牛顿迭代法文献综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“牛顿迭代法”最新进展文献综述牛顿法是一种重要的迭代法,它是逐步线性化的方法的典型代表。牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。另外该方法广泛用于计算机编程中。
介绍一下牛顿迭代法研究的前沿进展,1992年南京邮电学院基础课部的夏又生写的一篇题名一类代数方程组反问题的牛顿迭代法,对一类代数方程组反问题提出了一个可行的迭代解法。从算法上看,它是一种解正问题—迭代—解正问题迭代改善的求解过程。湖南师范大学的吴专保;徐大发表的题名堆浸工艺中浸润面的非线性问题牛顿迭代方法,为了研究堆浸工艺的机理,用牛顿迭代公式寻求浸润面的非线性方程的数值解,经过14次迭代的误差达到了,说明此算法收敛有效。浙江大学电机系的林友仰发表的牛顿迭代法在非线性电磁场解算中的限制对非线性电磁场解算中的限制做了分析,求解非线性方程组时迭代法是不可避免的。牛顿—拉斐森迭代法由于它的收敛速度快常被优先考虑。应用这个方法的主要问题是求雅可比矩阵。因为雅可比矩阵元素的计算非常费时。然而,本文要说明的是当利用以三角形为单元的有限元法求解非线性方程组时,应用牛顿法其雅可比矩阵容易求得,并且它保持了原系数的对称性和稀疏性,因而节省了时间。与此相反,若在差分法中应用牛顿迭代,并且按习惯用矩形网格进行剖分,则雅可比阵的计算很费时,而且不再保持原有对称性,这就使得存贮量和计算时间大为增加。南株洲工学院信息与计算科学系的吕勇;刘兴国发表的题名为牛顿迭代法加速收敛的一种修正格式,主要内容牛顿迭代法是求解非线性方程的一种重要的数值计算方法,在通常情况下,它具有至少平方收敛。本文利用文献[4]所建立的迭代格式xn+1=xn-αf(xfn)(x+n)f′(xn),对迭代格式中的参数α的讨论,实现了牛顿迭代法加速收敛的一种修正格式。
O5年江南大学理学院张荣和他的伙伴薛国民发表了一篇名为修正的三次收敛的牛顿迭代法的论文,给出了牛顿迭代法的两种修正形式,证明了它们都是三阶收敛的,给出的相互比较的数值例子有力地说明了这一点。哈尔滨工程大学水声工程学院的王大成和雷亚辉一块和丁士圻在07年做了一篇题名基于牛顿迭代法的频不变响应阵设计的文献,为了避免空间指向性随频率变化造成发射或接收信号失真,目标检测与分类用主动声呐常采用频不变响应阵。频域加权矢量的计算是设计频不变响应阵的关键技术。首先根据基阵对空间信号的接收模型给出频不变响应阵的定义,接着从描述基阵实际空间响应和预成空间响应之间差异的数学表达式出发,提出了频不变指数的概念,进而结合所研究问题的目标函数特性给出了利用牛顿迭代法获得实现频不变响应阵所需频域加权矢量的新算法。针对均匀线阵和圆弧阵所作的计算机仿真结果表明,新算法不但收敛速度快、计算精度高,而且不受基阵类型和阵元指向性的限制。
张子贤河北工程技术高等专科学校在93年发表一篇题名牛顿迭代法在内部回收率推求中的应用主要内容是<正> 在水利工程经济分析和财务分析中,内部回收率是《水利经济计算规范》中规定的方法之一。所谓内部回收率是指工程内在的回收投资的能力或内在的取得报酬的能力。也就是要计算出什么利率下,该工程在整个经济计算期内的效益现值与该工程的全部投资、年运行费用现值相等。湖南师范大学的吴专保,徐大为了研究堆浸工艺的机理,用牛顿迭代公式寻求浸润面的非线性方程的数值解,经过14次迭代的误差达到了,说明此算法收敛有效,发表了堆浸工艺中浸润面的非线性问题牛顿迭代方法。85年浙江大学电机系的林悠扬发表题名牛顿迭代法在非线性电磁场解算中的限制,在文献中讨论了求解非线性方程组时迭代法是不可避免的。牛顿—拉斐森迭代法由于它的收敛速度快常被优先考虑。应用这个方法的主要问题是求雅可比矩阵。因为雅可比矩阵元素的计算非常费时。然而,本文要说明的是当利用以三角形为单元的有限元法求解非线性方程组时,应用牛顿法其雅可比矩阵容易求得,并且它保持了原系数的对称性和稀疏性,因而节省了时间。与此相反,若在差分法中应用牛顿迭代,并且按习惯用矩形网格进行剖分,则雅可比阵的计算很费时,而且不再保持原有对称性,这就使
得存贮量和计算时间大为增加。
08年奥运会中北京化工大学数学系的余明明和吴开谡,张妍发表牛顿迭代法与几种改进格式的效率指数,主要研究牛顿迭代、牛顿弦截法以及它们的六种改进格式的计算效率,计算了它们的效率指数,得到牛顿迭代、改进牛顿法、弦截法和改进弦截法(即所谓牛顿迭代的P.C格式)、二次插值迭代格式、推广的牛顿迭代法、调和平均牛顿法和中点牛顿法的效率指数分别为0.347/n、0.3662/n、0.4812/n、0.4812/n、0.347/n、0.3662/n、0.3662/n、0.3662/n.我们的结果显示,利用抛物插值多项式推出的迭代格式和改进弦截法并没有真正提高迭代的计算效率。他们还改进弦截法与牛顿弦截法等价。牛顿迭代法在日常生活中应用非常广泛,许多论文介绍了这种方法,利用这种方法解决了很多实际问题,多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。为此我们在学习中要体会这种方法的重要性。
牛顿迭代法是以微分为基础的,微分就是用直线来代替曲线,由于曲线不规则,那么我们来研究直线代替曲线后,剩下的差值是不是高阶无穷小,如果是高阶无穷小,那么这个差值就可以扔到不管了,只用直线就可以了,这就是微分的意义。牛顿法是牛顿在17世纪提出的一种求解方程f(x)=0.
多数方程不存在求根公式,从而求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。牛顿迭代法是取x0之后,在这个基础上,找到比x0更接近的方程的跟,一步一步迭代,从而找到更接近方程根的近似跟。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。另外该方法广泛用于计算机编程中。
罗佑新,李晓峰,罗烈雷,廖德岗组成小组在07年发表一篇题名混沌映射牛顿迭代法与平面并联机构正解研究,主要研究了自然科学与工程中的许多问题都可以转化为非线性方程组的求解问题,牛顿迭代法是重要的一维及多维的迭代技术,其迭代本身对初始点非常敏感。运用混沌映射xn+1=cos(2/xn)产生初始点,首次提出了基于混沌映射的牛顿迭代法求解非