润滑的目的

润滑的目的
润滑的目的

润滑的目的

两个紧密接触的物体有运动时相互间具有摩擦阻力,因而产生磨损,当机械零件从稳定磨损阶段进入剧烈磨损阶段后磨损速度急剧增长,机械高效率下降,功率和润滑油的损耗增加,产生异常噪声及振动,摩擦副温度迅速升高,最终导致零件失效,为延长机械使用寿命我们合理使用润滑油,使两摩擦面之间形成润滑膜,减少摩擦阻力降低磨损,延长稳定磨损阶段,从而达到延长设备使用寿命的目的。

润滑剂的作用

1.减少摩擦:使摩擦系数降低,减少摩擦阻力,节约能源的消耗。

2.降低磨损:在润滑剂中加入抗氧化,抗腐剂有利于抑制腐蚀磨损,加入极压抗磨剂可以有效地降低粘着磨损和表面疲劳磨损。

3.冷却作用:润滑剂可以减轻摩擦,吸热、传热和散热,因而降低机械摩擦副造成的温度上升。

4.防腐作用:摩擦面上有润滑剂复盖时,可以防止或避免因空气、水滴、水蒸气、腐蚀性气体及液体/尘土/氧化物等引起的腐蚀、锈蚀。

5.减振作用:润滑剂吸附在金属表面本身应力小,具有吸收冲击能的本领。

6.清洗作用:润滑油的循环可以带走系统中的杂质,从而具有清洗作用。

7.密封作用:润滑剂对某些外露零部件形成密封,防止水分或杂质的进入起密封作用

油站工作说明

冷却器是用来控制油温的,采用调节冷却水流量的方法控制油温。当油温>40℃,冷却器开始工作;当油温<17℃,开启电加热器;当油温升至35℃,电加热器停止工作。

在冷却器的进出口位置装有差式压力计,用来控制冷却器前后冷却水的压差变化。若堵塞,压差将增大。当不使用冷却器时,可关闭油和水的前后阀门,润滑油将从旁路直接输向润滑点。

油箱加热控制

在寒冷地区或冬季作业时,应加热油箱中的润滑油,润滑

油温度一般维持在35°C左右,以保持油的流动性,否则

整个系统的控制因温度低、油的黏度增加而发生困难。加

热的方法有两种,一种是用蒸汽加热,比较缓和;另一种

是用电热元件加热。后一种加热方式比较剧烈,有时会使油

质发生热裂化反应,降低黏度并生成胶质沉淀。这两种方

法都装有自动调节温度的装置,当油温升到规定温度时,即

自动断电或断汽。

连续冷却控制油温

设备连续运转产生热量润滑油带走并储存热

量,当润滑油储存热量使油温大于35℃时,

开启板式(或者列管式)冷却器,保证油温

在30-45℃。

过滤器清洗

当油流进出过滤器的压差大于0.15MPa时,过

滤器被阻塞。应转换使用过滤器,以清除圆盘式过滤器内滤筒周围的杂质。

二硫化钼地润滑特性

二硫化钼的润滑特性 摘要 二硫化钼不仅在常规环境,而且能在重载荷、高真空或低温、高速或低速、强辐射等恶劣环境里,充分发挥出低摩擦系数、高磨损寿命和润滑可靠等优点,而被广泛应用。 主题词:二硫化钼润滑特性抗报压真空润滑 1.二硫化钼的理化特性: 分子式:MoS2 分子量:16008 颜色:兰-灰到黑色 密度α/cm3:4.8-5.0(或4.85 --5.0、4.8) 熔点℃:约1500℃(或大于1800℃、1185℃) 硬度:mosh1--1.5(或knnop12--60) 显微硬度:基础面3.136×102Mpa,棱面8.82×103Mpa 表面能:基础面2.4×10-2J/M2,棱面7.0×10-1J/M2 热胀系数:10-7×10-6/K 温度稳定性:空气中-184~400℃(或-180℃~400℃400℃、399℃、450℃)。真空或惰性气体中,大于1100℃(或1200℃、1800℃)摩擦系数:约0.05--6.10(或0.04,没有气体吸附层时为0.03--0.06)承载能力,大于2.8×103Mpa(或大于3.45×103Mpa)。 化学稳定性: 氧化:干燥空气中,从417℃(750F)(或370℃、400℃、399℃、

350℃、450℃)开始氧化后。560℃后(或540℃)剧烈氧化。潮湿空气中,室温即发现有氧化,但很微弱,在湿度与酸值都很高时,氧化才变得明显。氧化产物为MoO3与So2,氧化系放热反应H=-266.7kcal/mol。 分解:真空或惰性气体里,1100℃(或1200℃、真空982~1093℃、氩气中1350~1472℃)后开始分解。分解产物为Mo与S。 能耐除王水,热而浓的盐酸、硫酸、硝酸外的任何酸,在氟、氯中可分解,但在无水HF中不分解,能与液氧相容。 能腐蚀碱金属(如Li、Na、K、Rb、Cs、Fe等)。 在水、石油制品和各种合成润滑剂中不溶解,能按任意比例混合使用。 2、二硫化钼与载荷 工件表面微观是不平整的,一旦彼此间发生滑动,真是接触仅局限于一些很小的高点上。用电阻法或其他方法估测,真实接触面还不到表观面积的万分之一。因而,即使施以很小载荷,接触点局部压强也会很大,载荷加大,会因压强过大而升温,甚至熔化。润滑目的即在于防止工件间直接接触。 油脂润滑时,当载荷过大,润滑膜会被“压破”或温度上升润滑油流失,这将导致润滑膜破裂,工建直接接触而发生黏着(熔合)磨损。 用二硫化润滑,当载荷上升时,润滑效果非旦不下降,还会提高。即使超过了钢铁屈服压强的重载荷3.45×103Mpa下,润滑依旧。

钻井液用固体润滑剂

现如今,在许多的钻井工作中都会使用到钻井液润滑剂,它可以减少钻头、钻具及其它配件的磨损,延长使用寿命,同时防止粘附卡钻、减少泥包钻头,易于处理井下事故等。若钻井液的润滑性能不好,会造成钻具回转阻力增大,起下钻困难,甚至发生粘附卡钻和日钻具事故;由此可见润滑性好坏至关重要,那么影响其润滑性的主要因素有哪些呢?下面就简单的给大家介绍下。 1、粘度、密度和固相的影响 随着钻井液固相含量、密度增加,通常其粘度、切力等也会相应增大。这种情况下,钻井液的润滑性能也会相应变差。这时其润滑性能主要取决于固相的类型及含量。砂岩和各种加重剂的颗粒具有特别高的研磨性能。 钻井液中固相含量对其润滑性影响很大。随着钻井液固相含量增加,·除使泥饼粘附性增大外,还会使泥饼增厚,易产生压差粘附卡钻。另外,固相颗粒尺

寸的影响也不可忽视。研究结果表明,钻井液在一定时间内通过不断剪切循环,其固相颗粒尺寸随剪切时间增加而减小,其结果是双重性的:钻井液滤失有所减小,从而钻柱摩阻力也有所降低;颗粒分散得更细微,使比表面积增大,从而造成摩阻力增大。可见,严格控制钻井液粘土含量,搞好固相控制和净化,尽量用低固相钻井液,是改善和提高钻井液润滑性能的最重要的措施之一。 2、滤失性、岩石条件、地下水和滤液pH值的影响 致密、表面光滑、薄的泥饼具有良好的润滑性能。降滤失剂和其它改进泥饼质量的处理剂(比如磺化沥青)主要是通过改善泥饼质量来改善钻井液的防磨损和润滑性能。 在钻井液条件相同的情况下,岩石的条件是通过影响所形成泥饼的质量以及井壁与钻柱之间接触表面粗糙度而起作用的。底温度、压差、地下水和滤液的pH值等因素也会在不同程度上影响润滑剂和其它处理剂的作用效能,从而影响

钻井液润滑性测定

中国石油大学钻井液工艺原理实验报告 实验日期:2015.03.23 成绩: 班级:石工12-1 学号姓名:教师:范鹏 同组者: 实验四钻井液润滑性测定 一.实验目的 1. 掌握钻井液润滑性测定仪器的使用方法; 2. 掌握钻井液润滑性的调整方法及常见润滑剂对钻井液润滑性能的影响。 二.实验原理 液体类润滑剂通过在金属、岩石和粘土表面形成吸附膜,减少钻具对井壁和套管的摩擦;多数固体润滑剂类似细小滚珠,将滑动摩擦转化为滚动摩擦,因而可大幅度降低扭矩和阻力。 在斜板倾斜条件下,放在泥饼上的滑块受向下的重力作用,当克服粘滞力后开始下滑,根据牛顿内摩擦定律,设滑块重量为W,其与斜面平行的分力为F,F 即摩擦力,垂直于斜面的力为P,F=Wsinα,P=Wcosα,摩擦系数f=F/P=tgα。泥饼的摩擦系数即仪器所测的粘滞系数。 三.仪器、药品 1.ZNS型打气筒失水仪一台 2.粘滞系数测定仪一台 3.高搅机一台 4. 秒表一只 5. 钢板尺一个 6. 20ml量筒1个 7.滤纸 8. 待测泥浆泥浆约500ml 四、实验步骤 1.接通粘滞系数测定仪的电源,预热15min,并检查电机、清零及显示屏工作是否正常。

2.通过手动调节测试板和仪器箱底的升降螺母使仪器测试板水平泡居中。 3.按清零按钮将数字显示屏归零。 4.测定基浆的滤失量后,将泥饼平整的放置在测试板上,将长方体滑块以垂 直于测试者身体方向,缓慢地放置在泥饼的中心位置,并静置1min。 5.按动电机按钮,测试板开始以一定速率缓慢的倾斜,直到滑块开始与泥饼 出现相对滑动时,立即记录下此时显示屏的读数。此读数的正切值即为泥饼的粘 滞系数。 6.取基浆加入一定量的NaCl并高速搅拌10min,按实验步骤4和5测定盐水 泥浆泥饼的粘滞系数。 五、数据处理 确定加入NaCl前后的润滑系数降低或提高率,并简要解释原因并提出简要的对策。 润滑系数提高率=(1.1504-0.0612)/0.0612=17.80 润滑系数提高。 钻井液中加入NaCl后,发生盐侵,会压缩粘土的扩散双电层,使其 电位降低,水化膜变薄,粘土颗粒间形成或增强网架结构,从而导致钻井液粘度、切力上升,摩擦阻力增大。 由此可知为了提高钻井液的润滑性,应该降低钻井液的矿化度。 六.实验总结 通过本次实验的具体操作,我掌握钻井液润滑性测定仪器的使用方法,对钻 井液润滑性的调整方法及常见润滑剂对钻井液润滑性能的影响有了初步的认识。 最后感谢老师的细心指导!

润滑剂最新标准

中原油田企业标准 Q/SH1025 0512—2011 代替 Q/SH1025 0512—2007 钻井液用润滑剂技术条件 2011-10-01发布2011-12-01实施中原油田发布

前言 本标准按照GB/T 1.1—2009给出的规则起草。 本标准代替Q/SH1025 0512—2007《钻井液用润滑剂通用技术条件》。主要技术变化如下:——新增了钻井液用油酸脂类润滑剂的技术要求; ——液体润滑剂外观指标更改为:均匀状液体; ——更改了原标准中细度测试的叙述方式,不再描述为“引用SY/T 5559—1992中第6章”,而是直接明确了测试步骤。 本标准由中原油田石油化工油田化学专业标准化委员会提出并归口。 本标准起草单位:中原油田技术监测中心。 本标准主要起草人:何卫、孙明卫、朱玉萍、湛玉玲、魏玲艳。 本标准2007年首次发布,本次为第一次修订。

钻井液用润滑剂技术条件 1 范围 本标准规定了钻井液用润滑剂的要求、试验方法、检验规则、标志、包装、质量检验单及使用说明书。 本标准适用于中原油田钻井液用液体润滑剂、固体润滑剂、油酸脂类润滑剂的准入、验收和质量监督检验,不适用于小球类润滑剂。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 6678—2003 化工产品采样总则 GB/T 16783.1—2006 石油天然气工业钻井液现场测试第1部分:水基钻井液 SY/T 5490 钻井液试验用钠膨润土 3 要求 钻井液用润滑剂应符合表1的规定。 表1 指标 项目 液体润滑剂固体润滑剂油酸脂类润滑剂外观均匀状液体松散状流动粉末或颗粒均匀状液体 细度(筛孔0.25 mm筛余),% ≤—10.0 — 水分,% ≤—7.0 — 酸值,mg/g ≤——35 荧光级别*≤ 4.0 4.0 4.0 表观粘度升高值,mPa?s ≤ 3.0 3.0 2.0 润滑系数降低率,% ≥75 60 84 注:荧光级别指标仅限于钻井液用低荧光润滑剂。 4 试验方法 4.1 仪器设备和试剂 仪器设备和试剂包括: a)天平:精度0.01 g、0.0001 g;

新型钻井液用润滑剂GXRH的研制

新型钻井液用润滑剂GXRH的研制 孙金声潘小镛刘进京 (中石油石油勘探开发研究院北京) 摘要润滑剂GXRH是一种台高分子脂肪政和脂化剂的聚酯化台物,亲油基团及亲水基团均为长链.使其在金属、岩石和粘土表面形成的吸附膜厚度增大.从而在高密度钻井液中能有较好的润滑性。设化合物具有较高的耐磨性.稳定性好,克服了天然脂肪酸易于水解、易与高价阳离子如钙、镁离子生成币溶性盐及在高密度钻井液中效能低等缺点,抗盐、抗温性能好,适用于各种钻井液体系,满足了高密度钻井液对)闺滑剂的要求。合成GXRH的原料力合成脂肪酸鲞残.合成工艺简单,成本低;GXRH为直链化台物,无荧光,可降解达到环保要求。 关键词:润滑剂高密度钻井液耐温抗盐 目前常用的改善钻井液润滑性能的方法,主要是通过合理使用润滑剂降低摩阻系数以及通过改善泥饼质量来增强泥饼的润滑性。80年代以来,国内外钻井液润滑剂发展比较快,不仅数量多而且品种丰富。人工合成及油脂改性制成的润滑剂,以它们特殊的功能,已成为今Et钻井液润滑剂的主流。为适应钻井工程的需要及保护环境的要求,研制出了新型高效润滑剂GXRH。该处理剂在密度为2,0g/cm3的钻井液中仍有良好的降摩阻性能。 室内评价 润滑剂GXRH是一种含高分子脂肪酸和脂化剂的聚酯化合物,以合成脂肪酸釜残为原料,在脂化剂作用下娜催化法,在115~130℃下反应l~3h生成聚酯化合物。该化合物具有较高耐磨性,稳定性好,克服了天然脂肪酸易于水解、易与高价阳离子如钙、镁离子生成不溶性盐及在高密度钻井液中效能低等缺点,满足了高密度钻井液对润滑剂的要求。 室内评价仪器包括E—P极压润滑仪、泥饼粘滞系数测定仪和LEM润滑仪。 1.在淡水钻井液中的性能 如表i~表3所示,GXRH在不同淡水钻井液中均有良好的润滑性能、降摩阻及降扭矩性能。表1~表3中钻井液配方如下。 l86%钠膨润土浆 2。l4十1%FCLS+0.2%CMC 3。1。+0.3%FA367十0.2%XY一27 48l”+O.2%XY27+0.2%CPAM+1.0%NH。HPAN 表lGXRH在淡水钻井液中的泥饼粘甜系数 2GXRH在不同密度钻井液中的润滑性 GXRH在不同密度钻井液中的润滑性能见表4。表4说明,GXRH在密度为2.04g/cm3的钻井液中仍能保持良好的润滑性,润滑系数降低率为79.0%,扭矩降低率为40.2%。表4中钻井液配方如下。 585%潍县土+0.1%HPAN+0.1%PAc+2%SLSP 钻井液与完井液?2002年第19卷第6期?13?  万方数据万方数据

二硫化钼的润滑特性

书山有路勤为径,学海无涯苦作舟 二硫化钼的润滑特性 二硫化钼——天然或合成的辉钼矿,以润滑油脂及其他固体润滑剂难比拟 的优点,被誉为“固体润滑之王”而被广泛应用。作为润滑剂要必备两个条件,即材料内部具良好滑移面,材料与基材有很强的附着力。二硫化钼以S—Mo—S 的三明治式夹层相迭加。层内,S—Mo 间以极性键紧密相连。层间,S—S 间以分子键相连,范德华-伦敦力的键合力太弱,当受到很小的剪切应力 后即能断裂产生滑移。而这样的滑移面在每两个夹心层间就有一个。也就是在1μM厚的二硫化钼薄层内就有399 个良好的滑移面。二硫化钼与基材强烈粘附,这也是其他润滑剂,比如石墨也难比拟的。除此外,它还具备有许多良好的润滑特性。(1)温度适应范围宽:高温航空硅油能耐250℃高温,冷冻机油耐-45℃低温,这在润滑油脂中已属姣姣者。而二硫化钼在空气中应用,可在349℃下长期使用,或399℃下短期使用;在真空中,二硫化钼可在1093℃下工作;在氩气等惰性气体中,二硫化钼可在1427℃下工作。除能在高温下工作,二硫化钼还能在-184℃或更低温度下工作。(2)耐重负荷:在重负荷下油脂润滑膜会因变薄甚至消失而使润滑失效。但厚度仅为2.5μm的二硫化钼润滑膜在2800MPa、40m/s 的重负荷、高速度下润滑性能良好。即使负荷加大到3200MPa 超过了钢铁屈服强度,二硫化钼的润滑效能依旧存在。这是其他任何液体和固体润滑剂所难达到的。因此,全世界所产二硫化钼的大部份都被当作“极性添加剂”与油脂合用,比如市面常见的二硫化钼锂基脂、二硫化钼钙基脂、各种二硫化钼齿轮成膜膏等等。(3)耐真空:航天器在500km 以上高空飞行,太空的真空度已达1.3×10-2μPa以上:此时,油脂润滑剂的蒸发已超过它的极限蒸发率。这不仅会使润滑失效,而且挥发气体还会污染仪表和环境,在真空中连石墨润滑剂的润滑性能也会大幅度下降,而二硫化钼在真空条件下

钻井液润滑剂主要原料

钻井液润滑剂大多为动植物油类衍生物、合成化合物(如脂肪酚胺)和表面活性剂调配而成。它们大多具有极好的润滑性,此类为液体润滑剂;另一类为固体润滑剂,如石墨玻璃微珠、塑料微珠、碳珠等,专用于降低钻杆扭矩的场合。有些润滑剂有防钻头泥包的作用,又可称为防泥包剂。 本院采用了国际上先进的胶体化学、表面化学、抗磨油品化学合成技术,集中了有机极压吸附膜与无机弹性电荷沉积—极压膜的优点,特别开发了本款多能型的极压抗磨剂。水溶性润滑剂有环保节能、清洗、冷却、不燃等诸多优点,但由于润滑性差,一直制约着水溶性润滑剂的使用,使用本品可有效解决水溶性润滑剂润滑性差的问题,推进水性润滑剂快速发展。 ●能在摩擦的金属钻具表面形成坚固的极压润滑膜,对钻具起有效保护作用,延长钻头寿命,减少下钻次数,降低钻杆扭矩,提高钻速,有效减轻对钻杆和钻头的磨损,大幅度提高钻井效率。 ●使用本品可有效克服普通润滑剂润滑性不足的缺陷。本品可升级泥浆润滑剂的配方,提供一种泥浆极压润滑剂。 ●极高负荷条件下,极压抗磨性能更为出色,极压润滑膜更为牢固。 ●添加本剂的泥浆润滑液,被摩擦的金属表面变的更加光滑,有效减少压差卡钻的可能性。尤其在不规则的井径和斜井以及定向井中,可以减少对钻杆和钻铤的磨损。 ●本剂有利于使泥浆形成水包油乳化泥浆,降低界面张力 ●极低的使用浓度,极高的极压润滑效果。 国内开展了基于植物油、合成酯、聚合醇等原料的环保润滑剂研制工作,但在现场应用中,很多环保润滑剂抗温、抗盐不足,150℃以上时润滑性能下降明显,今后应进一步提升环保润滑剂的抗温和抗盐性能,以满足深部复杂地层的需要。 除CMC外,聚阴离子纤维素、磺化酚醛树脂和改性淀粉等也是常用的抗盐降滤失剂,铁铬盐(FCLS)等是常用的抗盐稀释剂。 羧甲基纤维素(Carboxymethyl Cellulose,简称CMC)是最重要的纤维素醚之一,它是以天然纤维素(浆粕)为基本原料,经过碱化、醚化反应而生成的,原料为绿色产品有很高的市场价值。羧甲基纤维素具有增稠、悬浮、分散和降滤失等性能,已被广泛应用于石油钻井液中。但是,随着石油勘探领域的扩大和钻井深度的增加,高粘、中粘和低粘等普通CMC溶液在140℃、12h密闭高温实验后其粘度损失率均大于90%,进一步提高CMC的抗高温性能成为了纤维素醚类大分子新的研究内容。为了提高产品质量,通过交联也是纤维素及其衍生物功能化改性的方便途径之一。采用适当的交联剂,并控制交联度,可显著提高纤维素的抗温性能,在不破坏其活性的前提下,提高产品的物性。本文在总结大量的国内外文献报道,研究了不同交联剂与羧甲基纤维素交联改性后的的抗温性能,包括水溶性密胺树脂、戊二醛、对二氯苄、水溶性酚醛树脂和三氯乙醛等。交联产品经140℃、12h密闭高温实验比较,水溶性酚醛树脂改性的羧甲基纤维素具有较好的抗温性能,粘度损失率3.7%。本文研究了羧甲基纤维素和水溶性酚醛树脂的交联缩合动力学的测试方法并得到了该反应的动力学方程。因为水溶性酚醛树脂是多种活性中间体的混合物,羧甲基纤维素是受羧甲基取代度和聚合度影响的大分子,两者的交联缩合反应可以同时发生在多点、多分子之间,动力学研究较为复杂,所以本文分别采用Borchardt-Daniels模型和Kissinger模型方法,根据差示扫描量热仪(DSC)测定不同升温速率下的羧甲基纤维素和水溶性酚醛树脂交联缩合反应的热流曲线数据,计算得到反应动力学方程。利用非等温单一扫瞄速率法的Borchardt-Daniels模型得到的动力学参数为:反应级数n1.05,反应活化能E93.86kJ/mol,指前因子lnA16.23。采用非等温多加热扫描速率法的Kissinger 模型计算得到的动力学参数为:反应级数n1.04,反应活化能E94.37kJ/mol,指前因子lnA15.96。三个热力学参数值分别相差0.55%、1.71%和1.14%,证明两种模型计算结果较一致。水溶性

润滑油脂的的特性概述

润滑脂、防冻液 一、什么是润滑脂? 润滑脂是将稠化剂分散在液体润滑剂中所组成的一种稳定的固体或半固体产品。在日常生产中人们习惯于把润滑脂叫成“黄油”。 润滑脂主要是由稠化剂、液体润滑油、添加剂和填料组成。 二、稠化剂的作用是什么?有哪些种类? 稠化剂的作用是在基础油中分散和形成结构骨架,使基础油吸附并固定在结构骨架中,从而形成固体或半固体关的润滑脂。 稠化剂的种类主要有皂基稠化剂和非皂基稠化剂。 皂基稠化剂可分为三类:单皂基—以单以金属皂作为稠化剂而制成的脂,如钙基脂、钠基脂。-混合皂基—由两种或两种以上的单一金属皂同时作为稠化剂混合而制成的脂,如钙—钠基脂。?复合皂基—皂结晶或皂纤维是由两种或更的化合物共结晶而制成的,复合引起润滑脂特性改变,并以滴点升高为标志,如复合锂、复合铝基脂。 非皂基稠化剂有:烃基、无机类、有机类 三、如何判断皂基脂与非皂基脂? 通过测定是否有明确的滴点即可区分。皂基脂有滴点,有的还有优良的抗辐射性、抗化学介质等特性。四、润滑脂的添加剂的类型有哪些?润滑油中添加剂是否都可以用于润滑月脂? 润滑脂的添加剂分为两大类:一类是物理性能改善剂,如结构改进剂(醇、水、甘油等);另一类是化学性能改善剂,如抗磨剂、防锈剂等。 在润滑油添加剂中,可能对润滑脂胶体结构破坏较大的添加剂不能用在润滑脂中;有的添加剂虽油溶性差,在润滑油中使用受到限制,但在润滑脂中感受性好,故可用于润滑脂中。 五、什么是填料?其作用如何? 填料是为了增加润滑脂中的某些特殊性能而添加的固体填充物,大多数是一些有润滑作用和增稠效果的无机物粉末。大部分填料本身可作为固体润滑剂用,加入脂中可提高脂的润滑能力,在脂的润滑膜受短暂冲击负荷或高热作用下,它们可起补强作用。常用填料有:石墨、铝粉、二硫化钼、铜粉等。 六、润滑脂的主要性能有哪些? ①流变学性能②高温性能③轴承性能④润滑性能⑤防护性能⑥低温性能。 七、润滑脂的流变学性能是如何测得的? 流变学是研究物质在受到外力作用后变形或流动的科学。润滑脂的流变学性能取决于它的组成和结构,同时也与剪切速率、温度有关,润滑脂的流动性能主要通过脂的触变性、相似粘度、强度极限等性能来评定。 八、什么是润滑脂的触变性和强度极限? 润脂受到剪切作用,在一定剪速下,随着剪切时间的增加,稠度下降,脂变稀;当剪切停止时,结构骨架又逐渐恢复,脂又变稠,这种由稠变稀,由稀变稠的现象称为触变性。其值大小取决于稠化剂种类、浓度和分散状态,而与基础油粘度并无直接关系。润滑脂有轻微的触变对使用是有益的。 强度极限是表示使润滑脂开始流动所需最小的剪应力。 由于脂是具有不定期的强度极限,就不会受地心引力而改变其形态自动流动,即使在密封不严的摩擦部件中也不会流失,在机械工作时能抵抗住离心的作用,不致从零件表面被甩出。 润滑脂强度极限是温度的函数,温度越高,脂的强度极限变小,温度降低,脂的强度极限变大。脂的强度极限,取决于稠化剂的种类和含量,与工艺也有关。 九、润滑脂稠度分级、牌号分类的依据是什么? 稠度是一个与脂在润滑部位保持能力和密封性能以及脂的输送和加注有关的重要指标,其大小按针入度划分。 目前国际上通用的稠度等级是按照美国润滑脂协会(NLGI)的稠度等级划分的。将润滑脂的稠度分为九个等级:000、00、0、1、2、3、4、5、6。稠度等级用锥入度度量。

钻井液润滑剂润滑性能及影响因素

钻井液润滑剂润滑性能及影响因素 国内外研究者对钻井液的润滑性能进行了评价,得出的结论是:空气与油处于润滑性的两个极端位置,而水基钻井液的润滑性处于其间。用Baroid公司生产的钻井液极压润滑仪测定了三种基础流体的摩阻系数(钻井液摩阻系数相当于物理学中的摩擦系数),空气为0.5,清水为0.35,柴油为0.07。在配制的三类钻井液中,大部分油基钻井液的摩阻系数在o.08~o.09之间,各种水基钻井液的摩阻系数在0.20~0.35之间,如加有油晶或各类润滑剂,则可降到0.10以下。 对大多数水基钻井液来说,摩阻系数维持在o.20左右时可认为是合格的。但这个标准并不能满足水平井的要求,对水平井则要求钻井液的摩阻系数应尽可能保持在0.08~0.10范围内,以保持较好的摩阻控制。因此,除油基钻井液外,其它类型钻井液的润滑性能很难满足水平井钻井的需要,但可以选用有效的润滑剂改善其润滑性能,以满足实际需要。近年来开发出的一些新型水基仿油性钻井液,其摩阻系数可小于0.10,很接近油基钻井液,其润滑性能可满足水平井钻井的需要。 从提高钻井经济技术指标来讲,润滑性能良好的钻井液具有以下优点: (1)减小钻具的扭矩、磨损和疲劳,延长钻头轴承的寿命; (2)减小钻柱的摩擦阻力,缩短起下钻时间; (3)能用较小的动力来转动钻具; (4)能防粘卡,防止钻头泥包。 钻井液润滑性好,可以减少钻头、钻具及其它配件的磨损,延长使用寿命,同时防止粘附卡钻、减少泥包钻头,易于处理井下事故等。在钻井过程中,由于动力设备有固定功率,钻柱的抗拉、抗扭能力以及井壁稳定性都有极限。若钻井液的润滑性能不好,会造成钻具回转阻力增大,起下钻困难,甚至发生粘附卡钻和日钻具事故;当钻具回转阻力过大时,会导致钻具振动,从而有可能引起钻具断裂和井壁失稳。 1.钻井作业中摩擦现象的特点 随着密封轴承的出现,改善钻井液润滑性能的目的主要是为了降低钻井过程中钻柱的扭矩和阻力。在钻井过程中,按摩擦副表面润滑情况,摩擦可分为以下三种情况(见图4-11):

钻井液设计

第8章钻井液设计 本章主要介绍了新疆地区常用的钻井液体系,结合A1-4井及探井资料,设计了A区块井组所使用的钻井液体系、计算了所需钻井液用量,提出了钻井液材料计划等。 钻井液体系设计 钻探的目的是获取油气,保护地层是第一位的任务,因此,搞好钻井液设计,首先必须以地层类型特性为依据,以保护地层为前提,才能达到设计的目的。 新疆地区常用钻井液体系简介: (1)不分散聚合物钻井液体系:不分散聚合物钻井液体系指的是具有絮凝及包被作用的有机高分子聚合物机理的水基钻井液。该体系的特点是:具有很强的抑制性;具有强的携沙功能;有利于提高钻速;有利于近平衡钻井;可减少对油气层的伤害。 (2)分散性聚合物体系(即聚合物磺化体系):聚合物磺化体系是指以磺化机理及少量聚合物作用机理为主配置而成的水基钻井液。该体系的特点是:具有良好的高温稳定性,使用于深井及超深井;具有一定的防塌能力;具有良好的保护油层能力;可形成致密的高质量泥饼,护壁能力强。 (3)钾基(抑制性)钻井液体系:该体系是以聚合物的钾,铵盐及氯化钾为主处理剂配制而成的防塌钻井液。它主要是用来对付含水敏性粘土矿物的易坍塌地层。该体系特点:对水敏性泥岩,页岩具有较好的防塌效果;抑制泥页岩造浆能力较强;对储层中的粘土矿物具有稳定作用;分散型钾基钻井液有较高的固相容限度。 (4)饱和盐水钻井液体系:该体系是一种体系中所含NaCl达到饱和程度的钻井液,是专门针对钻岩盐层而设计的一种具有较强的抑制能力,抗污染能力及防塌能力的钻井液。该体系特点:具有较强的抑制性,由于粘土在其中不宜水化膨胀和分散,故具有较强的控制地层泥页岩造浆的能力;具有较强的抗污染能力,由于它已被NaCl所饱和,故对无机盐的敏感性较低,可以抗较高的盐污染,性能变化小;具有较强的防塌能力,尤其再辅以KCL对含水敏性粘土矿物的页岩具有较强抑制水化剥落作用;可制止盐岩井段溶解成大肚子井眼。由于钻井液中氯化钠已达饱和,故钻遇盐岩时就会减少溶解,以免形成大井眼;缺点是腐蚀性较强。 (5)正电胶钻井液体系是一种以带正电的混合层状金属氢氧化物晶体胶粒(MMH或MSF)为主处理剂的新型钻井液体该体系的特点:具有独特的流变性;有利于提高钻井速度;对页岩具有较强的抑制性;具有良好的悬浮稳定性;有较强

电力设备润滑特点.

电力设备润滑特点: 电力行业设备主要由发电设备和输电设备两大类组成。其中发电设备主要有:蒸汽蜗轮机、水涡轮机、汽轮发电机、核电汽轮机。润滑油品主要是指汽轮机油;输电设备用油主要是变压器油;核电行业的设备主要使用油品为聚苯醚。 发电设备对润滑油的要求: (1)优良的氧化安定性,保证油品在长期循环使用过程中的氧化沉淀物少,酸值增幅小,使用寿命达10年以上。 (2)优良的抗乳化性,容易与水分离,使漏进润滑系统的水在油箱中迅速分离排出,以保证油品的正常润滑和冷却作用。 (3)良好的粘温性,以保证汽轮机组的轴承在不同温度下都能得到良好的润滑。 (4)良好的防锈性,以防止蒸汽和冷凝水渗入系统引起调速系统锈蚀。 (5)良好的抗泡沫性,运行中进入空气而产生泡沫,泡沫过多或不易消失会影响油品的正常循环。 输电设备润滑剂要求: (1)优良的电气绝缘性能,绝缘强度高,介质损失角小。 (2)粘度小,散热快,冷却性能好,能将变压器在运行中产生的热传导出去。 (3)良好的氧化安定性,使用寿命长。 (4)凝点低,有好的低温流动性。

(5)闪点高,蒸发性小,保证在运行温度下能安全工作。 变压器油是减压轻质润滑油馏分,经深度精制,加入抗氧剂等调配而制成。 电力设备包括:汽轮机、变压器、水轮机、风力发电机、风力发电偏航系统、风力发电液压刹车系统、磨煤机等。 一、汽轮机--润滑特点: 汽轮机(见下图所示)是使用电站锅炉产生的过热蒸汽去冲动汽轮机叶片,并使之转动,从而带动汽轮机和汽轮发电机发电的一种动力机械。它是发电设备中的一种原动机。 汽轮机工作原理如下:一定温度和压力气体进入喷嘴,在喷嘴内膨胀加速,气体的热能转化为动能。气体以高速度冲击动叶片,动叶片带动叶轮转动,从而将动能转变成主轴的旋转机械能。主轴通过联轴器与其它机械如风机、发电机等相连,从而驱动这些机械转动。汽轮机由于其功率大,燃料便宜易得,因此,广泛地应用于各行各业,如电力工业、大型化肥厂、石油化工行业、航空发动机以及大型船舶和军舰。 工况特点:汽轮机各轴承及启动部分由于摩擦以及高温蒸汽产生大量的热量,汽轮机油不断地循环流过将这部分热量带走,使汽轮机的温度不超出一定的温度值,起到冷却作用。

固体润滑剂的特性

固体润滑剂的特性 文章来源:开拓者钼业 https://www.360docs.net/doc/0e3398949.html, 1.3.1 固体润滑剂的特性 1.3.1.1 摩擦特性 所有的摩擦副都要承受一定的负荷或传递一定的动力,并且以一定的速度运动。黏着于摩擦表面的固体润滑剂在与对偶材料摩擦时,在对偶材料表面形成转移膜,使摩擦发生在固体润滑剂之间。这样才能表现出零号的摩擦特性——较低的摩擦系数。 固体润滑剂的摩擦特性与其剪切强度有关,剪切强度越小,摩擦系数则越小。层状结构润滑材料在摩擦力的作用下,容易在层与层之间产生滑移,所以摩擦系数小。软金属润滑材料能产生晶间滑移,剪切强度也很小,因而这些物质可以作为固体润滑剂。 1.3.1.2 承载特性 对偶材料在摩擦时,由于摩擦表面的粗糙度,会使微凸体处产生局部高温,而且,负荷越大,温度越高,速度越快,温升也越大,因而磨损也越大。 固体润滑剂应该具有承受一定负荷和运动的速度的能力,即承载能力。在它所能承受的负荷和速度范围内,应该使摩擦副保持较低的摩擦系数,不使对偶材料间发生咬合,而且应使磨损减到最小。 为了使固体润滑剂在规定的工作条件下充分发挥其润滑作用,对于轴承等材料来说,有个特定的标量,即pv值(pa·m/s)——负荷与速度的乘积。对于每种润滑材料,都有其极限pv值(超过该值运行便

失效)和工作pv值(正常工作条件),通常,工作pv值为极限pv值的一半左右。 固体润滑膜的承载特性与其本身的材质有关,尤其受其物理学性能的影响,同时也与固体润滑剂在基材料上的结合强度有关。结合强度越高,承载能力越大。 1.3.1.3 耐磨性 对偶材料在一定负荷和速度下发生摩擦,总会产生磨损。固体润滑剂的耐磨性能与下列两个因素有关。 1)固体润滑剂对摩擦比偶民的黏着力越强,越容易形成转移膜,其耐磨性也越好,固体润滑膜的寿命越长。 2)固体润滑剂应该具有不低于基材的热膨胀系数。当摩擦引起升温时,由于其热膨胀系数较高而将突出基于基材表面,并与对偶材料接触,不断提供固体润滑剂,以维持较好的耐磨性能。 同时,固体润滑剂的耐磨性与气氛黄精条件有关。 1.3.1.4 宽温性 固体润滑剂应能在一定的温度范围内工作。目前,固体润滑剂的使用温度上限在1200℃(金属压力加工中所使用的固体润滑剂),最低温度在-270℃左右(液氧和液氮等输液泵轴承的固体润滑)。但是,无论何种固体润滑剂都没有这样宽的工作范围。实际使用的固体润滑剂只要求适用于某一特定的温度范围,而且通过制造特定的复合润滑材料便可以用于某个温度范围工作。在一定工作温度范围内,固体润滑剂应该具有较低的摩擦系数、较好的润滑性能和耐磨性。

常用润滑油分类及其特性

常用润滑油分类及其特性 一.润滑剂的分类 润滑剂的品种繁多,但一般按其物理状态可分为液体润滑剂、半固体润滑剂、固体润滑剂、气体润滑剂等四大类。 根据GB/T498-1987的规定,将润滑剂和有关产品归类为L类产品,因而润滑剂总代号为L,即所有润滑剂代号的第一个字母均为L。 1.液体润滑剂:包括矿物润滑油、合成润滑油、动植物油和水基液体等。 2.半固体润滑剂(润滑脂):润滑脂在常温常压下呈半流动的油膏状态,故又称固体润滑剂,是由基础润滑油和稠化剂按一定的比例稠化而成。 3.固体润滑剂:固体润滑剂是以固体形态存在于摩擦介面之间起润滑作用的物质,有软金属、金属化合物、有机物和无机物。一般工业常用的固体润滑材料,二硫化钼、石墨、聚四氟乙烯等。 4.气体润滑剂,与液体一样,气体也是流体,同样符合流体的物理规律,因此在一定条件下气体也可以像液体一样成为润滑剂。常用的提起润滑剂有空气、氦气、氮气、氩气等。 二.润滑油 润滑油是液体润滑剂,一般是指矿物油与合成油,尤其是矿物润滑油。目前全世界矿物润滑油的年产量超过20003吨,占润滑剂总产量的95%以上。 润滑油的代号及其意义 根据GB/T7631.1-1987的规定,润滑油的代号由类别、品种及数字组成,其书写的形式为:类别+品种+数字。 类别是指石油产品的分类,润滑剂是石油产品之一,润滑材料产品用L表示。 品种是指壳牌润滑油的分组,是按其应用场合分组,分别用相应字母代表:A——全损耗系统;C——齿轮;D——压缩机;E——内燃机;F——定子、轴承、离合器;G——导轮;H——液压系统;M——金属加 工;P——风动工具;T——汽轮机;Z——蒸汽气缸等,是品种栏的首字母,实际上品种栏内还可能有1个或多个其他字母,以表示该品种的进一步细分种类。 数字代表润滑油的粘度等级,其数值相当于40℃(有些则是批号,但要注明,否则是指40℃)是的中间运动粘度值,单位为mm2/s,按GB/T3141-1994规定有2、3、5、7、10、15、22、32、46、68、100、150、220、320、460、680、1000、1500、2200、3200共20个等级。 例:L——AN100,表示粘度等级为100mm2/s的全损耗系统润滑油,其在40℃时运动粘度是90~110mm2/s,中间类的运动粘度为100mm2/s。 润滑油的质量指标: 润滑油的质量指标可分为两大类:一是油品的理化性能指标,另一类是油品的应用性能指标。(主要介绍几个主要的理化指标) a.颜色:润滑油的颜色与所有物质一样,都具有相应而固定的颜色,它与基础油的精制度及所加的添加剂有关。但在使用或贮存过程中则会因其氧化而变质,从而改变颜色,且变色程度与变质程度有关。如呈乳白色,则表示有水或气泡存在;颜色变深,则表示氧化变质或污染。

第十章 钻井液的滤失与润滑性

第十章钻井液的滤失造壁性和润滑性 一、钻井液滤失和造壁性 在钻井过程中,为了防止地层流体进入井内,一般控制钻井液液柱压力高于地层压力,在钻井液液柱与地层压力的压差作用下,钻井液中自由水向井壁岩石裂隙或空隙中渗透,这一过程叫钻井液的滤失作用。 在滤失过程中钻井液中的一些固体颗粒便附着在井壁上,形成泥饼。固相颗粒附着在井壁上形成泥饼的过程叫钻井液的造壁性。井壁上形成泥饼后又会阻止或减慢钻井液中水继续侵入地层。因此,钻井液的滤失和造壁性能对井壁稳定有十分重要的影响,特别是松散、破碎和水敏性地层。 影响钻井液滤失性的因素有钻井液内固相颗粒尺寸、温度、压差、岩石渗透率等。固相颗粒粗,形成泥饼后而松,滤失量大;砂岩、砾岩、裂缝发育的灰岩形成的泥饼厚;页岩、泥岩、石灰岩形成的泥饼薄。 为了维持井眼的稳定以及减少钻井液固、液相侵入地层与损害油气层,就必须控制钻井液的滤失性能,其有效途径是在井壁上形成薄而致密的泥饼。如果井内钻井液滤失性控制不当,必然要产生两方面问题,即滤失量过大和泥饼过厚。这两者之间既有区别,又是相互联系的。 钻井液的滤失控制是钻井液工艺中的一个十分重要的问题,这里首要的是控制泥饼的厚度,而泥饼的厚度是随滤失总量的增加而增厚的,故应控制钻井液的滤失量。然而,滤失量并不是决定泥饼厚度的惟一因素,对于不同的钻井液,泥饼厚度相同,而滤失量却不一定相同;反之,滤失量相同,泥饼厚度亦可能不同。滤失量过大固然不好,但过小的滤失量也会造成钻井液成本增加,钻速下降。 钻井液滤液矿化度不同,对井壁岩层稳定性的影响也是不同的。与淡水滤液、碱性强的滤液相比较,高矿化度、碱性弱的滤液和含高聚物(例如聚丙烯酰胺)的滤液不易引起井壁岩层的膨胀和坍塌。实践证明,即使滤失量大些,使用这类钻井液要安全得多。因此,对于井壁稳定来说,不仅要注意滤失量的大小,还要考虑滤液的性质及其对井壁稳定造成的影响。 综上所述,钻井液形成的泥饼一定要薄、致密、坚韧;而钻井液的滤失量则要控制适当,应根据岩石的特点、井深、井身结构等因素来确定,同时应考虑钻井液的类型。 二、钻井液的滤失过程 钻井液滤失过程分三个阶段:即瞬时滤失、动滤失、静滤失。 ⑴、瞬时滤失特点:时间短,滤失速率高。指从钻头破碎岩石出现新界面开始直到钻井液中固相和高聚物在井壁上开始形成泥饼这段时间。 ⑵、动滤失特点:开始滤失量较大,随后逐渐减小直至稳定在某一定值。在钻井

润滑油九大特性

润滑油九大特性 1、水解安定性 水解安定性表征油品在水和金属(主要是铜)作用下的稳定性,当油品酸值较高,或含有遇水易分解成酸性物质的添加剂时,常会使此项指标不合格。它的测定方法是将试油加入一定量的水之后,在铜片和一定温度下混合搅动一定时间,然后测水层酸值和铜片的失重。 2、抗乳化性 工业润滑油在使用中常常不可避免地要混入一些冷却水,如果润滑油的抗乳化性不好,它将与混入的水形成乳化液,使水不易从循环油箱的底部放出,从而可能造成润滑不良。因此抗乳化性是工业润滑油的一项很重要的理化性能。一般油品是将40ml试油与40ml蒸馏水在一定温度下剧烈搅拌一定时间,然后观察油层—水层—乳化层分离成40—37—3ml的时间;工业齿轮油是将试油与水混合,在一定温度和6000转/分下搅拌5分钟,放置5小时,再测油、水、乳化层的毫升数。 3、氧化安定性 氧化安定性说明润滑油的抗老化性能,一些使用寿命较长的工业润滑油都有此项指标要求,因而成为这些种类油品要求的一个特殊性能。测定油品氧化安定性的方法很多,基本上都是一定量的油品在有空气(或氧气)及金属催化剂的存在下,在一定温度下氧化一定时间,然后测定油品的酸值、粘度变化及沉淀物的生成情况。一切润滑油都依其化学组成和所处外界条件的不同,而具有不同的自动氧化倾向。随使用过程而发生氧化作用,因而逐渐生成一些醛、酮、酸类和胶质、沥青质等物质,氧化安定性则是抑制上述不利于油品使用的物质生成的性能。 4、热安定性 热安定性表示油品的耐高温能力,也就是润滑油对热分解的抵抗能力,即热分解温度。一些高质量的抗磨液压油、压缩机油等都提出了热安定性的要求。油品的热安定性主要取决于基础油的组成,很多分解温度较低的添加剂往往对油品安定性有不利影响;抗氧剂也不能明显地改善油品的热安定性。 5、抗泡性 润滑油在运转过程中,由于有空气存在,常会产生泡沫,尤其是当油品中含有具有表面活性的添加剂时,则更容易产生泡沫,而且泡沫还不易消失。润滑油使用中产生泡沫会使油膜破坏,使摩擦面发生烧结或增加磨损,并促进润滑油氧化变质,还会使润滑系统气阻,影响润滑油循环。因此抗泡性是润滑油等的重要质量指标。 6、油性和极压性 油性是润滑油中的极性物在摩擦部位金属表面上形成坚固的理化吸附膜,从而起到耐高负荷和抗摩擦磨损的作用,而极压性则是润滑油的极性物在摩擦部位金属表面上,受高温、高负荷发生摩擦化学作用分解,并和表面金属发生摩擦化学反应,形成低熔点的软质(或称具可塑性的)极压膜,从而起到耐冲击、耐高负荷高温的润滑作用。 7、腐蚀和锈蚀 由于油品的氧化或添加剂的作用,常常会造成钢和其它有色金属的腐蚀。腐蚀试验一般是将紫铜条放入油中,在100℃下放置3小时,然后观察铜的变化;而锈蚀试验则是在水和水汽作用下,钢表面会产生锈蚀,测定防锈性是将30ml 蒸馏水或人工海水加入到300ml试油中,再将钢棒放置其内,在54℃下搅拌

润滑脂地特性及地的应用范围

润 滑 油 生 产 技 术 制作人:王新军. 日期:2013/12/5.

1.理想润滑油基础油基础油应具有的性能有哪些? (1).适当粘度和好粘温性。(2).低的蒸发损失。(3).优良的低温流动性。(4).良好的氧化安定性。(5).适宜的对氧化产物添加剂的溶解能力。(6).好的抗乳性及空气释放值。 2.简述润滑油基础油生产过程,并说明润滑油加工从减压渣油和脱沥青油生产基础油典型的三个步骤及其作用是什么? [1].生产过程:原油-----常压蒸馏----常压渣油-----减压蒸馏-----残渣润滑油料-----精制-----润滑油基础油-----成品油调和工序-----成品润滑油。 [2].三个主要步骤:(1).精制提高粘度指数。(2).脱蜡以降低倾点。 (3).补充精制改善稳定性和色度。 [3].作用是为了得到所期望的产品性能,然后得到最大的基础油产率。 3.润滑油应具有的基本特点。 [1].良好的润滑作用。 [2].不会因机械工作使润滑油的理性发生不良变化。 [3].具有摩擦材料以及其他各种材料相适应的物理特性。 [4].起到密封作用,防治水和脏物进入。

[5].避免润滑表面上泄漏低落或发生不应有的甩出。 [6].在气温很低的情况下不会变的很硬,产生很大的摩擦阻力。 [7].能与橡胶密封以及在机械中被润滑部位的其它材料相适应。 [8].防腐蚀。 4影响润滑油氧化的原因是什么? (1)润滑油的化学组成以及这些组成的数量。 (2)温度条件。 (3)氧化时间。 (4)金属及其它物质的催化作用。 5.简述润滑油的主要作用。 (1)降低磨擦:在磨擦面加入润滑剂,能使磨擦系数降低,从而减少了磨擦阻力,节约了能源消耗。 (2)减少磨损:润滑剂在磨擦面间可以减少磨粒磨损、表面疲劳、粘着磨损等所造成的摩损。

微量润滑的特点

维克森(北京)科技有限公司 VICSEN(BEIJING)TECHNOLOGY CO.,LTD.设备润滑专家https://www.360docs.net/doc/0e3398949.html, 微量润滑的特点 微量润滑MQL技术融合了干式切削与传统湿式切削两者的优点:一方面,MQL将切削液的用量降低到极微量的程度,不仅显著降低切削液的使用成本,而且通过使用自然降解性高的合成酯类作为润滑剂,最大限度地降低了切削液对环境和人体的危害;另一方面,与干式切削相比,MQL由于引入了冷却润滑介质,使得切削过程的冷却润滑条件大大改善,刀具、工件和切屑之间的磨损显著减小,有助于降低切削力、切削温度和刀具的磨损。这种切削技术也称为半干式切削,在二十一世纪以绿色环保为主题的影响下有着很大前景。 具体优势及产生的效益如下: 经济效益 1、微量润滑装置取代冷却液润滑系统后,可以省去切削液回收装置; 2、使用极其少量的润滑油,形象的说,一个班按8小时计算,所消耗的油量约为一次性杯子大小; 3、提升进给量,提高了工件加工生产效率,加工时间缩短约20-70%; 4、延长刀具寿命2—3倍; 5、提高了加工工件的表面精度; 环境效益: 微量润滑装置取代冷却液润滑系统后,不再有废液的排放,符合国家提倡的节能、降耗、减排的要求,实现对环境的友好,再也不用为对环境不友好所引发的各种社会问题而担忧。 维克森(北京)科技有限公司是服务于中国工矿企业设备润滑领域的专业化公司。公司主要引进国外先进设备和仪器,共同服务于中国企业。公司致力于为国内企业提供专业化的设备润滑相关的产品和服务,帮助企业以高的性价比解决设备润滑方面的技术难题。 公司经营的产品包括各种集中润滑设备、微量润滑设备、润滑油检测仪器、润滑油净化设备等。 公司拥有国内权威的专家队伍和技术服务人员,国外的合作伙伴来自美国、德国、意大利、印度、韩国等多个国家。公司的产品在国内大中型企业用户中获得广泛好评。 公司拥有完善的客服机制,并已经与国内各行业的权威技术组织机构合作举办大型的技术交流会议,多次举办各类培训会议,经常为国内大型企业提供内部技术培训服务。 详情请见https://www.360docs.net/doc/0e3398949.html, 1

颗粒润滑界面的流态和润滑特性

[7] 石增强, 程洪杰,谢建,等.大型圆筒件超声检测系统的设计[J ].无损检测,2005,27(9):475-478. Shi Zen gq ian g ,Chen g Hon gj ie ,Xie Jian ,et al.De -si g n of Ultrasonic Testin g S y stem for Lar g e Scale Columnar Device [J ].Nondestructive Testin g ,2005,27(9):475-478. [8] 邓燕妮, 朱小进,刘涛.基于OMAP5910的超声检测系统[J ].仪表技术与传感器,2006(8):37-38. Den g Yanni ,Zhu Xiao j in ,Liu Tao.Ultrasonic Tes -tin g S y stem Based on OMAP5910[J ].Instrument Techni q ue and Sensor ,2006(8):37-38.[9] 毛保全,刘新亮,汪凡,等.基于ADAMS 和MAT -LAB 的遥控武器站机电联合仿真[J ].兵工自动 化,2011,30(8):27-30. Mao Bao q uan ,Liu Xinlian g ,Wan g Fan ,et al.Me -chanical -electronic Co -simulation for Remote Wea p - on Station Based on ADAMS and MATLAB [J ].Ordnance Industr y Automation ,2011,30(8):27- 30. (编辑 陈 勇) 作者简介:曾达幸,男,1978年生三燕山大学机械工程学院副教授三主要研究方向为并联机构学二机构构型综合及工程设计三发表论文30余篇三沈二强,男,1987年生三燕山大学机械工程学院硕士研究生三侯雨雷,男,1980年生三燕山大学机械工程学院副教授三邱雪松,女,1973年生三燕山大学机械工程学院讲师二 博士三刘佳启,男,1977年生三中国第一重型机械股份公司装备部工程师三姚建涛,男,1980年生三燕山大学机械工程学院副教授二博士三赵永生,男,1962年生三燕山大学机械工程学院教授二 博士研究生导师三周玉林(通信作者),男,1961年生三燕山大学机械工程学院教授二博士研究生导师三 颗粒润滑界面的流态和润滑特性 孟凡净 刘 焜 王 伟 合肥工业大学,合肥,230009 摘要:研究了在剪切平行板间(上平行板固定,下平行板定速滑动)颗粒流润滑的流态和摩擦因数变化问题三应用三体摩擦体系物理模型和二元碰撞假设理论建立了动量控制方程二滑移边值条件以及伪能量守恒控制方程二伪温度边值条件三根据建立的方程,应用数值方法详细分析了三体参数对剪切平行板间颗粒流润滑的伪温度二固体体积分数以及摩擦因数的影响三研究结果表明:颗粒在剪切平行板间的波动速度是伪温度二固体体积分数和摩擦因数曲线发生变化的直接因素三三体参数的改变会直接影响颗粒波动速度,从而使伪温度二固体体积分数和摩擦因数曲线发生改变三 关键词:颗粒流润滑;剪切平行板;固体体积分数;伪温度;摩擦因数 中图分类号:TH 117 DOI :10.3969/j . issn.1004-132X.2014.19.002Flow Pattern and Lubrication Features in Particulate Lubrication Interface Men g Fan j in g Liu Kun Wan g Wei Hefei Universit y of Technolo gy ,Hefei ,230009 Abstract :The flow p attern and friction coefficient of p articulate lubrication between sheared p arallel p lates ( the to p p late was fixed ,the bottom p late moved with fixed velocit y )were studied.The conservation of momentum ,sli p velocit y boundar y condition and the conservation of p seudo ener gy ,p seudo tem p erature boundar y conditions were established usin g the three bod y friction p h y sical model and the binar y collision h y -p othesis theor y .Accordin g to the e q uations ,the influences of the three -bod y p arameters on the p seudo tem -p erature ,solid volume fraction and friction coefficient were investi g ated usin g the numerical methods.The re -sults show that the fluctuation velocit y between sheared p arallel p lates is the direct factor for the chan g e of the p seudo tem p erature ,solid volume fraction and the friction coefficient curves.The chan g e of the three -bod y p arameters can directl y influence the fluctuation velocit y ,thus chan g e the p seudo tem p erature ,solid volume fraction and the friction coefficient curves. Ke y words :p articulate lubrication ;sheared p arallel p late ;solid volume fraction ;p seudo tem p era -ture ;friction coefficient 0 引言 集成高性能的蜗轮发动机要求能够在非常高 的温度和速度下正常工作,然而,液体润滑剂在高 收稿日期:2013 05 15 基金项目:国家自然科学基金资助项目(51175136,51005067) 温下基本上丧失了润滑功能[ 1] 三为了解决该问题,在润滑领域内新的设计方法应该满足严苛的 控制条件要求三Heshmat 等[2] 通过推力轴承的 颗粒流润滑实验首次提出了有效的解决方案,发现颗粒流润滑可以产生熟悉的类流体动力学的压 力曲线,称之为类流体动力学润滑压力曲线,并且 四 2652四中国机械工程第25卷第19期2014年10月上半月

相关文档
最新文档