标进行测试的方法。
二、设计内容1. 根据2FSK调制器与解调器的组成原理设计实现方案;2. 理顺低通滤波器3db带宽与基带信号传输速率间的关系,两个载频间隔和基带信号速率间的关系;3. 用硬件电路或软件模拟实现设计方案。
4. 着眼于时间、频率、频谱、频带,观察2FSK信号。
在时域,观察单元电路各点的波形、眼图、误码;在频域,观察已调信号、调制信号的频谱,测算传输带宽;测量两个载频频率;5. 根据实验记录的波形和数据,分析2FSK调制解调过程和性能。
三、2FSK信号调制解调原理在实际信道中,大多数信道具有带通传输特性,数字基带信号不能直接在这种带通传输特性的信道中传输,必须用数字基带信号对载波进行调制,完成频谱搬移,变换成频带信号后,才能在带通传输特性的信道中传输。
在二进制数字调制中,若载波的频率随二进制数字基带信号在f1和f2两个载频间切换,则产生二进制移频键控制信号(2FSK信号)。
二进制移频键控制信号的产生方法如图1所示。
图1(a)是采用数字键控的实现方法,图1(b)是方波2FSK信号的时间波形。
2图1 (a)2FSK调制框图在图1(a )中,两个载频受输入的二进制基带信号控制,在一个码元 TS 期间,输出 f1 或 f2 两载频之一。
若二进制基带信号的“1”对应于载频 f1,“0”对应于载频 f2,则二进制移频键控制信号的时域表达式为:式中,A 为两个载波的幅度(数字电路的输出幅度,设两幅度正好相等)ω1=2πf1,ω2=2πf2,θ1和θ2是两个载频的初始相角;m1(t) 和 m2(t)是周期开关函数,定义为:且m 1(t)和m 2(t)满足下列关系式:二进制移频键控信号的解调可采用相干解调和非相干解调。
2FSK的调制与解调
摘要在本二进制移频键控调制解调电路中,其中调制系统由模拟开关电路以及两个射随、选频电路组成。
解调是用非相干解调,即包络检波法。
在设计过程中,采用模块化的设计方法,并使用了Multisim工具软件,在计算机屏幕上仿真实验,绘制电路图所需的元件、芯片以及导线均可在屏幕上选取,提高了设计效率。
本方案的优点是产生的FSK信号频率稳定度好,转换速度快,波形好。
关键词:射随/选频电路;模拟开关;包络检波;仿真目录摘要前言 (4)一、2FSK的调制解调原理介绍 (5)2.1 2FSK的调制原理..................................^ (5)2.2 2FSK信号的解调原理 (6)二、各单元电路设计 (8)3.1 2FSK调制单元 (8)3.1.1 射随、选频电路 (8)3.1.2 模拟开关电路 (8)3.2 2FSK解调单元 (9)三、总体电路与电路仿真 (10)4.1 总体电路设计 (10)4.2 调制和解调的仿真结果图 (10)参考文献 (13)设计总结 (14)附件1:各元件引脚图 (15)附件2:元器件清单 (16)前言在通信系统的设计、实验过程中,通信信号仿真具有灵活性好、经济等诸多优点,通信中的一个基本概念就是调制,是指用携带有用信息的调制信号去控制高频载波信号。
数字调频又称移频键控(frequency shift keying,FSK),它是用不同的载波来传送数字信号的。
调频信号即2FSK信号是数字通信系统使用较早的一种通信方式,这种通信方式容易实现,抗噪声和抗衰减性能较强,广泛的应用于低速数据传输通信系统中。
2FSK信号的产生有两种方法:直接调频法和频率键控法。
直接调频法是用数字基带信号直接控制载波振荡器的振荡频率。
虽然方法简单,但频率稳定度不高,同时转移速度不能太高。
而频率键控法则不同,它有两个独立的振荡器,数字基带信号控制开关,选择不同频率的高频振荡信号,从而实现FSK调制。
2FSK--调制与解调
再次在 simulink 中连接电路时设置的参数一开始是根据网上的参数设置 的,后来对各种元件有所了解之后,设置的参数也能根据自己的判断做决定。 电路图是参考书上的原理图并与同学一起摸索并完成的。实验中的讨论总会帮 助自己找到一种解决办法,解决当前的问题,所以要经常的请教会的同学。
10
图6
两个低通滤波器(Analog Filter Design2 和 3)的参数设置 Filter type(滤 波器类型)选 Lowpass(低通),Filter order(滤波器系数)为 2,Passband enge frequency(通频带频率)为π。(如图 7 和图 8)
图7 11
14
五、心得体会
到现计,是我 获得了主要有以下几点的体会和认识:
首先,是我对 2fsk 的调制和解调原理有了一个比较全面和具体的认识,因 为要完成这个设计,必须要对 2fsk 的原理有一个深入的了解,在仿真的时候遇 到问题才能够做到心中有数,知道错误出现在哪里,究竟该如何改正,哪里需 要可以进行优化,使得仿真的结果更接近于理论上的值。通过这次的课程让我 明白了要学好理论知识,武装好自己,才能够有余力进行下一步实际上的学习, 探索。理论基础知识就像是打房基。所谓“工欲善其事,必先利其器”,掌握 到好的资料素材是对前期的工作很重要的。刚接触的软件还是有一些困难,熟 练是慢慢培养起来的,如一些元件的调用在 simulink 中的实现需要慢慢了解, 又如滤波器的选择都不是刚接触就能掌握的。充分的利用好网络资源应该是完 成这次课程设计的关键。
图8
抽样判决器 Relation Operator 的参数设置 Relational operator(关系操 作符)选“>”,Sample time(采样时间)从-1 开始。(如图 9):
武汉科技大学(武科大)通信原理课程设计(实验)2FSK的调制与解调要点
信息科学与工程学院课程设计报告课程名称:通信原理专业:班级:学号:姓名:指导老师:二进制频移监控(2FSK )的仿真与分析一) 设计内容利用matlab 编程或simulink 对2FSK 的调制和解调整个流程进行仿真。
二) 设计要求A)要求分析2FSK 的调制解调过程及其理论原理;B)利用matlab 编程或simulink 实现2FSK 整个系统的仿真; C)能够以图形化方式呈现对仿真过程中的重要接点处的波形; D)选用不同的调制频率验证课程中关于2FSK 的最小频率间隔的讨论。
一、2FSK 的调制解调过程及其理论原理1、表示式:⎩⎨⎧++=”时当发送“”时当发送“0)cos(1)cos()(0011ϕωϕωt A t A t s“1“1“0T2、产生方法:调频法:相位连续开关法:相位不连续3、接收方法:相干接收:非相干接收:(1)包络检波法:(2)过零点检测法二、最小频率间隔在原理上,若两个信号互相正交,就可以把它完全分离。
对于非相干接收:设: 2FSK 信号为⎩⎨⎧++=”时当发送“”时当发送“0)cos(1)cos()(0011ϕωϕωt A t A t s为了满足正交条件,要求 :⎰=+⋅+Tdt t t 000110)]cos()[cos(ϕωϕω即要求:上式积分结果为:假设ω1+ω0>>1,上式左端第1和3项近似等于零,则它可以化简为由于ϕ1和ϕ0是任意常数,故必须同时有0)sin(01=-T ωω和 上式才等于0。
即要求:πωωn T =-)(01和πωωm T 2)(01=-式中,n 和m 均为整数。
为了同时满足这两个要求,应当令πωωm T 2)(01=-即令Tm f f /01=-所以,当取m =1时是最小频率间隔,它等于1 /T 对于相干接收:可以令01=-ϕϕ于是,式 0]1))[cos(sin()sin()cos(01010101=---+--T T ωωϕϕωωϕϕ化简为:)sin(01=-T ωω因此,要求满足:T n f f 2/01=-即,最小频率间隔等于1 / 2T 。
2FSK调制解调电路的设计
2FSK调制解调电路的设计引言:调频键控(Frequency Shift Keying, FSK)是一种常见的数字调制解调技术,其原理是通过改变载波频率来传输数字信号。
二进制FSK(2FSK)是最基本的FSK调制方式,其中两个不同的频率代表了二进制中的0和1、本文将介绍2FSK调制解调电路的设计。
一、2FSK调制电路1.频率可调的带通滤波器频率可调的带通滤波器用于接收输入信号,并将频率转换为两个不同的预设频率。
该滤波器通常由一个带可调中心频率的VoltageControlled Oscillator (VCO)和一个窄带滤波器组成。
输入信号经过一级放大后进入VCO,VCO将输入信号频率转换为预设频率。
滤波器用于滤除不需要的频率成分,只保留希望传输的频率分量。
2.相位锁定环路(PLL)相位锁定环路是2FSK调制电路的核心。
它由一个相频比较器(Phase-Frequency Detector, PFD)、一个环路滤波器(Loop Filter)、一个VCO和一个除频器(Divider)组成。
相频比较器用于比较参考信号和VCO输出信号的相位差,产生一个频率和相位误差的输出。
这个输出信号经过环路滤波器后,将调整VCO的输出频率,使其与参考信号的相位差最小化。
除频器将VCO输出的频率除以一个预设的常数,得到一个比输入信号低的频率,在输入信号的两种频率之间切换。
二、2FSK解调电路2FSK解调电路主要由一个鉴频器和一个比较器组成。
1.鉴频器鉴频器用于提取输入信号中的频率信息,并将其转换为与输入信号频率相同的模拟信号。
鉴频器通常由一个窄带滤波器和一个包络检波器组成。
窄带滤波器用于滤除不需要的频率成分,只保留输入信号中的目标频率分量。
包络检波器将滤波后的信号变为其包络信号,将其转换为模拟信号。
2.比较器比较器用于将模拟信号转换为数字信号,实现2FSK信号的解调。
比较器通常由一个阈值电路和一个数字信号输出端口组成。
实验指导书第4节2FSK调制与解调实验
实验指导书第4节2FSK调制与解调实验2FSK调制与解调实验一、实验目的:1、了解二进制移频键控2FSK信号的产生过程及电路的实现方法。
2、了解非相干解调器过零检测的工作原理及电路的实现方法。
3、了解相干解调器锁相解调法的工作原理及电路的实现方法。
二、实验内容:1、了解相位不连续2FSK信号的频谱特性。
2、了解2FSK调制,非相干、相干解调电路的组成及工作原理。
3、观察2FSK调制,非相干、相干解调各点波形。
三、实验原理:数字频率调制又称频移键控(FSK),二进制频移键控记作2FSK。
数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。
2FSK信号便是符号“1”对应于载频,而符号“0”对应于载频(与不同的另一载频)的已调波形,而且与之间的改变是瞬间完成的。
从原理上讲,数字调频可用模拟调频法来实现,也可用键控法来实现。
模拟调频法是利用一个矩形脉冲序列对一个载波进行调频,是频移键控通信方式早期采用的实现方法。
2FSK键控法则是利用受矩形脉冲序列控制的开关电路对两个不同的独立频率源进行选通。
键控法的特点是转换速度快、波形好、稳定度高且易于实现,故应用广泛。
2FSK信号的产生方法及波形示例如图所示。
图中s(t)为代表信息的二进制矩形脉冲序列,即是2FSK信号。
二进制频率调制是数据通信中使用较早的一种通信方式。
由于这种调制解调方式容易实现、抗噪声和抗衰落性能较强,因此在中低速通过数据传输系统中得到了较为广泛的应用。
本实验2FSK信号的产生是采用键控法原理,利用数字基带信号控制电子开关电路对两个不同的频率源进行选通,所产生的信号相位不连续。
见调制器框图。
2FSK调制器框图本实验2FSK信号的解调是采用过零检测法和锁相解调法,通过两种解调方式的比较,可以了解各自的优缺点。
1、 2FSK调制器2FSK调制器是由晶体振荡器、分频电路、码产生电路、带通滤波器、模拟开关电路所组成。
(1)晶体振荡器和分频器:晶体振荡器是一个用晶体和与非门构成的自激多谐振荡器。
设计性实验——2FSK调制、解调
设计性实验2FSK调制、解调实验一、实验目的1.掌握用移频键控法产生2FSK信号的原理及硬件实现方法;2.掌握用过零点检测法解调2FSK信号的原理及硬件实现方法;3.加深对位同步信号提取原理的理解,了解其硬件实现方法;4.了解锁相环对消除相位抖动的原理及作用。
二、实验内容1.2FSK调制(发送)实验。
2.2FSK解调(接收)实验。
3.位同步提取实验。
4.眼图、奈奎斯特准则实验。
5.归零码与位定时实验。
6.眼图与判决时间选取实验。
三、实验仪器及设备1.20MHZ双踪示波器 GOS-6021 1台2.函数信号发生器/计数器 SP1641bB 1台3.直流稳压电源 GPS-X303/C 1台4.万用表 1块5.2FSK调制解调实验箱 1个四、实验原理及电路(一)实验原理实现数字频率调制的方法很多,总括起来有两类:直接调频法和移频键控法。
本实验使用的是移频键控法,它便于用数字集成电路来实现。
移频键控,或称数字频率调制,是数字通信中使用较早的一种调制方式。
数字频率调制的基本原理是利用载波的频率变化来传递数字信息。
在数字通信系统中,这种频率的变化不是连续的,而是离散的。
比如,在二进制的数字频率调制系统中,可用两个不同的载频来传递数字信息,故移频键控常写作2FSK(Frequency Shift Keying)。
2FSK广泛应用于低速数据传输设备中,根据国际电报和电话咨询委员会(CCITT)的建议,传输速率为1200波特以下设备一般采用2FSK。
2FSK方法简单、易于实现,解调不需要恢复本地载波,可以异步传输,抗噪声和抗衰落性能也较强。
因此,2FSK已成为在模拟电话网上利用调制解调制器来传输数据的低速、低成本的一种主要调制方式。
在一个2FSK系统中,发端把基带信号的变化规则转换成对应的载频变化,而在收端则完成与发端相反的转换。
由于2FSK信号的信道中传输的是两个载频的切换,那么其频谱是否就是这两个载频的线谱呢?或者说信道的频带只是这两个载频之差呢?答案是否定的。
2FSK 调制与解调系统
实验题目:移频键控FSK调制与解调系统设计实验一.实验目的1.加深对数字调制中移频键控FSK调制器与解调器工作原理及电路组成的理解与掌握。
2.学会综合地、系统地应用已学到的知识,对移频键控FSK调制与解调系统电路的设计与仿真方法,提高独立分析问题与解决问题的能力。
二.实验任务与要求构建并设计一个数字移频键控FSK传输系统,具体要求是:主载波频率:11800HZ载波1频率:2950HZ(四分频)载波2频率:1475HZ(八分频)数字基带信号NRZ:7位M序列,传输速率约为400波特。
(32分频)FSK调制器可以采用数字门电路构成电子开关电路(或集成模拟开关)与采用集成模拟乘法器,利用键控法实现。
FSK解调器可以采用非相干解调法或过零检测法实现。
传输信道不考虑噪声干扰,采用直接传输。
整个系统用EWB软件仿真完成。
三、2FSK 调制与解调系统原理与电路组成数字频移键控是用载波的频率的变化来传送数字消息的,即用所传送的数字消息控制载波的频率。
实现数字频率调制的方法很多,总括起来有两类。
直接调频法和移频键控法。
注意到相邻两个振荡器波形的相位可能是连续的,也可能是不连续的,因此有相位连续的FSK 及相位不连续的FSK之分。
并分别记作CPFSK及DPFSK。
根据实验任务的要求,本次设计实验采用的是相位连续的FSK调制器与非相干解调器,其电路构成如图1-1所示.:图1-1 2FSK调制与解调系统电路原理图1)2FSK调制系统设计本次综合设计实验的调制系统主要由主载波振荡器、分频器、M序列发生器、调制器、相加器构成。
其调制电路的组成框图如图1-2所示由图可以看出,当信码为“1”时,分频链作4分频,即输出频率图1-2 FSK 调制器电路组成框图为2950Hz载波,信码为“0”时,分频链作8分频,输出频率为1475Hz载波。
如此一来,多谐振荡器输出的载波,通过不同次数的分频,就得到了两种不同频率的输出,经相加器后,从而在输出端得到不同频率的已调信号,即FSK 信号,完成了数字基带信号转换为数字频带信号的过程。
2FSK调制与解调系统设计
2FSK调制与解调系统设计[摘要]FSK是数字调制的一种方法,其原理是利用数字信号的离散取值特点通过开关对载波的频率进行键控,所产生的信号称为FSK信号。
该信号使得数字信号可以在带通信道中进行传输。
本次课程设计就是在EDA实验板上用VHDL语言来实现FSK的调制解调系统。
采用键控法对载波进行调制,用过零检测法对调制信号进行解调。
用4级移位寄存器产生伪随机序列作为调制信号。
仿真成功后下载到实验板上,通过示波器分别观察调制信号和已调波;调制信号和解调信号,与波形仿真结果相同,但由于噪声的影响,使得示波器的波形有毛刺。
[关键词]FSK调制解调,VHDL,键控法,过零检测法[中图分类号]TN761.2[文献标志码] AFSK modulation and demodulation[Abstract]FSK is a method of digital modulation, the principle is the use of digital signal characteristics of discrete values by switching on the carrier frequency shift keying, the resulting signal as FSK signals. This signal allows the digital signal can be transmitted with a communication channel. The course design is used in the EDA VHDL language test board to achieve FSK modulation and demodulation system. By keying of the carrier modulation, zero-detection method used to demodulate the modulated signals. Shift register with four pseudo-random sequence generated as the modulation signal. Simulation successfully downloaded to the experimental board, were observed by the oscilloscope signal and the modulated wave modulation; modulation signal and demodulated signal, and waveform simulation results are the same, but because of noise, making the oscilloscope waveform has glitches.[Key words]FSK modulation and demodulation; VHDL;Shift Keying;zero-crossing detection method.1. 绪论在通信系统中,基带数字信号在远距离传输,特别是在有限带宽的高频信道如无线或光纤信道上传输时,必须对数字信号进行载波调制,这在日常生活和工业控制中被广泛采用。
开题报告_2FSK的调制与解调
编号:
毕业设计开题报告
题目:2FSK调制与解调器
的设计与实现
学院:信息与通信学院
专业:电子信息工程
班级:11002204
学号: 1100220429
姓名:闫朝明
指导教师:田克纯
填表日期: 2015 年 3 月 12 日
[1]樊昌信. 通信原理[M]. 北京:国防工业出版社,2010.1.
[2]田克纯,覃远年,王吉平等.通信原理实验教程(第三版)[M].桂林电子科技大学通信实验室,2009.
[3]张会生. 通信原理[M]. 高等教育出版社,2010.
[4]沈越泓. 通信原理[M]. 机械工业出版社,2004
[5]李白萍. 通信原理与技术[M]. 北京:人民邮电出版社, 2003.
[6]朱祥华. 现代通信基础与技术[M]. 北京人民邮电出版社,2004.
[7] 郑家龙. 集成电子技术基础教程. 北京:高等教育出版社,2002.
[8] 周巍,黄雄花.数字逻辑电路实验[M]. 成都:电子科技大学出版社,2010.
[9] Sung-Mo Kang,Yusuf Leblebici.CMOS数字集成电路——分析与设计.3版.王志
功,译.北京:电子工业出版社,2005.
[10] Simon S Haykin. An Introduction to Analog and Digital Communications. Wiley,
2006.1.。
(完整版)基于MATLAB的2FSK的调制与解调
(完整版)基于MATLAB的2FSK的调制与解调基于MATLAB 的2FSK 数字通信系统仿真课程设计目的二、课程设计内容在信道中,大多数具有带通传输特性,必须用数字基带信号对载波进行调制,产生各种已调数字信号。
可以用数字基带信号改变正弦型载波的幅度、频率或相位中的某个参数,产生相应的数字振幅调制、数字频率调制和数字相位调制。
也可以用数字基带信号同时改变正弦型载波幅度、频率或相位中的某几个参数,产生新型的数字调制。
本课程设计旨在根据所学的通信原理知识,并基于MATLAB 软件,仿真一2FSK 数字通信系统。
2FSK 数字通信系统,即频移键控的数字调制通信系统。
频移键控是利用载波的频率变化来传递数字信息。
在2FSK 中,载波的频率随二进制基带信号在f1 和f2 两个频率点间变化。
因此,一个2FSK 信号的波形可以看成是两个不同载频的2ASK 信号的叠加。
可以利用频率的变化传递数字基带信号,通过调制解调还原数字基带信号,实现课程设计目标。
三、2FSK 的基本原理和实现二进制频率调制是用二进制数字信号控制正弦波的频率随二进制数字信号的变化而变化。
由于二进制数字信息只有两个不同的符号,所以调制后的已调信号有两个不同的频率fl和f2,fl对应数字信息“ 1 ”,f2对应数字信息“ 0 ”在2FSK信号中,当载波频率发生变化时,载波的相位一般来说是不连续的,这种信号称为不连续2FSK信号。
相位不连续的2FSK通常用频率选择法产生,如图3-2所示:Xi图3-2 2FSK信号调制器两个独立的振荡器作为两个频率发生器,他们受控于输入的二进制信号进制信号通过两个与门电路,控制其中的一个载波通过。
调制器各点波形如图3-3所示:'1 1 1 °| 1 1! 1 D 0r1i—1 1TIT1"1i 1 'T:wwvwwwm:7 ww wf r\f\j t:“WVWWVtM r图3-3 2FSK调制器各点波形由图3-3可知,波形g是波形e和f的叠加。
基于MATLAB的2FSK的调制与解调
基于MATLAB的2FSK的调制与解调基于MATLAB的2FSK数字通信系统仿真一、课程设计目的二、课程设计内容在信道中,大多数具有带通传输特性,必须用数字基带信号对载波进行调制,产生各种已调数字信号。
可以用数字基带信号改变正弦型载波的幅度、频率或相位中的某个参数,产生相应的数字振幅调制、数字频率调制和数字相位调制。
也可以用数字基带信号同时改变正弦型载波幅度、频率或相位中的某几个参数,产生新型的数字调制。
本课程设计旨在根据所学的通信原理知识,并基于MATLAB软件,仿真一2FSK 数字通信系统。
2FSK数字通信系统,即频移键控的数字调制通信系统。
频移键控是利用载波的频率变化来传递数字信息。
在2FSK中,载波的频率随二进制基带信号在f1和f2两个频率点间变化。
因此,一个2FSK信号的波形可以看成是两个不同载频的2ASK信号的叠加。
可以利用频率的变化传递数字基带信号,通过调制解调还原数字基带信号,实现课程设计目标。
三、2FSK的基本原理和实现二进制频率调制是用二进制数字信号控制正弦波的频率随二进制数字信号的变化而变化。
由于二进制数字信息只有两个不同的符号,所以调制后的已调信号有两个不同的频率f1和f2,f1对应数字信息“1”,f2对应数字信息“0”。
二进制数字信息及已调载波如图3-1所示。
1、2FSK的产生在2FSK信号中,当载波频率发生变化时,载波的相位一般来说是不连续的,这种信号称为不连续2FSK信号。
相位不连续的2FSK通常用频率选择法产生,如图3-2所示:图3-2 2FSK信号调制器两个独立的振荡器作为两个频率发生器,他们受控于输入的二进制信号。
二进制信号通过两个与门电路,控制其中的一个载波通过。
调制器各点波形如图3-3所示:图3-3 2FSK调制器各点波形由图3-3可知,波形g是波形e和f的叠加。
所以,二进制频率调制信号2FSK可以看成是两个载波频率分别为f1和f2的2ASK信号的和。
由于“1”、“0”统计独立,因此,2FSK信号功率谱密度等于这两个2ASK信号功率谱密度之和,即(3-1)2FSK信号的功率谱如图3-4所示:图3-4 2FSK信号的功率谱由图3-4看出,2FSK信号的功率谱既有连续谱又有离散谱,离散谱位于两个载波频率f1和f2处,连续谱分布在f1和f2附近,若取功率谱第一个零点以内的成分计算带宽,显然2FSK信号的带宽为(3-2)为了节约频带,同时也能区分f1和f2,通常取|f1-f2|=2fs,因此2FSK 信号的带宽为(3-3)当|f1-f2|=fs时,图3-4中2FSK的功率谱由双峰变成单峰,此时带宽为(3-4)对于功率谱是单峰的2FSK信号,可采用动态滤波器来解调。