2013年全国研究生数学建模竞赛A题

合集下载

2013年研究生数模竞赛一等奖A题武汉大学10486012队

2013年研究生数模竞赛一等奖A题武汉大学10486012队
表 4.1 变循环发动机两种工作模式 工作模式 单涵(涡喷) 双涵(涡扇) 模式转换活门 关 开 前混合器 开口小 开口大 后混合器 开口小 开口大 核心机负荷 较重 较轻 优势 高推力 低油耗
4.2 对问题一的分析 对于问题一 (1) , 要求画出风扇特性数据表中流量随压比函数值变化的图形 ,附录 4 中给定了九组不同换算转速下的增压比、流量和效率数据。根据附录 3 中对压气机压比函数值 zz 的定义, 即
参赛密码 (由组委会填写)
第十届华为杯全国研究生数学建模竞赛


武汉大学 10486012 1. 位明露 胡在凰 束远明
参赛队号 队员姓名 2. 3.
参赛密码 (由组委会填写)
第十届华为杯全国研究生数学建模竞赛
题 目
基于部件法的变循环发动机建模法

要:
本文采用部件级建模法精确模拟发动机的各个部件,依据各部件匹配工作时 的 7 个平衡方程,对发动机的性能进行模拟。 针对问题一,为了求解风扇和 CDFS 的出口总温、总压和流量,建立模型对 这两个部件的特性进行精确模拟,利用给定的发动机飞行高度和飞行马赫数,求 解出风扇的出口总温、总压、流量分别为 379.4985、1.3087、19.0483,CDFS 的 出口总温、总压、流量分别为 420.5365、1.8012、17.164。分析得出,气流在进 入风扇和 CDFS 两个压气机部件至流出过程中,总温、总压增大,而气体从风扇 流入到 CDFS 的过程中,总温、总压亦增大,流量减小。此结论符合压气机压缩 气体导致温度升高、压强增大、流量减小的功能特点。 针对问题二,根据发动机整机模型,由七个参数值可计算出平衡残差量。以 平衡残差量最小为原则,对离散化的待估参数进行变域、变步长的搜索,根据当 前的最优解与次优解确定下一步的搜索域与搜索步长,逐步缩小搜索范围、减小 搜索步长,搜索的终止条件设为: (1)高压转速、压比函数值的搜索步长减小至 0.01,主燃烧室出口温度的搜索步长减小至 10; (2)最优解与次优解相同。搜 索的终止条件保证了解的精度与收敛性。依此算法搜索得到高压转速、压比函数 值(风扇、CDFS、高压压气机、高压涡轮、低压涡轮) 、主燃烧室出口温度的最 优解分别为 1.00,0.33,0.43,0.53,0.14,0.12,1520 ,此时平衡方程残差量为 0.2550。 逐步搜索过程中参数的解与平衡方程的残差趋于固定值,参数的解为模 型的收敛解。 针对问题三(1) ,为了保证发动机性能最优,求解 CDFS 导叶角度、低压涡 轮导叶角度和喷管喉道面积 3 个变量,实质上是一个优化的问题。本文建立优化 模型,采用单位推力和耗油率的线性组合构建一个新的性能评价指标 ˆ 。( 、 为比例系数) ˆ sfc A 1Fs ,以其最小值作为目标函数,同时借鉴 1 2 2

2013全国数模竞赛A题优秀论文祥解

2013全国数模竞赛A题优秀论文祥解

2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要本文主要研究车道被占用对城市道路通行能力的影响并建立了相应的数学模型。

针对问题一,考虑到交通信号灯的周期,我们选择1分钟为周期,结合不同车辆的标准车当量的折算系数,求出每个采样点的交通量,通过MATLAB作图,从定性方面对道路通行能力进行分析,然后通过基本通行能力和4个修正系数建立动态通行能力的模型。

图像显示,事故发生后(采样点5附近),实际通行能力下降至一个较低水平,并且横断面处的实际能力变化过程呈先下后上的波形变化,在事故解决(第20个采样点)以后,由图像看出实际通行能力持续上升。

针对问题二,利用问题一建立的模型,结合视频二,比较交通事故所占不同车道时横断面的实际通行能力,可以发现二者实际通行能力变化趋势大致相同,但视频二实际通行能力大于视频一实际通行能力。

可见占用车流量大的车道使道路通行能力降低更多。

针对问题三,首先我们建立单车道排队车辆数目的积分模型,单个车道的滞留车辆为上游车流量和实际通行能力的差值。

我们以30s为一个时间段,对视频一中的车流量进行统计,得到横截面处每个监测段的实际通行能力。

本题要求考虑三车道,总体排队长度不容易通过积分模型确定,所以我们将队列长度问题转化为车辆数目问题,通过视频资料统计120米对应24辆车,据此关系转换,从而得到车辆排队长度与事故横断面实际通行能力、事故持续时间和上游车流量的关系。

针对问题四,在对问题3研究的基础上,根据问题3建立的数学模型,建立起某一段时间间隔车辆排队的长度,然后,通过求得的关系得到当排队长度为140m的时候所对应的时间段,由于每段时间间隔设为30s,因此,可以求得排队长度到达上游时用的时间为347.7273s。

关键词:交通事故车道占用通行能力排队论一、问题的重述车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。

2013全国数学建模竞赛题目A-B

2013全国数学建模竞赛题目A-B

2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题车道被占用对城市道路通行能力的影响车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。

由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。

如处理不当,甚至出现区域性拥堵。

车道被占用的情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。

视频1(附件1)和视频2(附件2)中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道。

请研究以下问题:1.根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。

2.根据问题1所得结论,结合视频2(附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异。

3.构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。

4.假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离。

请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口。

附件1:视频1附件2:视频2附件3:视频1中交通事故位置示意图附件4:上游路口交通组织方案图附件5:上游路口信号配时方案图注:只考虑四轮及以上机动车、电瓶车的交通流量,且换算成标准车当量数。

附件3视频1中交通事故位置示意图附件4附件5上游路口信号配时方案本题附件1、2的数据量较大,请竞赛开始后从竞赛合作网站“中国大学生在线”网站下载:试题专题页面:/service/jianmo/index.shtml试题下载地址:/service/jianmo/sxjmtmhb/2013/0525/969401.shtml2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题碎纸片的拼接复原破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

2013数学建模A题论文

2013数学建模A题论文

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):28009所属学校(请填写完整的全名):哈尔金融学院参赛队员(打印并签名) :1. 崔致顺2. 王宁3. 王俊雷指导教师或指导教师组负责人(打印并签名):王琳(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期:2013年 9 月 16日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):A车道占用对通行能力影响的研究摘要:估算车道被占用对城市道路通行能力的影响程度。

针对问题一,观测视频1中交通事故从发生至撤离期间通过道路横断面的车辆数,以横断面基本通行能力为基础,考虑影响通行能力的修正系数,建立道路实际通行能力模型,分析出其变化过程。

2013CUMCM—A题

2013CUMCM—A题

数据文件
• 视频1(附件1)和视频2(附件2)中的两 个交通事故处于同一路段的同一横断面, 且完全占用两条车道。 • 视频1A\2013高教社杯全国大学生数学建模 竞赛A题附件(视频文件一) 标清.flv • 视频2A\2013高教社杯全国大学生数学建模 竞赛A题附件(视频文件二) 标清.flv
建模问题
利用速度计算实际通行能力
• 计算公式: C
l0 l1 l2 l3 l4 l5
b

1000 l0
v 其中,l1 反应距离,取反应时间 为1秒,l1 3.6 l4 安全距离,取为5米 l5 车身长度,取为 5米; v2 l2 制动距离,l2上某一点某一车道或 某一断面处,单位时间内可能通过的最大交 通实体(车辆或行人)数,亦称道路通行能 力,用辆/h或用辆/昼夜或辆/秒表示,车辆多 指小汽车,当有其它车辆混入时,均采用等
效通行能力的当量标准车辆ssenger Car Unit)---标准车当量数(pcu)
附件三、视频1中交通事故位置示意图
从附件三中可以提取的信息
• 1、事故路段分三个车道,事故发生位置在 中段车道1、2 • 2、三个车道(左转、直行、右转)的车流 量比(%) • 3、事故路段上游有三个路口:1个主要红 绿灯控制的路口、两个小区路口
附件四:上游路口交通组织方案图
附件四所提供的信息
两个视频中通行能力差异的解释
• 直行、左转、右转的比例不同:从2、3车道转入1 车道与从1、2车道转入3车道的比例差异较大; • 视频1中每分钟有16.31辆车从车道二和车道三转 到车道一行驶,视频2中每分钟有14.21辆车需要 从车道一和车道二转到车道三行驶。车辆在变道 行驶过程中需要额外消耗一些时间,当有车辆排 队时这样的变道所导致的延迟更严重; • 两条车道的行车速度不同,内侧车道速度高; • 摩托车等都从外侧车道通过; • 右转车辆不受红绿灯的影响,外侧车道加入的车 辆多; • 公交车经常在外面车道行驶,需要经常停靠站点

2013年全国数学建模竞赛A题

2013年全国数学建模竞赛A题

2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2013 年月日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号)车道被占用对城市道路通行能力的影响摘要道路堵塞时车辆排队长度和排队持续时间时交通管理与控制部门制定和实施管理控制措施的重要依据,对道路堵塞时车辆排队和排队时间计算方法进行研究具有重要的实际意义和应用价值。

本文以交通事故为例讨论车道被占用对城市道路通行能力的影响,从而对交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设计路边停车位等问题提供理论依据。

2013数学建模A题问题一解析

2013数学建模A题问题一解析

2013数学建模A题问题一解析作者:徐小玲杨玉娥贾雅伟王生锋来源:《中小企业管理与科技·下旬刊》2014年第12期摘要:以2013全国大学生数学建模A题为基础,对问题一给出了详细解答,最后对问题一的答题要点进行了详尽地分析。

关键词:城市道路通行能力 ;插值和多项式拟合 ;车流量近年来,城市中交通事故频繁发生,车道被占用致使交通堵塞更是司空见惯,交通问题已成为困扰世界各大城市的主要社会热点问题。

本文对于2013数学建模中的问题一进行了详细的解答,记录并分析视频1发生事故至事故撤离期间事故所处横断面距离上游路口为120m 时,不同时刻的堵塞车辆数,使用EXCEL处理统计数据,然后运用MATLAB拟合出在事故发生至事故撤离期间上述情形下的堵塞车辆数变化趋势图像,从而确定实际通行能力的变化趋势。

1 预备知识1.1 问题背景资料与条件由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。

如处理不当,甚至出现区域性拥堵,影响城市车辆区域通行能力。

车道占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面(垂直于线路轴线的断面)通行能力在单位时间内降低的现象。

1.2 问题的重要性分析近年来,城市中交通事故频繁发生,车道被占用致使交通堵塞更是司空见惯,交通问题已成为困扰世界各大城市的主要社会问题之一。

正确估算车道被占用对城市道路通行能力的影响程度,将为交通部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。

2 问题一的基本建模与求解记录视频1在事故发生至事故撤离期间城市车辆在一定横断面、一定时间内的车辆堵塞数量,通过对记录数据进行理论统计与分析后,得出在事故所处横断面城市车辆的实际通行能力[1],得出一定的变化过程。

表1 ;采用标准小汽车当量数计算车型折算系数及其车辆数表■标准车当量数:M=■AiBi(i=1,2…)(1)2.1 视频1中采集数据周期1min时事故所处横断面车辆通过能力根据表1和公式(1),采集数据周期1min时,记录统计视频一中每一个数据周期事故所处横断面距离上游路口为120m的标准堵塞车辆数,然后运用Excel统计整理数据得表2。

2013高教社杯全国大学生数学建模竞赛A题

2013高教社杯全国大学生数学建模竞赛A题

2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话): &&& 所属学校(请填写完整的全名):东北电力大学参赛队员 (打印并签名) :1. 吴泽伟楚鑫指导教师或指导教师组负责人 (打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2013 年 9 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要在现代这个交通拥挤非常严重的时代,突发的交通事故更是加剧了交通拥挤的程度,严重影响道路交通的运行效率。

确定交通事故影响范围及其对道路交通通行能力的影响程度,对于交通管理部门制定合理、有效的拥挤疏导措施具有非常重要意义。

针对这个问题,我们可以在做出合理假设的基础上,通过对附件中的视频数据进行分析归纳,综合考虑交通事故对道路通行能力的影响因素,并将各因素之间的关系进行分析总结,以期能够解决实际问题1、根据视频1(附件1),观察交通事故发生后车辆通过事故横断面的实际车流量随着时间变化的情况,进行数据的收集;结合交通信号灯的变化,利用MA TLAB对视频数据进行处理,实现道路实际通行能力的图像以及函数拟合,进而描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。

2013高教社杯全国大学生数学建模竞赛A题

2013高教社杯全国大学生数学建模竞赛A题

2013高教社杯全国大学生数学建模竞赛A题2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》。

我们完全明白,在竞赛开始后参赛队员不能以任何方式与队外的任何人研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料,必须按照规定的面的车辆数。

实际通行车流量的采集与处理视频1中出现车辆多种多样,要统计车流量数据,需先统一车流标准,把视频中出现的车辆进行折算,以小轿车做为标准,对各个型号车辆进行折算[2],折算系数如表1所示。

表1 车辆折算系数附件中出现汽车小轿车中型车大客车车辆折算系数在事故发生前,道路的通行能力足以应对上游车流量,当发生事故时,事故点上游共有10辆小轿车与5辆大客车,车流量为20pcu。

之后一分钟(16:42:32-16:43:32),上游又有车流量21pcu,但只通过了21pcu,说明造成了交通拥堵和排队情况。

“附件5”可知,相位时间为30s,红灯时间为30s,即60s为一个周期,进行统计时间周期也为60s,不会造成因交通灯引起的误差。

实际通行流量是指折算后通过事故横断面的车流,上游车流量是指折算后从各个路口驶入事故横断面的车流。

对附件1中事故横断面处的车流量进行统计,得出实际通行车流量情况,并统计横断面上游的车流量,在统计过程中发现视频并不是完全连续的,例如在16:49:40时出现了突变,直接到16:50:04,跳跃间隔为24s,但于堵车情况较重,可以根据车流量守恒原则和车辆追踪,统计出通过横断面处的车流量及上游车流量。

但16:56:04等时间,跳跃时间较长,近2分钟,无法精确统计,如表2处“空缺”所示。

在17:00:07到17:01:20时视频发生跳变,在此期间事故车辆驶离道路,之后为事故恢复时间。

为了描述事故发生开始到车辆离开车道全程的实际通行能力变化情况,将视频中空缺数据通过灰色预测(程序见附录)进行填补,结果如表2所示。

2013年全国大学生数学建模竞赛A题:车辆排队长度与事故持续时间、道路实际通行能力、路段上流流量间的关系

2013年全国大学生数学建模竞赛A题:车辆排队长度与事故持续时间、道路实际通行能力、路段上流流量间的关系

道路上不断增加的交通流经常导致拥挤。

拥挤产生延误、降低流率、带来燃油损耗和负面的环境影响。

为了提高道路系统的效率,国内外许多研究者一直致力于车流运行模型的研究。

Daganzo[1]提出了一种和流体力学LWR 模型相一致的元胞传输模型,这种模型能用来模拟和预测交通流的时空演化,包括暂时的现象,如排队的形成、传播、和消散。

Heydecker 和Addison[2]通过研究车速和密度的因果关系分析和模拟了在变化的车速限制下的交通流。

Jennifer 和Sallissou[3]提出了一种混合宏观模型有效地描述了路网的交通流。

然而,拥挤也会由交通异常事件引起。

交通异常事件定义为影响道路通行能力的意外事件[4],如交通事故、车辆抛锚、落物、短期施工等,从广义角度看,还应包括恶劣天气与特殊勤务等。

异常事件往往造成局部车道阻塞或关闭,形成交通瓶颈,引起偶发性拥挤,这已经逐渐成为高速道路交通拥挤的主要原因[5],越来越多地受到研究者们的重视。

例如M. Baykal-Gursoy[6]等人提出了成批服务受干扰下的稳态M/M/c 排队系统模拟了发生异常事件的道路路段的交通流。

Chung[7]依据韩国高速公路系统监测的准确记录的大型交通事故数据库提出了一种事故持续时间预测模型。

当然,这些研究最终都是为了帮助缓解异常事件引起的交通拥挤。

交通异常事件发生后,事发地段通行能力减小,当交通需求大于事发段剩余通行能力时,车辆排队,产生延误,行程时间增加[8],交通流量发生变化。

本文以高速公路基本路段发生交通事故为例,主要分析了交通事故发生后不同时间段内事故点及其上游下游路段交通流量的变化,用于以后进一步的突发事件下交通流预测工作。

1 交通事故影响时间分析由于从交通事故发生到检测到事故、接警、事故现场勘测、处理、清理事故现场恢复交通,以及恢复交通后车辆排队不再增加都需要一定的时间。

这部分时间主要由三部分构成: 第一部分是事故发生到警察到达现场的时间T1; 第二部分是交通事故现场处理时间T2,由现场勘测、处理到事故族除、恢复交通; 第三部分是交通事故持续影响时间T3,这部分时间从恢复事故现场交通开始,到事故上游车辆排队不再增加,即排队开始减弱[9]。

2013全国数学建模A题优秀作品

2013全国数学建模A题优秀作品

第六届“认证杯”数学中国数学建模网络挑战赛承诺书我们仔细阅读了第六届“认证杯”数学中国数学建模网络挑战赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们允许数学中国网站()公布论文,以供网友之间学习交流,数学中国网站以非商业目的的论文交流不需要提前取得我们的同意。

我们的参赛队号为:2261参赛队员(签名) :队员1:张述平队员2:魏方征队员3:乔赛参赛队教练员(签名):参赛队伍组别:2261第六届“认证杯”数学中国数学建模网络挑战赛编号专用页参赛队伍的参赛队号:2261竞赛统一编号(由竞赛组委会送至评委团前编号):竞赛评阅编号(由竞赛评委团评阅前进行编号):2013年第六届“认证杯”数学中国数学建模网络挑战赛题目护岸框架减速效果的优化方案关键词护岸框架减速效果单因素方差分析最小二乘拟合回归分析摘要:四面六边透水框架是一种新型江河护岸工程技术,对于降低岸边流速、稳定河道、保护堤岸有显著的作用。

本文针对所引用参考文献中的图像、数据,从四面六边透水框架群框架尺寸、架空率和长度三方面出发,对框架群的水力特性及其影响因素进行分析,探讨三要素对减速效果的影响,建立三个模型,为这种“亲水”式生态防护技术在工程中推广运用提供参考依据。

模型一:架空率对减速效果影响的分析。

首先,利用单因素方差分析,推断出架空率对减速效果的影响较显著;其次,采取最小二乘法拟合曲线具体演示二者的发展趋势,并得到关系模型,依照此模型得出架空率对减速效果影响显著。

得出框架率ε=4.2~4.8 之间时,框架群的减速率比较高,能够使得框架群的阻水消能作用和“亲水”功能较好的结合起来。

2013数学建模A题论文

2013数学建模A题论文

2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):指导组(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2013 年 9 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要本文研究的是估算当车道被占用时对城市道路的通行能力影响程度,并且通过本次研究分析为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和非港湾式公交车站等提供理论依据。

2013数学建模A题问题一解析共5页文档

2013数学建模A题问题一解析共5页文档

2013数学建模A题问题一解析近年来,城市中交通事故频繁发生,车道被占用致使交通堵塞更是司空见惯,交通问题已成为困扰世界各大城市的主要社会热点问题。

本文对于2013数学建模中的问题一进行了详细的解答,记录并分析视频1发生事故至事故撤离期间事故所处横断面距离上游路口为120m时,不同时刻的堵塞车辆数,使用EXCEL处理统计数据,然后运用MATLAB拟合出在事故发生至事故撤离期间上述情形下的堵塞车辆数变化趋势图像,从而确定实际通行能力的变化趋势。

1 预备知识1.1 问题背景资料与条件由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。

如处理不当,甚至出现区域性拥堵,影响城市车辆区域通行能力。

车道占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面(垂直于线路轴线的断面)通行能力在单位时间内降低的现象。

1.2 问题的重要性分析近年来,城市中交通事故频繁发生,车道被占用致使交通堵塞更是司空见惯,交通问题已成为困扰世界各大城市的主要社会问题之一。

正确估算车道被占用对城市道路通行能力的影响程度,将为交通部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。

2 问题一的基本建模与求解记录视频1在事故发生至事故撤离期间城市车辆在一定横断面、一定时间内的车辆堵塞数量,通过对记录数据进行理论统计与分析后,得出在事故所处横断面城市车辆的实际通行能力[1],得出一定的变化过程。

表1 采用标准小汽车当量数计算车型折算系数及其车辆数表标准车当量数:M=■AiBi(i=1,2…)(1)2.1 视频1中采集数据周期1min时事故所处横断面车辆通过能力根据表1和公式(1),采集数据周期1min时,记录统计视频一中每一个数据周期事故所处横断面距离上游路口为120m的标准堵塞车辆数,然后运用Excel统计整理数据得表2。

2013数学建模a题

2013数学建模a题

2013数学建模a题1. 差分方程的平衡点是 [单选题] *0 123(正确答案)2. 上题中的平衡点是 [单选题] *稳定的(正确答案)不稳定的3. 是 [单选题] *2阶齐次差分方程1阶非齐次差分方程线性非齐次差分方程(正确答案)非线性差分方程4. 蛛网模型的基本假设是供需平衡 [单选题] *对(正确答案)错5. 一般情况下,需求量会随市场价格升高而 [单选题] *升高降低(正确答案)不变6. 正常经济形势下,下列说法正确的是 [单选题] *价格变化会滞后于需求量产量变化会滞后于价格(正确答案)价格变化会滞后于产量需求量变化会滞后于价格7. 关于线性规划模型,下列说法正确的是 [单选题] *仅目标函数是线性函数仅约束条件中的表达式是线性函数目标函数与约束条件均为线性表达式(正确答案)8. 关于整数规划,下列说法正确的是 [单选题] *至少有一个决策变量是整数值(正确答案)变量的系数是整数值所有决策变量是整数值9. 关于线性规划的解,下列说法正确的是 [单选题] *必有最优解最优解是唯一的可行解是唯一的可行域是凸集(正确答案)10. 线性规划的最优解是 [单选题] *(0,0)(正确答(1,1)(2,0)(0,2)案)11. Excel已经加载规划求解工具时,它会出现在哪个选项卡下? [单选题] *文件开始视图数据(正确答案)12. 规划求解对话框中,和模型中“决策变量”相对应的是 [填空题] *_________________________________(答案:可变单元格)13. Excel公式:“=SUMPRODUCT({1,2,1},{-1,1,-1})"的运算结果是 [单选题] *-1 0(正确答案)1214. 在Excel规划求解框中添加约束时,"dif"值的含义是 [单选题] *差值差分值互异值(正确答案)二进制值15. 关于二次规划,下列说法正确的是 *属于非线性规划(正确答案)约束条件中含有二次函数目标函数中含有二次函数(正确答案)约束条件是非线性的16. Lingo中,集合段的起始语句是 [单选题] *set: data:(正确答案)sets:end:17. Lingo中,函数的标识符是 [单选题] *# &$@(正确答案)18. Lingo中,逻辑运算符的标识是 [单选题] *#(正确答案)&$@19. Lingo中,语句末尾的符号是 [单选题] *, !;(正确答案))20. 关于Lingo,下列说法正确的是 *不能求解非线性规划程序第一句必须是model:限定0-1变量要用@bin(正确答案)限定整数变量要用@int。

2013高教社杯全国大学生数学建模竞赛A题论文

2013高教社杯全国大学生数学建模竞赛A题论文

2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):吉林医药学院参赛队员(打印并签名) :1. 于邦文2. 薛盈军3. 杨国庆指导教师或指导教师组负责人(打印并签名):霍俊爽(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要本文通过对城市中车道因交通事故被占用问题的分析,探讨了事故所处道路横断面的实际通行能力的变化过程,并依据事故路段车辆排队长度与实际通行能力、事故持续时间、路段上游车辆流量之间的关系,最后针对各个问题建立模型并求解。

2013国赛A题全国一等奖论文(英文版)

2013国赛A题全国一等奖论文(英文版)

Effect of Lane Occupied on Traffic CapacityAbstract:The article aims at the problem how the lane occupation affects the traffic capacity. By the means of wavelet analysis and time series analysis method, we study on the periodicity and stability of the actual capacity which varies with time going. Meanwhile, we get the expression of the vehicle equivalent queue length based on the Two Fluid Theory.For the question 1: Firstly, considering that the number of vehicles which arrive at the cross-section in the accident obeying periodical distribution, we choose the beginning of green signal time as a starting point and calculate the traffic density every 15 seconds at the cross-section. (Average traffic density within the range from the accident site to the point 120 meters away instead). Secondly, according to the relationship among the three parameters of the traffic flow, we get saturated traffic flow at each time, which represents the actual traffic capacity at the moment that the accident happened. Finally, we analyze the periodicity and stability of the actual traffic capacity by utilizing wavelet analysis and SAS software tools, which result in the conclusion that the actual capacity decays periodically and transits from a stable state to another one.For the question 2: We obtain the actual capacity at the same cross-section when different kinds of accidents happen in video 2. Through the analysis, it is easy to find that both variation laws are basically the same, and the stable value is also basically the same, but the latter decays faster than the former. Therefore, we establish explicit equation about the real traffic capacity and draw the following conclusion: When the road capacity is not saturated, the outer one of lanes blocked by the accident has the greater influence on the actual traffic capacity than the inner one but the influence will disappear when the road cannot bear more cars.For the question 3: we can introduce the concept of the equivalent queue length to deal with the real line length which may be quite complicated. And then we classify all the vehicle running states into two equivalently based on the Two Fluid Theory. This processing method helps us achieve the expression of the equivalent queue length. Here we list the expression '00()()()()t t o o m j m N q t dt W t dt k LM L t M k k +--=-⎰⎰. At last we examine our model by the means of thethat the model we established can preliminarily explain the relationship amongst the four parameters.For the question 4: We put the data into the expression in question 3. And then we get that the vehicle queue length will reach the upstream intersection after 3.34 minutes.Keywords:Wavelet Analysis, Time Series Analysis, Computer Simulation, the Two Fluid Theory, the Equivalent Queue Length.ContentEffect of Lane Occupied on Traffic Capacity (1)Abstract: (1)1. Description of the Problem (3)2. Assumptions (3)3. Definition (3)3.1 Description of symbols (3)3.2 Definition of terms (4)4. Primary Analysis (4)5. Preparations for the model (5)5.1 Determining the cross section of the actual traffic capacity (5)5.2 Basic relationships of three traffic flow parameters (6)6. Foundation and solution of model (6)6.2 Establishing and solving of the model for problem two (10)6.3 Establishment and solution to the model of Question 3 (13)6.4Establishment and Solution of the Model for the Forth Question .. 187. Model Test (19)8 Advantages and Disadvantages of the model (19)9. Reference (20)Appendix (21)1. Description of the ProblemThe phenomenon of lane occupied will lead to lower lane or cross section traffic capacity. A city’s traf fic flow could have large road density and strong continuity, which will reduce the road capacity even if only one lane is occupied. Even though the time is short, it may also cause a queue of vehicles even a traffic jam. And if handled inappropriately, it will lead to emergent regional congestion.The variety of lane occupied is complicated though, it will properly offer the theory basis for the traffic management if we are able to estimate the impact of lane occupied on the road traffic capacity our city.According to the different situation where one or two lanes are blocked shown in the video 1 and video 2, you need to solve the questions below.1: Describe the changing process of the actual capacity at the cross-section during period from traffic accident happens to the end.2: Explain the difference when one or two lane is occupied based on the conclusion drawn from the question 1and the video 2.3: Construct a mathematical model to analyze the relationship among vehicle queue length, lane traffic capacity, the ongoing time of the accident and the upstream traffic flow.4: Try to estimate the duration from the beginning of the accident to the moment the queue line reaches the upstream junction. Assuming that the distance between the traffic accident site and the junction becomes 140 meters, the downstream flow demand is unchanged, road traffic upstream flow is 1500pcu / h, the initial queue length is zero when accident happens and the accident lasts for enough long time.2. AssumptionsThe event that vehicles arrived at the accident site is independent.The standard car equivalent number through the upstream cross-sectional obeys the Poisson Distribution.Ignoring the influence on the actual traffic flow statistics which arises from non-standard vehicle on the road;The vehicles reach into the section where the accident happens at a constant speed.3. Definition3.1 Description of symbols3.2 Definition of terms1. The basic capacity W: the maximum number of standard vehicles which pass through cross-sectional lane during the unit time at the situation where road, traffic and environment are ideal.2. The saturation capacity Q: the maximum number of standard vehicles which pass through cross-sectional lane during the unit time at the situation where road, traffic and environment are ideal and traffic flow is continuous.3. Chain block: referring to the situation where the next cyclical vehicles arrive before the former vehicles entirely pass the accident site.4. Primary AnalysisThis problem is a comprehensive problem, including the changes of the actual capacity at the cross-section, the influence of different lanes occupied, the queue length on the road and the relationship among them. It may involve the Poisson Distribution, the Computer Simulations and other knowledge.Firstly, we need to extract and process the data. After researching the video 1 and video 2, we record the actual number of vehicles through the accident site before, during and after car the accident. And then we convert it into the standard vehicle equivalent number.Question 1 is to describe the changing process of the actual traffic capacity in the accident cross-section during the car accident. The key to solve the question is how todetermine the dynamic process of the vehicle flow. After analysis, we find that the actual road traffic capacity can be valued by referring to the correlation about the traffic flow, vehicle speed and the traffic density. In such way, we can draw a diagram to vividly illustrate the dynamic changing process of the flow.Question 2 is a problem that aims at comparing the difference. Firstly, we need to draw the graphs respectively about the flow density at the two different situations. And then we can tell the similarities and differences between the two cases. Secondly, We need to find the reason causing this phenomenon. Through the analysis, we should divide the blockage into two steps from the moment accident happens to evacuates, which are chain blockage and partial blockage. During the chain blockage, in video 1W o is a constant value the same in video 2. However, it’s complicated in partial blockage. Finally, we build a function model using the vehicle flow proportional coefficient as variable. Obviously we can obtain the different influence on actual traffic capacity as a result of different occupied lanes.For the question 4: It’s vital for us to build an expression about the equivalent queue length and time. According to the analysis of question 3, what we need is just make some appreciate changes for model of question 3. Then we can get the answer of question 4.For the modified model, we analyze the value of each parameter and ultimately solve the equation based on the assumption of the title. The final solution is the unknown quantity t. Finally, we tested the rationality and validity of the model by comparing the actual recorded data with the data of theoretical analysis.5. Preparations for the model5.1 Determining the cross section of the actual traffic capacityConsidering the actual traffic flow, the road is controlled by the traffic light at the upstream intersection. If vehicles are released by the first phase stopped by the second phase, we can see the road’s traffic appears as cyclical trends. Besides both the time of first and second phase are 30 seconds, therefore 30 seconds can be taken as a time interval. Through the analysis of video 1 and 2, we recorded every 30s of actual traffic volume to obtain the relevant data traffic from two minutes before accident happened to two minutes after accident withdrawing. Due to different vehicles having different effects on the ability of W and Q,we introduce standard car equivalent number C. namely the vehicles which are the four-wheeled vehicles and more vehicles or electric vehicles amount to equivalent vehicles. Specific data tables are in Appendix 1 1-1. Conversation coefficients [ 2 ] is shown in Table 1.Table 1 the traffic investigation vehicle type and vehicle conversion coefficient5.2 Basic relationships of three traffic flow parametersAccording to Green Hilts flow density model, the relation between the parameters of the model provisions comply with the following formula, we can see:Q VK =... (1)According to Green Hilts speed density model , we can see:(1)f fk V V k =- (2) According to Green Hilts flow density relationship model, we can see:(1)f fk Q kV k =-…………(3) The expression (3) shows the average flow rate and an average density of a quadratic function.6. Foundation and solution of modelIn view of question 1, we are asked to build a model to describe the changing process of actual capacity from the time that the accident happens to evacuation. Apparently, this question is a dynamic analysis problem. First we need draw a picture to describe the changing process visually. Then we can use Matlab and SAS software to analyze qualitatively the periodicity of the actual capacity change process and the stability of the stability of time series.(1) Method to find the actual capacity:Step 1: The Extraction of raw data In the Video 1, we record a value of the traffic density every 15 minutes from the time that green signal just bright to the evacuation of the accident. Generally speaking, it’s thought that vehicles which are below 120 meters away from the accident site will be influenced and meanwhile the average velocity of vehicles with this range approximately is equal to the speed of vehicles in the accident site. For simplifying the model, it’s reasonable to think the average traffic flow density as the traffic flow density in the accident site. Step 2: Formula for Solving the Actual CapacityWhen the upstream intersection can provide unlimited traffic , the value of Q in the formula ( 3) can be considered as the actual capacity under different speed.In accordance with the relevant literature [1],when the actual traffic flow density is greater than half of the blocking traffic density, it can also be thought that road is congested, otherwise road is in a smooth state. This can be described byk (1),k 2k ,k 42j j f j j f j k k V k W k V ⎧->⎪⎪=⎨⎪<⎪⎩ (4) Step 3: Estimation of values tor j k and f VIn order to facilitate the calculation below, we estimate the best traffic flow density at the same.Calculations of values for j k and f V :According to the traffic flow theory [6], the relationship between traffic density and flow can be described with many models. We use the classical inverted U-shaped model to go on a qualitative description of the position where j kappears.Figure 1 is an inverted U-shaped flow-density diagram:Figure1 Inverted U-shaped flow —Schematic density relationshipFigure 1 shows that j k is the maximum density when the velocity of the traffic obstruction is 0;m k is traffic density when road traffic flow reaches the maximum density. According to the related literature and requirements of road vehicle safetydistance, j k and m k are related to road conditions, the driver’s literacy and other factors, so in practice the two values should be calibrated according to survey data at the road section. Here, we take the data in Video 1 as standard value. Through observation, we can find that before the traffic accident, the road traffic flow density corresponding to the traffic flow is the optical traffic flow density with its value being 48.45,that is to say, m k =48.45 .After the traffic accident, the traffic jam will appear at the cross-sectional area of the accident. We identify several time points of the most serious blockage and calculate the traffic density corresponding to the time point, of which the average value is 287.5, that is to say,j k =287.5.m k and j k here are the sum of the traffic flow density of three lanes,j k and m k are determined by a weighted average of traffic flow density ratio of the downstream direction. Calculating the value of f V : During the time when accident has not happened, weselect multiple free vehicles and calculate the time of driving by using the following formula:1n i f i i S V t ==∑(5)Where:i S is the journey that the first I vehicle travelled. i t is the time that the first I vehicle spent.At this time, the actual capacity is obtained. The specific values have been givenin Schedule 1 to 3of Appendix 1. The waveform is shown in Figure 2.Figure 2 accident cross-sectional actual capacity changes over time graph in Video 1To the next, we made up a Matlab program in order to go on the periodical analysis of wavelet data. Taking the characteristic of the actual data into account, we choose db4 wavelet function to decompose the data signal into 10 layers, then we reconstruct 1 to 10 layers detail signal.Therefore, we get the second layer detail signal d2, as shown in Figure 3 (The program is shown in program2-1 of Appendix 2):Figure 3 Trend of the detail signal of the actual capacityFrom Figure 3, we can find that the actual capacity shows a trend of cyclical fluctuation.Next, we get the autocorrelation function diagram of the actual capacity by using SAS software to analyze the stability of the data, which is shown in Figure 4:Figure 4 The autocorrelation function diagram of the actual capacity According to the knowledge of time series theory, it is clear that this time series has the stability [5] if the autocorrelation coefficient of a time series whose expectation is zero shows the tendency of rapid attenuation to the range within the double standard deviation. Analyzing Figure 4, we can find that the autocorrelation coefficients are within the range of two times of the standard deviation. Therefore the trends of road capacity can be considered as stable.With comprehensive analysis of Figure 2, Figure 3 and Figure 4, the following conclusions can be drawn:Before the accident, namely it is 16:40:15—16:41:45, the actualcapacityW shows periodic fluctuation. By further analysis, we find that the oroad is open before the accident. So the actual road capacity is mainlycontrolled by traffic lights. In the second phase, vehicles from the upstreamare prohibited. It can be seen that these vehicles which pass by the pointwhere an accident happens mainly comes from vehicles of the first phase inthe previous stage, so the value of o W is smaller. However in the secondphase, vehicles from the upstream part start to move forward. Due to themore vehicle sources, capacity gets even bigger here. From what has beendiscussed above, the changing trend of actual traffic is periodic.During the accident, it is f16:42:30—16:55:30 (corresponding to [4,25] of xaxis in Figure 1),we can find that the actual capacity decreases over time andtends to be a stable value in the end except the abnormal part of time missingin the video.With deep analysis of the underlying causes, it can be found that when the traffic accident happens, two lanes are occupied, so all vehicles can only choose the only lane to travel through. In the sphere of influence at accident section, the speed of the car need to decrease, and then it makes the actual capacity to be reduced to a constant value. Along with the subsequent vehicles to arrive, the actual demand also increases. It is consistent with of conclusions of the stability analysis .Therefore , the actual demand is close to even greater than saturated traffic Q. According to the Theorem 1, traffic jams occur in line with the actual situation in the Video 1.At the same time, considering the impact of traffic lights alone, the traffic volume is also periodical and it’s period is about 1 minute in line with the periodic of the wavelet analysis and it is close to the period of the traffic light signal.To sum up: After a traffic accident, actual capacity at the cross-section where an accident happened cyclically shocks and decays over time besides transiting from a stable state to another one.6.2 Establishing and solving of the model for problem two(1) Analysis of problem twoFor problem two, it asks us to analyze and illustrate different influences in the actual capacity, with the same section of traffic accident and different occupied lane.Firstly, we need get original data of the actual capacity of various time points, so we can select data obtained in appendix1. Secondly, we build a model to describethe influences on the actual capacity at the same section of traffic accident and different occupied lane through a comprehensive comparison of video 1 and 2.(2)Establishing and solving of the modelBefore the accident , comparing to the value named o W of video 1(specific datacan be seen in the Appendix 1 ), we find that the actual capacity o W of Video 1 and Video 2 are all within the range from 1100 to 1400. Because the study is the actual capacity where are the same lanes before these lanes are occupied, the actual capacity in Video 1 and Video 2 is equal before an accident apparently.In order to research on changes of the data in video 2, during the accident occurring till evacuating, we described it by drawing it into graphs as the following graph 4 shows:Graph 4The diagram showing the capability of transportation during the accident 2 occurring till evacuating by comparing graph 1 with graph 4, we might notice visibly that the actual capability of transportation display.The oscillation-decaying tendency and after several cycles of the signal, the decay of video 1 and 2 are almost keeping on the line about 10,but the rate and amplitude of them have some major differences. Considering the situation above, we will divide the whole process into two parts.First part: before turning to stability, we call it partial jam stage.Based on the conclusion which is qualitatively analyzed above, we build the mathematics model and quantize the index to further clarify the difference of influence on the actual capacity of transportation by traffic accidents' occupation on different roads.Through the following ideas we build the model:For accident 2, the lane 1 and lane 2 are occupied, so we analyze the partial jam situation of the road first. To simplify the model, we think cars on road 3 directly drive across the intersecting surface to the accident site along the road and vehicles on road 2 drive to the intersecting surface of the accident earlier and then turn to road 3. Of course vehicles on road 1 also drive to the intersecting surface of the accident, stride road 2 and turn to road 3 to drive out.We define a set{}123,,V v v v =,iv is a0-1variable which indicates whether theroad is occupied. ‘1’ means road has been occupied and ‘0’ means contrarily. So the Set V is a collection of situations to road's occupation.We can know the accident 2 by the definition above{}1,1,0V =We can know t car flux of the road by the analysis above'i i Q Q α= (6)The time that the flow of traffics going straight needs at Lane 3 is '3(b d )Q μ+.The time that the traffic flow turns at Lane 2 is2Q t∆.The time that the flow of traffics turning and changing the lane at Lane 1 spendsis 13Q d μ .Consequentially, the total time of traffics passing is'312(b d )Q 3Q dt Q t μμ+=+∆+(7)In view of the simplified model that have been discussed earlier, we make a correction and unification according to the practical problems, then the total time that all of the traffics require to pass the place where accident happens is'312(b d )Q 3i i ii i i i Q dv i t t Q v t μμ=-+==+∆+∑. (8)According to this model, traffic capacity of a lane in unit time is'O Q W t=(9)So we can put Formula (1) and Formula (2) to the Formula (3), then we will get aresult thatis'123(b d )3k t (3t )k O W d μμμ=++∆+∆+ (10), andandare respectively the coefficient of traffic flow at the nearestoccupied lane and the farthest occupied lane.1) In Formula (9), traffic flow of a lane in unit time decreases with the increaseofandare respectively replaced with 21% and 35% in Video 1 and Video 2.A conclusion can be drawn that Lane 3 has more impact on traffic capability than Lane 1, which makes the amplitudeofchange more largely and quickly,according to the situation Figure 2 has more quick attenuation of the amplitude than Figure 1.2)According to 2o W k ∂∂<1OW k ∂∂<0,we know that the farthest occupied lane hasgreater effecton ,in other word ,the occupied Lane 1 or Lane 3 makes thedecreasing of amplitude of larger than what the Lane 2 does.From what has been discussed above, the degree of effect that different occupied lane have on practical traffic capacity can be ordered from big to small. Occupied Lane3 an Lane2 have the biggest effect, while occupied Lane1 and Lane2 have the least.So the result above indicates that during the accident occurring till evacuating in the road partial jam stage, if the traffic accident occupies the road with more car flux, the rate of oscillation decaying of the road's intersecting surface is higher and altitude is greater.After decaying to the stable entire jam stage, occupation of different roads of the same intersecting surface doesn't influence more on the actual capability of the intersecting surface.6.3 Establishment and solution to the model of Question 3(1)establishment of the model of question 3For question 3, we are required to establish mathematical model between the vehicle-queue length of the accident-affecting road, the actual transportation capability of intersecting surface of the accident, duration time of the accident and upstream car flux of the road. Firstly, we should define the queue length on concept in order to quantify it. so we bring in the equivalent L--queue length. Then we can establish a function relationship equation among these variables on the Two Fluid Theory.1)Introduction of the Equivalent Queue LengthIt is necessary to determine a new definition on the queue length that may differ from the additional one, which is also what we prefer to take advantage of to describe the situation showed in the video. Thus we introduce the concept of the equivalent queue length in our model. The new concept, in other words, is the ideal length in the Two Fluid theory in the traffic flow which not only reflects the stationary vehicles’influence on the queue length, but also takes the effect that the length has on the moving vehicles into consideration. And it will definitely produce more accurate result by combining the two dimensions together. The actual traffic flow operation state and the two fluid operation state diagrams are shown in the Figure 5 and Figure 6 below.Fig. 5 the actual running state of traffic flow on the road during the accidentFig. 6 accidents to evacuate Two Fluid operation state during the road traffic flowThe traffic flow in the actual running state can be divided into three conditions-the stagnation traffic flow Z, the uniform traffic flow Y and the transition traffic flow G , while in the two fluid theory, it only needs to be divided into two categories-the moving ones 'Z and the stationary ones 'Y . That is to say, in consideration of the gradual change and indeterminacy of the transition flow, in the theory, we can simply our model by putting the transition flow into two parts, each of which can be reckoned as the condition where the running state is the most familiar .Therefore, the theoretical situation itself includes the real three conditions, and it indicates that the theory is more than accuracy. We can draw a conclusion from the above analysis that the expression for the equivalent queue length is 'L Z Z =+.2) Establishment of the modelIn this part, our goal is to establish an useful expression that can best describe the variation of the equivalent queue length L when the real road traffic capacity 0W , accident duration t or the upstream flow changes (t)N based on the two fluid theory. First of all, let us figure out the comparatively easier situation where only the single lane is taken into account. And then we make some adjustments to apply it to the multiple lanes.i ) Single LaneAccording to the flow conservation principle, we get the equation of traffic flow on the road:N (t)N (t)(t)o u d N N +=+∆(11)Where :o N is the number of the vehicles between the accident site and the upstream intersection when the accident just happens.(t)u N is the accumulation of the upstream flow on the road at moment of t.(t)d N is the sum of vehicles which pass by the accident site at the moment of t.(t)N ∆is the number of vehicles between the accident site and the upstreamintersection at the moment of t.Combining the two fluid theory and the figure 6,we get'()()()j m N t k L t k L L t ⎡⎤∆=+-⎣⎦(12)Where :()L t is the equivalent queue length between the accident site and the upstreamintersection at the moment of t.'L is the extent of the road, here it is 240m.m k and j k respectively are the optical density of traffic flow and the traffic jam density between the accident site and the upstream intersection. They are constants.Simultaneous equations (11) and (12) can solve the model of equivalent length on the single lane:'()()()o u d m j mN N t N t k L L t k k +--=-(13) ii )Adjustments applying for multiple lanesFor the situation of multiple lanes, the equivalent queue length on a lane is totally different when flow rate changes or the cars switch the lane. To describe the extent of vehicle line with a variable, we could introduce a method to measure the whole situation. And the approach is to get the average of the three lanes. After that,we get the model of the equivalent length on multiple lanes:'()()()()tto o m j m N q t dt W t dt k LML t M k k +--=-⎰⎰(14)Where:01()(,)Mtu i q t dt N i t ==∑⎰,1()(,)Mtodi W t dt Ni t ==∑⎰and the number of the lanesM=3.(2)Solution of the model for question 3 1)Deterioration of parameters in the average equivalent queue length on multiple lanesStep 1:o N is the number of the vehicles between the accident site and the upstream intersection when the accident just happens. We assume the happening time is 16:42:30, and we can count the number of vehicles in the video. The result is016N =.Step 2:Determine the value of1(,)Mui Ni t =∑, the expression means theaccumulation of the upstream cars flow at the moment of t;Through the analysis, we know that the upstream flowq is unpredictable, thuswe are capable of adopting the Poisson Distribution to describe it. The next is the。

2013年全国研究生数学建模竞赛A题

2013年全国研究生数学建模竞赛A题

2013年(第十届)全国研究生数学建模竞赛A题变循环发动机部件法建模及优化由飞机/发动机设计原理可知,对于持续高马赫数飞行任务,需要高单位推力的涡喷循环,反之,如果任务强调低马赫数和长航程,就需要低耗油率的涡扇循环。

双涵道变循环发动机可以同时具备高速时的大推力与低速时的低油耗。

变循环发动机的内在性能优势,受到了各航空强国的重视,是目前航空发动机的重要研究方向。

1 变循环发动机的构`造及基本原理1.1 基本构造双涵道变循环发动机的基本构造见图1、图2,其主要部件有:进气道、风扇、副外涵道、CDFS涵道、核心驱动风扇级(CDFS)、主外涵道、前混合器、高压压气机、主燃烧室、高压涡轮、低压涡轮、后混合器、加力燃烧室、尾喷管。

双涵道模式下,选择活门和后混合器(后VABI)全部打开;单涵道模式下,选择活前混合器主外涵道主燃烧室加力燃烧室图2 双涵道变循环发动机结构示意图图中数字序号表示发动机各截面参数的下脚标各部件之间的联系如图3所示,变循环发动机为双转子发动机,风扇与低压涡轮相连,CDFS、高压压气机与高压涡轮相连,如图3下方褐色的线所示。

蓝色的线表示有部件之间的气体流动连接(图3中高压压气机后不经主燃烧室的分流气流为冷却气流,在本题中忽略不计)。

图3 变循环发动机工作原理图1.2工作原理变循环发动机有两种工作模式,分别为涡喷模式和涡扇模式。

发动机在亚音速巡航的低功率工作状态,风扇后的模式转换活门因为副外涵与风扇后的压差打开,使更多空气进入副外涵,同时前混合器面积开大,打开后混合器,增大涵道比,降低油耗,此时为发动机的涡扇模式。

发动机在超音速巡航、加速、爬升状态时,前混合器面积关小,副外涵压力增大,选择活门关闭,迫使绝大部分气体进入核心机,产生高的推力,此时为发动机的涡喷模式。

2 变循环发动机部件建模法燃气涡轮发动机的特性可以用实验方法和计算方法获得。

但实验的方法需要研制复杂的设备、投入巨额的资金和消耗巨大的能源,因此实验的方法不可能经常采用。

2013年全国大学生数学建模竞赛浙江赛区评审结果A

2013年全国大学生数学建模竞赛浙江赛区评审结果A

李晓红 浙江中医药大学
金伟锋 浙江中医药大学
李永民 湖州师范学院
数模组 杭州电子科技大学
数模组 浙江理工大学
数模组 中国计量学院现代科技学院
数学建模 组
浙江越秀外国语学院
鲁胜强 温州医科大学
数模组 同济大学浙江学院
省二等奖 省二等奖 省二等奖 省二等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖 省三等奖
队员2 饶成康 梁梓鹏 王海利 王华栋 叶宸 李铮 王梦娇 许丽 张帅 汪志意 侯雪微 徐通 方丹芳 华祎祎 蔡晨 许妮妮 邹珍珍 凌梦兰 丁莞尔 田龙伟 裴笑笑 王凯宇 吴晓萍 高原 胡静雅 张天闻 徐超超 林萍萍 卢鹏涛 潘俊玮 赵依婷 缪志敏 白杰 崔晓静 王婷 陈宜洁 谢尚欣 胡献国 杨思远 支丽娜
数模组 杭州电子科技大学
沃维丰 宁波大学
数模组 杭州电子科技大学
数模组 宁波工程学院
缪春芳 绍兴文理学院
陆珏
绍兴文理学院
建模组 浙江工业大学之江学院
数模组 浙江工业大学
张晓敏 宁波大学
蔡风景 温州大学
裘良华 杭州师范大学钱江学院
数模组 中国计量学院
数模组 浙江外国语学院
数模组 台州学院
黄龙生 浙江农林大学
指导教师
院校
数模组 浙江工业大学

2013全国大学生数学建模竞赛A题参考答案

2013全国大学生数学建模竞赛A题参考答案

2013全国大学生数学建模竞赛A题参考答案第一篇:2013全国大学生数学建模竞赛A题参考答案2013高教社杯全国大学生数学建模竞赛A题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

本题的难点在于通过视频资料获得车流数据,并以此为基础建立数学模型,分析部分车道被占用后,道路拥塞程度与上游来车量的关系。

评阅时请关注如下方面:建模的准备工作(视频中车流数据的提取,包括视频缺失及错误的处理),模型的建立、求解和分析方法,结果的表述,模型的合理性分析及其模型的拓广。

问题1.1.1.道路被占用后,实际的通行能力需要通过视频中的车流数据得到,不能仅由交通道路设计标准估计;1.2.应该根据视频信息给出不同时段、不同情况下车流量的变化,需要给出通行能力的计算方法、理由的陈述或分析;1.3.在被占用道路没有车辆排队时,通行能力等同于单车道情形,但当被占用道路有车辆排队时,由于被占用道路车辆的变道抢行,会使道路的通行能力下降,好的结果应该明确指出这一点。

问题2.2.1.对于视频2 的分析同视频1,需要通过视频2与视频1的数据对比给出通行能力的差异及原因分析;2.2.由于事故横断面下游交通流方向需求不同,会导致上游每条车道分配到的车辆数不同,使两种情况事故所处道路横断面形成多车道排队的机率不同,从而影响实际通行能力。

如果在模型中注意到这一点则更好。

问题3.3.1.建立数学模型,给出交通事故所引起的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系;3.2.模型的形式可以多样,但需要包含上述各种因素。

关键考察模型假设的合理性、参数确定的原则、及模型的可计算性。

问题 4.4.1.本问题是问题1 及问题 3 的扩展,可利用问题1 得到的通行能力及问题3 的模型计算结果;4.2.和问题1、3不同,当事故横断面离红绿灯路口较近时,司机无充分时间调整车道,会增大多车道占用情形,影响通行能力,模型计算中应考虑这一点;4.3.附件中给出了上游路口信号灯的控制方案,会影响上游来车的流量分布,如果学生能够利用附件给出上游路口信号灯配时方案和交通组织方案则更好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年(第十届)全国研究生数学建模竞赛A题变循环发动机部件法建模及优化由飞机/发动机设计原理可知,对于持续高马赫数飞行任务,需要高单位推力的涡喷循环,反之,如果任务强调低马赫数和长航程,就需要低耗油率的涡扇循环。

双涵道变循环发动机可以同时具备高速时的大推力与低速时的低油耗。

变循环发动机的内在性能优势,受到了各航空强国的重视,是目前航空发动机的重要研究方向。

1 变循环发动机的构`造及基本原理1.1 基本构造双涵道变循环发动机的基本构造见图1、图2,其主要部件有:进气道、风扇、副外涵道、CDFS涵道、核心驱动风扇级(CDFS)、主外涵道、前混合器、高压压气机、主燃烧室、高压涡轮、低压涡轮、后混合器、加力燃烧室、尾喷管。

双涵道模式下,选择活门和后混合器(后VABI)全部打开;单涵道模式下,选择活前混合器主外涵道主燃烧室加力燃烧室图2 双涵道变循环发动机结构示意图图中数字序号表示发动机各截面参数的下脚标各部件之间的联系如图3所示,变循环发动机为双转子发动机,风扇与低压涡轮相连,CDFS、高压压气机与高压涡轮相连,如图3下方褐色的线所示。

蓝色的线表示有部件之间的气体流动连接(图3中高压压气机后不经主燃烧室的分流气流为冷却气流,在本题中忽略不计)。

图3 变循环发动机工作原理图1.2工作原理变循环发动机有两种工作模式,分别为涡喷模式和涡扇模式。

发动机在亚音速巡航的低功率工作状态,风扇后的模式转换活门因为副外涵与风扇后的压差打开,使更多空气进入副外涵,同时前混合器面积开大,打开后混合器,增大涵道比,降低油耗,此时为发动机的涡扇模式。

发动机在超音速巡航、加速、爬升状态时,前混合器面积关小,副外涵压力增大,选择活门关闭,迫使绝大部分气体进入核心机,产生高的推力,此时为发动机的涡喷模式。

2 变循环发动机部件建模法燃气涡轮发动机的特性可以用实验方法和计算方法获得。

但实验的方法需要研制复杂的设备、投入巨额的资金和消耗巨大的能源,因此实验的方法不可能经常采用。

随着计算能力的不断提高,发动机数学模型研究的不断深入,计算机仿真精度也在不断提高,一定程度上弥补了实验方法的不足,尤其是在发动机型号研制过程中,燃气涡轮发动机计算机仿真技术发挥了不可替代的作用。

燃气涡轮发动机是由进气道、压气机、主燃烧室、涡轮、喷管等部件组成的。

如果计算机能够对这些部件的性能进行准确的模拟,那么也就能准确地模拟整个发动机的性能。

这种建立在准确模拟发动机各部件性能基础上的发动机性能计算方法,称为部件法。

该方法是建立在发动机各部件特性已知的基础上的,因此是计算精度较高的一种方法。

附录1分别对变循环发动机每个部件的计算公式进行了逐一介绍。

3 发动机平衡方程发动机各部件匹配工作时,受如下7个平衡方程制约。

1) 低压轴功率平衡0CL TL mL N N η-= (1) 其中CL N 是风扇消耗功率,TL N 是低压涡轮发出功率, =0.99mL η为中间轴机械效率。

2) 高压轴功率平衡0CH CDFS TH mH N N N η+-= (2)CH N 和CDFS N 分别是高压压气机和CDFS 的消耗功率,TH N 是高压涡轮发出功率,=0.99mH η 是高速轴的机械效率。

3)高压涡轮进口截面流量平衡41410g g W W '-=(3) 41g W 是高压涡轮进口截面气体流量,即主燃烧室出口气体流量和冷却空气流量,41g W '是通过高压涡轮特性数据线性插值得到的高压涡轮流量,这里忽略冷却的空气流量。

4)低压涡轮进口截面流量平衡45450g g W W '-= (4)45g W 是低压涡轮进口截面流量,由主燃烧室出口气体流量和冷却空气流量计算得到,45g W '是通过低压涡轮特性数据线性插值得到的低压涡轮流量,这里忽略冷却的空气流量。

5)后混合器静压平衡61620p p -= (5)61p 和62p 分别是后混合器内、外涵道(主外涵道)的静压,二者应平衡。

后混合器见图2的6截面.6)尾喷管面积平衡880A A '-= (6) '8A 为给定的尾喷管8截面的面积,这里'89.4575e+003A =、8A 为按附录1尾喷管的有关公式计算出的尾喷管8截面的面积,二者应相等。

7)风扇出口流量平衡221130a a a W W W --= (7)其中风扇出口的流量2a W 分流为副外涵流量13a W 和CDFS 进口流量21a W ,三者之间应存在平衡关系。

副外涵流量13a W 是按附录1中前混合器的有关公式计算出的。

方程(1),(2),(3),(4),(5),(6),(7)中的变量,,,,CL TL CH CDFS TH N N N N N ,''4141454561628,,,,,,,g g g g W W W W p p A 22113,,a a a W W W 各量可分别由附录1中的公式转化为表3.1所列12个设计中需要给出的发动机各部件参数的函数。

表3.1 发动机参数说明4 要解决的问题请你们完成以下几个问题:一、1)请画出附录4中风扇特性数据表中流量随压比函数值变化的图形。

2) 设在发动机飞行高度11H km =,飞行马赫数0.8Ma =的亚音速巡航点,导叶角度均设置为0°,风扇和CDFS 的物理转速都为0.95,风扇和CDFS 的压比函数值都为0.5,求风扇和CDFS 的出口总温、总压和流量。

二、设在发动机飞行高度11H km =,飞行马赫数0.8Ma =的亚音速巡航点,采用双涵道模式,导叶角度均设置为0°,选择活门完全打开,副外涵道面积设为1.8395e+003,后混合器出口总面积设置为2.8518e+004,尾喷管喉道面积89.5544e+003A =,=0.85L n 。

请运用或设计适当的算法求解由发动机7个平衡方程(1),(2),(3),(4),(5),(6),(7)组成的非线性方程组。

要求陈述算法的关键步骤及其解释,尽可能讨论算法的有效性。

如果你们队还有时间,请研究下面的问题:三、1)设在发动机飞行高度11Ma=的超音速巡航H km=,飞行马赫数 1.5点,发动机采用单涵道模式,将选择活门面积设置为0,风扇导叶角度、高压压气机导叶角度、高压涡轮导叶角度均设置为0 ,后混合器面积设置为2.8518e+004。

请问发动机CDFS导叶角度、低压涡轮导叶角度和喷管喉道面积3个量为多少时,发动机的性能最优?2)试研究发动机飞行高度11Ma=变化到 1.6Ma=,=,飞行马赫数从 1.1H km发动机特性最优时,CDFS导叶角度、低压涡轮导叶角度,尾喷管喉道面积随飞行马赫数的变化规律。

此时发动机采用单涵道模式,将选择活门面积设置为0,风扇导叶角度、高压压气机导叶角度、高压涡轮导叶角度均设置为0 ,后混合器出口总面积设置为2.8518e+004,后混合器内、外涵道面积可调(即不受附录1后混合器给定的内、外涵道面积值的约束)。

注:①压比函数值的定义见附录3。

②为了简单,题中各量的单位不需要转换,直接运算认为是合理的。

附录1 发动机部件计算公式附录2 工质热物理性质参数附录3 气动函数及其他常用公式附录4 数据参考文献苟学中,周文祥,黄金泉,变循环发动机部件级建模技术,航空动力学报,2013,28(1):104-111.A题发动机评审意见(初稿)一、本题的计分方法,总分110分。

1)摘要、写作10分;2)第一问共30分,其中第1小问5分,第2小问25分;在第2小问中,风扇出口的总温、总压、流量计算正确且分析叙述清楚18分,CDFS出口的总温、总压、流量计算正确且分析叙述清楚7分。

3)第二问45分;4)第三问25分,第1小问20分,第2小问5分。

第1小问正确给出模型给10分,模型求解10分。

二、第一问求解说明本问求解过程中,下面3点在论文计算中应有反映。

1)本题各部件的模型已给,但各部件之间的联系,要靠题意和自己查资料来建模。

对于各部件的出口总温、总压、流量的分析是贯穿始终的。

如文中应分析出:风扇的出口总温、总压等于CDFS的进口总温、总压。

而流量的分析稍微复杂一点,如风扇的出口的流量等于CDFS进口流量和副外涵道进口流量的和等。

2)对特性数据的线性插值方法。

这里虽然是线性插值,但二维的插值的方法仍然较多,文中应叙述插值模型或算法步骤,有分析比较更好。

如果是用Matlab 软件进行插值,本题使用griddata命令可直接完成插值,如果使用interp2和interp1必须要辅助于其他的方法,否则不能完成线性插值。

3)利用熵函数和焓函数反求温度。

可以使用二分法,也可以使用别的求解方法。

如果使用Matlab求解的应注明求解命令。

如fzero(fun,x0)等。

注1:这三点在以后各问中也必须考虑,但是在论文的的叙述过程中不一定反映;如果这三点出现明显的错误则以后各问的求解结果也一定是错的。

因此上在打总分时要考虑这个细节。

注2:由于采用的插值方法和求解方程的方法不同,造成了求解的结果不同,但在本问的求解结果中差异应该不大。

三、对第二问求解及评分的说明本问因求解方法灵活,因此给分细节暂时不好确定,还请各位专家多讨论。

1)在本问求解中除了整体上对平衡方程的求解外,还应包括对气动方程的分析和反解,但是研究生们可能在程序中有考虑,但不一定写进了论文。

2)燃烧室后各部件的熵、焓函数应使用燃气的熵、焓数即要考虑油气比;气体常数,也应该同燃烧室前面的系数不同;前混合器的流量系数应同后混合器的流量系数不同。

3)平衡方程(7)相对难于理解,题中已经做了提示,风扇、CDFS的流量是用其特性数据线性插值出来的,而副外涵道流量是用前混合器计算的前四步求出来的。

4)气动函数的反解方法可以有多种,如二分法,牛顿迭代法等,也可以直接使用Matalab工具箱求解。

5)平衡方程的求解方法,传统方法使用N+1参量法,其缺点是初始值不好选取,如果选的不合适,就有可能得不到解。

在本题我们希望看到更多的求解方法,如粒子群算法等,对初值选取方法的讨论是必须的。

但不管使用什么解法,都要结合本问,写出明确的算法思想或算法步骤等。

6)算法的有效性分析等。

题目中已经提出尽可能的讨论算法的有效性,在评分中应该有所反应。

7)平衡方程求解中,应使用相对误差来度量残差误差,因为各量之间的单位不同,相差量级不同。

8)计算应有结果,平衡方程应叙述残差的误差级。

本问很难给出一个统一的求解结果,因为初值不同,插值方法不同,气动函数、熵函数、焓函数的反解方法不同,其结果就不相同。

本问中各平衡方程的残差的量级不一样,特别是平衡方程(7)的相对残差级在0.6左右,其余大部分平衡方程的相对残差不超过0.001个量级。

相关文档
最新文档