统计学相对指标
统计学的六个相对指标
统计学的六个相对指标
1、结构相对指标
又称结构相对数。
总体的某一部分与总体数值相对比求得的比重或比率指标。
结构相对数通常用来反映总体的结构和分布状况等。
实际经济工作中常用的恩格尔系数、贡献率、城市化程度、中间投入率、增加值率、消费率、合格率、市场占有率等都是结构相对数。
2、比较相对指标
又称比较相对数或同类相对数。
同类指标在不同空间进行静态对比形成的相对指标。
可以比较不同国家、不同地区、不同单位等经济实力、发展水平和工作优劣。
3、比例相对指标
又称比例相对数或比例指标。
反映总体中各组成部分之间数量联系程度和比例关系的相对指标。
4、强度相对指标
又称强度相对数。
有一定联系的两种性质不同的总量指标相比较形成的相对指标。
通常以复名数、百分数(%)、千分数(‰)表示。
5、动态相对指标
动态相对指标又称“动态相对数”或“时间相对指标”,就是将同—现象在不同时期的两个数值进行动态对比而得出的相对数,借以表明现象在时间上发展变动的程度。
通常以百分数(%)或倍数表示,也称为发展速度。
发展速度减1或100%为增长速度指标,计算结果大于100%为增长多少百分数或百分点,小于100%为下降多少百分数或百分点。
6、计划完成程度指标
又称计划完成百分数。
以计为比较标准,将实际完成数与计划规定数相比较,用以表明计划完成情况的相对指标,通常用百分数(%)表示。
六种相对数指标的比较
六种相对数指标的比较相对数指标是一种比较不同事物之间的大小或趋势的方法,相对于绝对数指标而言,它更能反映事物之间的相对关系和变化趋势。
在经济学、统计学和管理学中,常用六种相对数指标进行比较,它们分别是比例指标、平均指标、指数指标、结构指标、强度指标和相对变化指标。
下面将对这六种相对数指标进行详细介绍和比较。
1.比例指标:比例指标是用来比较同一种事物在不同时间或空间上的大小的指标。
常用的比例指标有比例、比率和百分率,它们可以用来比较不同时间点的数据或不同地区的数据。
比例指标的优点是简单易懂,直观反映事物之间的比较关系。
然而,比例指标忽略了事物本身的绝对差距,不够准确。
2.平均指标:平均指标是用来比较多个事物的平均水平的指标。
常用的平均指标有算术平均数、加权平均数和几何平均数。
平均指标的优点是综合考虑了多个事物的水平,更能反映总体的情况。
然而,平均指标只能反映平均水平,忽略了个体之间的差异。
3.指数指标:指数指标是用来比较不同时期同一事物的变化趋势的指标。
常用的指数指标有综合指数、价格指数和产量指数。
指数指标的优点是能够反映事物的相对变化情况,更能看出趋势的变化。
然而,指数指标只能反映趋势的相对变化而不能反映绝对水平的大小。
4.结构指标:结构指标是用来比较事物的组成结构的指标。
常用的结构指标有构成比例和结构比率。
结构指标的优点是能够反映事物的结构组成情况,更能看出不同组成部分的比例关系。
然而,结构指标只能反映事物的组成情况而忽略了绝对大小的差异。
5.强度指标:强度指标是用来比较事物的强度或密度的指标。
常用的强度指标有人均指标和面积指标。
强度指标的优点是能够反映事物的强度或密度水平,更能看出不同地区或不同群体的差异。
然而,强度指标忽略了事物本身的绝对数量和总量的变化。
6.相对变化指标:相对变化指标是用来比较事物的变化幅度或速度的指标。
常用的相对变化指标有增长率、比较增长率和相对增长率。
相对变化指标的优点是能够反映事物的相对变化情况,更能看出不同事物的增长幅度或速度。
统计学总量指标与相对指标
统计学总量指标与相对指标总量指标和相对指标是统计学中经常使用的两种指标,用于描述和分析一定范围内的数量变化情况。
总量指标是指用于衡量其中一现象、事物或集合内部的表现、发展或变化情况的指标。
通常情况下,总量指标是以绝对数、总数或总量的形式进行描述的。
常见的总量指标包括总人口数、总销售额、总产量等。
总量指标能够提供对整个对象的整体认识,从而帮助我们了解一个群体的规模、数量的变化以及变化的趋势。
相对指标是相对于一些标准或基准值而言的指标,用于衡量一些现象、事物或集合相对于其他实体的表现或比较情况。
相对指标通常是用比率、百分比或指数的形式来描述的。
常见的相对指标包括增长率、占比、市场份额等。
相对指标能够对不同的对象进行比较,帮助我们了解一个群体在不同条件下的相对表现以及与其他群体之间的差距。
总量指标和相对指标在统计学中都有各自的应用场景和作用。
总量指标主要用于描述一个整体的数量情况,对全面了解对象的规模、容量或能力具有重要意义。
例如,通过统计总人口数能够帮助我们了解一个国家或地区的规模,为制定宏观政策提供基础数据。
而相对指标则主要用于比较不同对象的表现或比例。
例如,通过比较不同行业的市场份额,可以了解不同行业的竞争程度以及市场格局的分布情况。
相对指标有助于我们发现不同对象之间的优劣势、差距以及变化趋势,提供参考依据以进行决策和分析。
相对指标相较于总量指标更具有灵活性和可操作性。
相对指标能够将数量化的数据转化为比率或指数,从而更容易理解和比较。
相对指标还可以帮助我们发现隐藏的模式和规律,并辅助进行预测和趋势分析。
在实际应用中,总量指标和相对指标往往结合使用,相互印证、互为补充,从而提供更全面的信息和洞察力。
总的来说,总量指标和相对指标是统计学中常用的两种指标,用于描述和分析数量变化的情况。
总量指标能够帮助我们了解一个群体的规模和数量变化,而相对指标则能够对不同对象进行比较和分析。
两者在实际应用中相辅相成,帮助我们更好地理解和把握数据。
统计相对指标的计算和应用
统计相对指标的计算和应用相对指标是指通过比较不同数据的相对差异或变化来进行评估、分析和比较的一种指标。
在统计学中,相对指标被广泛应用于各种领域,包括经济、金融、社会科学等,用于帮助我们理解和解释数据的特征和趋势。
本文将介绍相对指标的计算方法和应用。
相对指标的计算方法可以分为两类:点比和系数比。
点比是指将其中一数据与另一个数据之间的差异表示为绝对值的比例,通常以百分比或千分比的形式来表示。
其中包括增长率、仓位率、利润率等。
增长率是用来衡量其中一事物或现象在一定时间内变动程度的指标。
计算增长率的公式为:增长率=(新值-旧值)/旧值*100%仓位率是用来衡量其中一资产占总资产的比例。
计算仓位率的公式为:仓位率=资产A的市值/总资产的市值*100%利润率是用来衡量其中一企业或行业的盈利能力的指标。
计算利润率的公式为:利润率=净利润/总营业收入*100%系数比是指将其中一数据与另一个数据之间的差异表示为一个数值,通常用于比较其中一变量与另一变量的关系或关联程度,其中包括相关系数、回归系数、比率水平等。
相关系数是用来衡量两个变量之间线性关系强度的指标。
计算相关系数的公式为:相关系数=协方差/(标准差A*标准差B)回归系数是用来衡量自变量对因变量影响程度的指标。
计算回归系数的公式为:回归系数=(X'Y-n*X'*Y)/(X'X-n*X'*X)比率水平是用来衡量两个变量之间比率大小的指标。
计算比率水平的公式为:比率水平=变量A的平均数/变量B的平均数*100相对指标的应用十分广泛。
在经济学中,利润率常被用来衡量企业的盈利能力,帮助投资者和决策者评估和比较不同企业的经营状况。
在金融学中,相关系数和回归系数可以用来研究资本市场的表现和预测股票价格的变动。
在社会科学中,比率水平可以被用来研究不同人群之间的收入差距和社会不平等问题。
除了以上应用,相对指标还可以用于研究市场竞争、消费者行为、人口统计学等领域。
统计学总量指标和相对指标
比较相对指标
比较 某地区或单位某一指标数值 相对数 另一地区或单位同类指标数值
例:某年某地区甲、乙两个公司商品销售额 分别为5.4亿元和3.6亿元。则
甲公司商品销售额 是乙公司的倍数
5.4 3.6
1.5
说 ⒈为无名数,一般用倍数、系数表示; 明 ⒉用来说明现象发展的不均衡程度。
动态相对指标
计划完成程度 相对数
实 计际 划完 任成 务数 数100﹪
⑵ 考察计划执行进度情况:
计划完成 进度
累计至本期止实际完成数 全期计划任务数
100﹪
例:某企业2004年计划产量为10万件,而实际至第三季 度末已生产了8万件,全年实际共生产11万件。则
二、总量指标的基本分类
按反映的总体内容 不同分为:
按反映的时间状况 不同分为:
按计量单位不同分 为:
总体单位总量 总体标志总量
时期指标 时点指标
实物指标 劳动指标 价值指标
总体单位总量和总体标志总量
✓ 总体单位总量:也叫总体单位数是总体内所 有单位的总数
✓ 总体标志总量:是总体中各单位标志值(变 量值)的总和
如:产值、产量、劳动生产率 评价:<100% 未完成
=100% 完成 >100% 超额完成
计划指标按最高限额规定下达
如:成本,原材料消耗、商品流通费用 评价:<100% 超额完成
=100% 完成 >100% 未完成
(一)计划任务数表现为绝对数时
⒈短期计划完成情况的检查
⑴ 计划数与实际数同期时,直接应用公式:
总 总体 体全 部部 分数 数值 值100﹪
[例]:第五次全国人口普查公报:全国大陆总人口为 126583万人,男性为65355万人,女性为61228万人。
《统计学》第4章总体指标与相对指标
• (四)动态相对指标 • 动态相对指标又称发展速度,它是同类现象 在不同时间上变动程度的相对指标。其计算 公式为:
报告期指标数值 100% • 动态相对指标(%)= 基期指标数值
• 动态相对指标就是发展速度。
22
• 例:某大学在校生人数1990年10000人, 2000年为15000人,则该校在校生人数 2000年是1990年的150%。 • 即:动态相对指标= 15000 100% 150%
380 100 % 76% 单位成本的计划完成相对数= 500
32
(3)当计划任务数是比上期提高或降低百分 之几的形式出现时 • 计划完成程度(%)=
1 实际提高(降低)百分数 100% 1 计划提高(降低)百分数
• 该指标是用于考核社会经济现象的降低率、 增长率的计划完成程度。
25
[例3]某城市人口1000000人,零售商店3000个。则: • 该城市商业网点密度=
3000个 3个 / 千人 1000000人
• 计算结果表明,该城市每千人拥有3个商业网点, 指标数值越大,商业越发达,人民生活越方便, 表示强度越高,这是正指标。
26
• 如果把分子和分母对换,则: 1000000人 • 该城市商业网点密度= 3000个 333人 / 个 • 计算结果表明,该城市每个商业网点为333 人服务,指标数值越大,需要服务的人数 越多,商业欠发达,即表示强度越低,这 是逆指标。
• 相对指标的概念 把两个有联系的指标加 以对比而得到的统计指 标 • 相对指标的表现形式为 相对比率,相对指标也 通称为相对数。
相对指标的计量单位
无名 数 系数 或倍 数 成 百分 翻番 数 数或 千分 数
有名 将相对指标中的分子和 数 分母指标数值计量单位 同时使用的一种表示方 法,主要用于部分强度 相对指标。
统计学的六个相对指标
统计学的六个相对指标统计学是一门研究数据收集、整理、分析和解释的科学方法。
统计学通过使用各种指标和方法,帮助人们理解和描述数据,并从中推断出有关总体特征、相互关系和因果关系的信息。
在统计学中,有六个重要的相对指标,它们是:平均数、中位数、众数、标准差、方差和相关系数。
1. 平均数(Mean):平均数是一组数据的总和除以数据的个数。
它是描述数据集中心位置的一个常用指标。
平均数可以用来表示数据的集中趋势,比如计算一个班级学生的平均分数。
2. 中位数(Median):中位数是一组有序数据中居于中间位置的数值,将数据按照大小顺序排列,位于中间的数即为中位数。
中位数通常用于描述数据的位置和离散程度,特别适用于包含离群值的数据集。
3. 众数(Mode):众数是一组数据中出现次数最多的数值。
众数是描述数据集中趋势的一个常用指标,特别适用于描述离散型数据集中的集中趋势。
4. 标准差(Standard Deviation):标准差是用来衡量数据的离散程度,即数据的波动性。
它是一组数据与其平均值之间的差异的平均值的平方根,标准差越大,表示数据越分散。
5. 方差(Variance):方差是标准差的平方,它也是用于衡量数据的离散程度的指标。
方差可以描述数据的分布情况,如果方差较小,表示数据较为集中。
6. 相关系数(Correlation Coefficient):相关系数是用于衡量两组数据之间的线性相关性的指标。
相关系数的取值范围在-1到1之间,相关系数等于1表示完全正相关,等于-1表示完全负相关,等于0表示没有线性相关。
这六个相对指标在统计学中起到了重要的作用,帮助人们了解和解释数据的特征和关系。
通过对数据的分析和计算,我们可以得到这些指标,并从中获得有关数据的深入认识。
在实际应用中,我们可以使用这些指标来帮助我们做出决策,并对数据的特征和趋势有一个更全面的认识。
统计学第四章总量指标和相对指标
第四章
以相对数形式计算计划完成程度相对指标
当计划任务以相对数的形式下达时,检查计划完成程度
就用相对数的形式检查。
实际完成程度(%)
公式:计划完成程度(%) = ————————————
计划规定的完成程度(%)
其中:
实际完成程度(%)=
本期实际完成数 ————————
上期实际完成数
计划规定的完成程度(%) = 上—本期—期实—计际—划完—任成—务数—数—
148.06 103.89
1、检查各月产量计划完成情况。 (计算结果见上表) 2、检查累计至二月份的产量计划完成程度情况。 3、简要说明一季度的计划完成情况。
累计至二成 月程 份 1度 2的 2 15 7计 2 10 0 % 划 05完 .5 4% 4 5400
21
作业2小题
第四章
第二节 相对指标(7)
(一)计划完成程度相对数
1、概念及基本计算公式 计划完成程度相对数(Relative number of
fulfilling plan)是现象在某一段时期内实际完 成数与计划任务数的对比,用以说明计划完成 的程度。 基本公式: 计划完成相对数=实际完成数÷计划任务数
11
第四章
第二节 相对指标(3)
1
作业2小题
第四章
•总量指标的含义、作用和种类 •相对指标的含义、种类和计算 •相对指标的运用
2
第四章
第四章 总量指标和相对指标
• 第一节 总量指标 • 第二节 相对指标 • 第三节 计算和运用相对指标的原则
3
第四章
第一节 总量指标(1)
• 一 总量指标的概念p.67
总量指标(Population quantity)是反映社会 经济现象发展的总规模、总水平的综合指标。
统计学第四章 总量指标与相对指标分析
4 - 13
2、时点指标
时点指标是反映社会经济现象在某一时点(瞬间)上所 处状况的总量指标。如某一时点上的人口数、商品库存 数、牲畜存栏数、土地面积数等。 时点指标的特点 第一,不能累计相加。时点指标是表明现象在某一 时点上的状况,只能按时点所表示的瞬间计数, 若累计相加,所得到的结果包含着大量重复计算, 不仅脱离实际而且也没有任何意义。 第二,时点指标的大小与时点的间隔长短无直接关 系。如资产负债表中年末资产总额并不一定大于 月末资产总额。
资金 占用
资金利 润率
500 3000 16.7% 万元 万元 不可比 不可比 可比 5000 万元 40000 12.5% 万元
乙企业
4 - 28
比较两厂经济效益
3、相对指标的表现形式
无名数 分母 为1 有名数
4 - 29
用倍数、系数、成数、﹪、‰等表示
分母为 1.00
分母 为10
分母 为100
4 - 14
第三,时点指标数值是间断计数的。
14
2014-4-23
时 点 指 标
2009年年末国家外汇储备23992亿美元,比上年末增加4531亿美元。
4 - 15
时期指标和时点指标的区别:
⑴时期指标连续计数,时点指标间断计数 ⑵时期指标具有累加性,时点指标不具有累加性 ⑶时期指标数值大小与时期长短有直接关系,时点 指标数值大小与时期长短无直接关系。
第四章 总量指标和相对指标分析
4-1
第一节
总量指标分析
一、总量指标的概念和作用
二、总量指标的分类 三、总量指标的计算方法
4-2
一、总量指标的概念和作用
1、总量指标的概念 总量指标又称统计绝对数:是用来反映社会 经济现象在一定条件下的总规模、总水平 或工作总量的统计指标。 总产值、总人数 、国民生产总值等
统计学(补充)总量指标和相对指标
GDP(亿元) 24737.0 103162.0 82972.0 210871.0
比重(%) 11.7 48.9 39.4 100.0
资料来源:《中国统计年鉴2007》
解:由公式: 第一产业占GDP比重为:24737.0÷210871.0=11.7% 第二产业占GDP比重为:103162.0÷210871.0=48.9% 第三产业占GDP比重为:82972.0÷210871.0=39.4%
7/21/2015
统计学统计学
10
(3)
劳动单位
例
工时 —— 工人数和劳动时数的乘积; 台时 —— 设备台数和开动时数的乘积。 由于具体条件不同,不同企业的劳动量指标不 具有可比性,因此,劳动量指标只限于企业内 部使用。
7/21/2015 统计学统计学 11
第二节 相对指标
一、相对指标的概念
相对指标是两个有联系的指标数值对比的结 果,反映事物的数量特征和数量关系的综合 例 指标。 200x年我国对外贸易进口总额增长率为 16.1%,出口总额增长率为25.7%。
7/21/2015
统计学统计学
17
(2) 根据平均数来计算计划完成相对数
计算公式为: 实际平均指标 计划平均指标 100%
7/21/2015
统计学统计学
18
例
设某企业某月生产某产品,计划每人每日平 均产量为50件,实际每人每日平均产量为60件 劳动生产率计划完成相对数=60/50=120 %
1.计算公式
实际完成数 计划完成相对数 100% 计划数
7/21/2015
统计学统计学
16
(1) 根据绝对数来计算计划完成相对数
设某工厂某年计划工业总产值为200万元,实际 完成220万元,则:
统计学各章练习——相对指标练习题
第四章相对指标练习题一、填空1、相对指标是两个(有联系的)现象指标数值之比,用以反映现象的(发展程度)、数量(对比关系)和(联系程度)的综合指标。
2、常用无名数表现的相对指标有:(系数或倍数)、(成数)、(百分数)和(千分数)。
3、根据研究目的和比较标准的不同,相对指标可分为(结构相对指标)、(比较相对指标)、(比例相对指标)、(强度相对指标)、(计划完成程度相对指标)和(动态相对指标)等六种。
4、(系数)和(倍数)是将对比的基数抽象化为1而计算出来的相对数;成数是将对比的基数抽象化为1而计算出来的相对数。
5、比较相对指标可以用总量指标来对比,也可以用(相对指标)或(平均指标)来进行对比。
6、计划任务数有按全期累计完成总量下达,有按计划期末应达到的水平下达,因而检查计划完成情况时应有(水平法)和(累计法)。
7、强度相对指标的数值大小与现象的发展程度或密度成(正比例)时,称为强度相对指标的(正指标)。
反之,与现象的发展程度或密度成(反比例)时,称为强度相对指标的(逆指标)。
8、某企业产品单位产品成本计划降低3%,实际降低了5%,则该企业成本计划完成程度为(97.9%)。
9、强度相对指标是两个(性质不同)而又有联系的总量指标的对比,用来表明现象发展的(强度)、(密度)和(普遍程度)。
10、动态相对指标是(同类指标)在(不同时间)上的数值对比而得到的相对数。
二、选择(一)单项选择1、结构相对指标用来反映总体内部( C )A、质量关系B、密度关系C、各部分占总体的比重D、互为因果关系2、比例相对数是用来反映总体内部各部分之间内在的( C )A、计划关系B、强度关系C、数量关系D、发展变动关系3、某企业劳动生产率计划比去年提高7%,实际提高5%,该厂劳动生产率计划完成程度为( C )。
A、5%/7%B、7%/5%C、(100%+5%)/(100%+7%)D、(100%+5%)/(100%+7%)4、某企业计划规定某产品单位成本降低3%,实际降低了5%,则成本计划完成程度为( D )A、101.9%B、167%C、60%D、97.9%5、××市×年预算内工业企业亏损面达33.6%,这是( 结构 )。
《统计学》第三章--统计指标
常住单位是在一国经济领土上具有经济利益中
心的机构单位。
机构单位是国民经济统计的基本经济单位,它 是能以自己的名义拥有资产、发生负债、从事经济 活动并与其它实体进行交易的经济实体。
“非常住单位”——也称为“国外” 。
经济领土是由一国政府控制的地理领土组成。 我国的经济领土—— 包括我国大陆的领地、领海、领空和位于国际水 域而我国具有捕捞和海底开采管辖权的大陆架、我 国住外使馆、领馆用地, 不包括位于我国领土范围内的外国使馆、领馆用 地及国际组织用地。
保险密度=保费/人口数 金融相关度(率)=金融资产总量/GNP
每万人口医院病床数
年份
每万人口医院病床数(张/万人)
2001 2002 2003 2004 2007
23.9 23.2 23.4 24.0 26.3
强度相对数的特点
相对数是惟一有单位(且为复名数)的相对数 (有的也用无名数形式);
分子分母一般可以互换,故有正指标与逆指标之 分。
4.40 31.20 27.90 63.10
66.40
10.60
7.90 28.10 26.80 61.20
65.10
33.80 29.50 65.50
69.60
2.60 14.50
1.60 10.20
23.20 28.40
20.60 29.80
74.30 57.10
77.80 60.00
2.比例相对数——比例(结构性的比例)
•货币化程度=用货币支付的商品和劳务总量 / 全部商品和劳务总量
国家和地区
中国 日本 韩国
新加坡
美国 俄罗斯联邦
按三次产业分就业人员构成
第一产业
第二产业
六大相对指标的计算公式
六大相对指标的计算公式
1、计划完成相对数:计划完成相对数={(实际完成数据)/[计划(定额)数据]}*100%;
2、结构相对数:结构相对数=某一构成部分的例数/各构成部分例数之和×100 (3.2);
3、比例相对数:比例相对数=总体中某一部分数值/总体中另一部分数值;
4、比较相对数:比较相对数(%)=甲地区(单位)某类现象的水平/乙地区(单位)同类现象的水平×100%或=总体的一个组(部分)/总体的另一个组(部分)×100%;
5、动态相对数:动态相对数=(报告期水平/基期水平)╳100%;
6、强度相对数:强度相对数=某现象的发生数/可能发生某现象的总数×100℅(或1000‰)。
统计学相对指标的作用:
1、相对指标通过数量之间的对比,可以表明事物相关程度、发展程度,它可以弥补总量指标的不足,使人们清楚了解现象的相对水平和普遍程度。
例如,某企业实现利润50万元,实现55万元,则利润增长了10%,这是总量指标不能说明的。
2、把现象的绝对差异抽象化,使原来无法直接对比的指标变为可比。
不同的企业由于生产规模条件不同,直接用总产值、利润比较评价意义不大,但如果采用一些相对指标,如资金利润率、资金产值率等进行比较,便可对企业生产经营成果做出合理评价。
3、说明总体内在的结构特征,为深入分析事物的性质提供依据。
例如计算一个地区不同经济类型的结构,可以说明该地区经济的性质。
又如计算一个地区的第一、二、三产业的比例,可以说明该地区社会经济现代化程度等。
统计学基础课件 第四章 总量指标和相对指标
❖ 作用
1. 反映总体内在的结构特征;
2. 用于不同对象的比较评价;
3. 反映事物发展变化的过程和趋势。
❖ 计量形式
1.有名数
2.无名数
第四章 总量指标和相对指标
二、相对指标的种类及计算方法
❖ 值
结构相对数
100%
总体全部数值
第四章 总量指标和相对指标
引例:
男性人口的 比重为50.8﹪
女性人口的 比重为49.2﹪
比1980年末的 9.9亿人增加
了28﹪
1999年末我国共有 总人口12.6亿人,其 中男性人口为6.4亿, 女性人口为6.2亿。
人口性别比 为1.03:1
人口出生率 为15.23‰
人口密度为 130人/平方公里
51.52﹪
特 ⒈为无名数,可用百分数或一比几或几比几表示; 点 ⒉分子分母可以互换;
3.用来反映组与组之间的联系程度或比例关系。
第四章 总量指标和相对指标
二、相对指标的种类及计算方法
3.比较相对指标 :比较相对数 某一总体的某指标数值
另一总体的该指标数值
例:某年某地区甲、乙两个公司商品销售额 分别为5.4亿元和3.6亿元。则
第四章 总量指标和相对指标
三、总量指标的计量单位 按计量单位分
实物量单位
价值量单位
劳动量单位
第四章 总量指标和相对指标
实物量单位
❖ 实物单位是根据事物的属性和特点而采用的计量单位,有 自然单位、度量衡单位和标准实物单位等。
1.自然单位 2.度量衡单位 3.复合计量单位 4.多重计量单位 3.标准实物单位
❖ 特点:
▪ 表现形式为绝对数 ▪ 总量指标反映了总体的规模信息 ▪ 只有有限总体才能准确计算总量指标
统计学各章练习——相对指标练习题
第四章相对指标练习题一、填空1、相对指标是两个(有联系的)现象指标数值之比,用以反映现象的(发展程度)、数量(对比关系)和(联系程度)的综合指标。
2、常用无名数表现的相对指标有:(系数或倍数)、(成数)、(百分数)和(千分数)。
3、根据研究目的和比较标准的不同,相对指标可分为(结构相对指标)、(比较相对指标)、(比例相对指标)、(强度相对指标)、(计划完成程度相对指标)和(动态相对指标)等六种。
4、(系数)和(倍数)是将对比的基数抽象化为1而计算出来的相对数;成数是将对比的基数抽象化为1而计算出来的相对数。
5、比较相对指标可以用总量指标来对比,也可以用(相对指标)或(平均指标)来进行对比。
6、计划任务数有按全期累计完成总量下达,有按计划期末应达到的水平下达,因而检查计划完成情况时应有(水平法)和(累计法)。
7、强度相对指标的数值大小与现象的发展程度或密度成(正比例)时,称为强度相对指标的(正指标)。
反之,与现象的发展程度或密度成(反比例)时,称为强度相对指标的(逆指标)。
8、某企业产品单位产品成本计划降低3%,实际降低了5%,则该企业成本计划完成程度为(97.9%)。
9、强度相对指标是两个(性质不同)而又有联系的总量指标的对比,用来表明现象发展的(强度)、(密度)和(普遍程度)。
10、动态相对指标是(同类指标)在(不同时间)上的数值对比而得到的相对数。
二、选择(一)单项选择1、结构相对指标用来反映总体内部( C )A、质量关系B、密度关系C、各部分占总体的比重D、互为因果关系2、比例相对数是用来反映总体内部各部分之间内在的( C )A、计划关系B、强度关系C、数量关系D、发展变动关系3、某企业劳动生产率计划比去年提高7%,实际提高5%,该厂劳动生产率计划完成程度为( C )。
A、5%/7%B、7%/5%C、(100%+5%)/(100%+7%)D、(100%+5%)/(100%+7%)4、某企业计划规定某产品单位成本降低3%,实际降低了5%,则成本计划完成程度为( D )A、101.9%B、167%C、60%D、97.9%5、××市×年预算内工业企业亏损面达33.6%,这是( 结构 )。
统计学第四章 相对指标和指数讲解
相乘以后使得不能直接相加的指标过渡到可以直接相加的 指标的那个因素,叫做同度量因素,在这里,销售价格便是各种 商品的销售量过渡到能够直接相加的价值量的同度量因素。同度 量因素所属的时期有报告期、有基期和特定期,不同期的同度量 因素,其数值是不同的。在计算总指数时同度量因素在分子、分 母上的时期必须是固定的,因而把同度量因素固定在报告期、基
商品
甲 乙 丙
计量单位
公斤 套 件
基期销售量
q 0
50 75 100
报告期销
售量
q 1
62.5
90
115
基期价
格
p 0
20
10
5
报告期价格
p 1
14 8 5
合计
—
—
—
—
—
将例1资料代人上式得该商店销售量总指数为: (1)式:
k q
q1 p0 q0 p0
62.5 20 90 10 115 5 50 20 7510 100 5
然变了,但其经济内容及计算结果与(4) 式完全一致
p q
Kp
1
kp
1
1
pq
1
1
p q
1
1
p 0
p
pq
1
1
1
p q
1
1 (6)
p q
0
1
以计算期总值加权的调和平均数指数一般在编制 质量指标指数时,由于缺少同度量因素数量指标的资料, 而将帕氏物价指标指数公式加以变形而得到。
例:表4-5 调和平均数指数计算表
报告期销
售量
统计学第三章(总量指标与相对指标)详解
STAT 学生的数量标志: 年龄、身高、体 重、考试分数、 生活费支出等等
注意其用途
学生总体的标志 总量: 总年龄、总身高、 总体重、考试总 分数、生活费总 支出等等
数量的时间特征:不断产生、发 生的数量在一段时间内的总量, 即时期指标(时期数);已经存 总体单位总量与 在并不断变化的总量在某个瞬间 (时点)的具体数量水平,即时 总体标志总量 总量 点指标(时点数)。 时期指标与
STAT
指标 分类
时点指标 实物指标、价值指标和 劳动量指标
关于一个人口总体的总量指标
STAT
时 出生人数 期 指 死亡人数 标 时 人口总数 点 指 t 标
t1时段
t2时段
t3时段
《统计学》第三章 总量指标与相对指标
总量 指标 分类
劳动量指标是以劳动单位,即工 实物指标是以实物单位计量的总 总体单位总量与 量指标 . 日、工时等劳动时间计量的统计 总体标志总量 价值指标是以货币为计量单位的 指标,常用于确定劳动规模、评 统计指标,具有最广泛的综合性 价劳动时间利用程度、计算劳动 时期指标与 报酬、劳动生产率等。 和概括能力,可以表示现象的总 时点指标 规模和总水平。
它是决策和管理的依据;
960万平方公里国土
STAT
总量的作用:
它是定量描述现象的起点; 它是决策和管理的依据;
总量是最 它是其他指标的计算基础; 基本的国情国 力指标
STAT
总量指标是 基本数据。 总量的作用: 总量相比得 到相对指标; 它是定量描述现象的起点; 总量相除得 它是决策和管理的依据; 到平均指标。
《统计学》第三章 总量指标与相对指标
“Statistics are like a bikini: what is revealed is interesting, what is concealed is crucial.”
相对指标的常见种类
相对指标的常见种类相对指标是指将一个变量与另一个变量进行比较得到的结果,在比较中不考虑这两个变量的绝对值。
相对指标在社会科学研究、经济学、统计学和环境科学等领域都有广泛的应用。
以下是常见的相对指标种类。
一、相对频数相对频数是指某个数据在样本中出现的频率与总频率的比值。
比如,在50个人的样本中,有10人购买了商品A,那么相对频数是10/50=0.2或20%。
相对频数能够让研究人员了解某个现象在总体中的分布情况。
二、相对差异相对差异是指两个变量之间的差异与某个基准值的比值。
比如,某个城市的平均气温比其他城市高了2℃,那么相对差异为2/平均气温。
相对差异能够帮助研究人员衡量两个变量之间的差异程度。
三、相对增长率相对增长率是指某个变量在两个时间点之间的增长量与初始值的比值。
比如,某个公司去年的销售额为1000万元,今年的销售额为1200万元,那么相对增长率为(1200-1000)/1000=0.2或20%。
相对增长率能够让研究人员衡量某个变量在一段时间内的增长速度。
四、相对收入相对收入是指一个人的收入与同社会群体的平均收入的比值。
比如,在某个城市,一个人的收入为5万元,社会群体的平均收入为4万元,那么这个人的相对收入为5/4=1.25或125%。
相对收入可以反映一个人在社会群体中的地位和收入水平。
五、相对贫困相对贫困是指一个人的收入与社会群体的平均收入相比较后低于某个特定的比率。
比如,在某个国家,用50%的平均收入作为相对贫困线,如果一个人的收入低于这个线,那么这个人就是相对贫困的。
相对贫困能够帮助研究人员了解社会群体中的贫困人口比例和贫困程度。
总之,相对指标是衡量变量之间关系的重要手段,在实际应用中具有广泛的用途和价值。
研究人员需要根据具体问题选择不同的相对指标来进行分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 综合指标
例题:想一想可以计算哪几种相对指标 例题 想一想可以计算哪几种相对指标? 想一想可以计算哪几种相对指标
单位: 单位:万人
根据第四次人口普查调整数
人口总数 其中: 其中:男 女
√ 结构相对指标
1982年 年 101654 52352 49302
√ 比例相对指标
1990年 年 114333 58904 55429
强度相对指标 • 概念:强度相对指标是两个性质不同但有一定 联系的总量指标之间的对比,也可以叫强度相 对数。 • 作用:表明某一现象在另一现象中发展的强度、 密度和普遍程度。
某一总量指标数值 = 相对数 另一有联系但性质不同 的总量指标数值 强度
• 人口密度=300万人÷15000平方公里 人口密度= 万人÷ 万人 平方公里 • =200人⁄平方公里 人 平方公里 • 人均粮食产量=120万吨÷300万人=400公斤 人 人均粮食产量= 万吨÷ 万人= 公斤⁄人 万吨 万人 公斤 • 商业网密度= 300万人÷6000个=500人⁄个 商业网密度= 万人÷ 万人 个 人个 • 15000平方公里÷ 300万人 平方公里÷ 万人 平方公里 • 300万人÷ 120万吨 万人÷ 万人 万吨 • 6000个÷ 300万人=20个⁄人 个 万人= 个 人 万人
总体
总量
通过下表:1、区分总体单位总量与总体标志总量; 通过下表: 、区分总体单位总量与总体标志总量; 2、区分时期指标与时点指标。 、区分时期指标与时点指标。
单 位 名 称 纺织局 化工局 机械局 合 计 企业数 职工人数 固定资产增 工业增加值 (个) (人) 加额(万元) (万元) 300 250 450 1000 8000 5000 7000 20000 1000 2000 2000 5000 200 500 300 1000
例:某地区某年末现有总人口为100万人,医院床位总数 为24700张。则该地区 8.3
每千人口拥有 的医院床位数 = 24700 (张 ) = 24 .7 (张 千人 ) 1000 (千人 )
(正指标)
每张医院床位 负担的人口数
1 × 10 6 = = 40 . 5 (人 张 ) 24700
(逆指标)
某地区或单位某一指标 数值 = 相对数 另一地区或单位同类指 标数值
说 明
⒈为无名数,一般用倍数、系数表示
比较
⒉用来说明现象发展的不均衡程度。
例题:想一想可以计算哪几种相对指标? 例题 想一想可以计算哪几种相对指标
2008年南京常住口数741.3万 人,其中14岁以下人口85.8 万人,15-59岁548.9万人 60岁以上106.6万人。人均 GDP8409美元。 (其中上海 人均GDP为10454美元,贵 州人均GDP仅为1272美元)
总体单位总量 时点指标
总体标志总量 时期指标
中华人民共和国2008年国民经济和社会发展统计公报 年国民经济和社会发展统计公报 中华人民共和国 • 2008年,全年国内生产总值4.222 万亿美元,比上年增长 年 全年国内生产总值 万亿美元, 9.9%。是美国的 。是美国的29.5%;日本的 ;日本的87%;德国的 ;德国的110%;法 ; 国的140%。 国的 。 • 2008年人均 年人均GDP达到 达到3315美元,首次突破三千美元大关, 美元, 年人均 达到 美元 首次突破三千美元大关, 可喜可贺。但是,我国各地区的人均GDP存在着很大的差 可喜可贺。但是,我国各地区的人均 存在着很大的差 上海人均GDP为10454美元,是贵州的 倍(贵州人 美元, 异 ,上海人均 为 美元 是贵州的8倍 仅为1272美元)。 美元)。 均GDP仅为 仅为 美元 • 2008年,第一产业由 年的28.2%下降为 下降为11.3%,第二 年 第一产业由1978年的 年的 下降为 , 产业由47.9%上升为 上升为48.6%,第三产业则由 产业由 上升为 ,第三产业则由23.9%大幅上 大幅上 升至40.1%。 。 升至 。 • 全年共发生道路交通事故 全年共发生道路交通事故26.5万起,造成 万人死亡, 万起, 万人死亡, 万起 造成7.3万人死亡 30.5万人受伤,直接财产损失 万人受伤, 亿元; 万人受伤 直接财产损失10.1亿元;道路交通万车死 亿元 亡人数为4.3人 亡人数为 人。
• 说明问题
–结构相对指标用各组总量占总体总量的比重,来反映总体内部组成情 结构相对指标
况的;
–比例相对指标说明总体内各部分间的相互关系; 比例相对指标 –比较相对指标说明某种现象在不同空间下发展的不均衡程度。 比较相对指标
谢 谢!
强度相对指标
有名数的 强度相对数
用双重计量单位表示的复名数,反映的是一 种依存性的比例关系或协调关系,用来反映 经济效益、经济实力、现象的密集程度等。
第二节
相对指标
• 相对指标也称相对数,它是用两个有联系的指标 相对指标也称相对数, 也称相对数 进行对比的比值来反映现象数量特征和数量关系 的综合指标。 的综合指标。 • 相对指标的计量形式: 百分数、系数、 相对指标的计量形式:
双重或复合 计量单位
– 无名数 – 有名数
成数、倍数、 千分数
• 相对指标的作用主要表现在两方面: 相对指标的作用主要表现在两方面: 主要表现在两方面 (一)可以反映现象间的数量联系程度和差别程 度。 (二)可以把原来不能直接对比的总量指标的绝 对差异抽象化, 对差异抽象化,有利于现象之间的比较分析。
2008“金砖四国 ”谁更强
GDP(亿美元) (亿美元) 中国 俄罗斯 巴西 印度 人口(亿 人口 亿) 人均GDP(美元) (美元) 人均
42 220 17 570 16 650 12 370
13.17 1.44 1.82 10.5
42220 = 2.4 17570
3206 12201 9148 1178
强度相对指标
• 中国 中国GDP是俄罗斯2.4倍: 是俄罗斯 倍
• 俄罗斯人均GDP是中国 倍: 俄罗斯人均 人均 是中
比较相对指标
比较相对指标
• 概念:比较相对指标是不同单位的同类现象数量对 比而确定的相对指标,也可以叫比较相对数。 • 作用:同一类事物由于所处的空间条件不一样,发 展状况也不同,要了解它们之间的差异程度,就需 要将不同空间条件下的同类事物对比。
比例相对指标 • 比例相对指标是同一总体中不同部分数量 对比的相对指标,也可以叫比例相对数。 • 作用:以分析总体范围内各个局部、各个 分组之间的比例关系和协调平衡状况。
比例 总体中某一部分数值 = 相对数 总体中另一部分数值
说 明
× 100 ﹪
⒈为无名数,可用百分数或一比几或几比几表示;
⒉用来反映组与组之间的联系程度或比例关系。
比重% 100.0 45.7 54.3 51.5 48.5 19.0 69.0 12.0 8.3
使用相对指标应注意的问题
多种相对指标应当结合运用 结构相对数 比例相对数 比较相对数 动态相对数 计划完成相对数 强度相对数 (部分与总体关系) (部分与部分关系) (横向对比关系) (纵向对比关系) (实际与计划关系) (关联指标间关系)
• 4、强度相对指标:表明某一现象在另一现象中 、强度相对指标: 发展强度、密度、 发展强度、密度、普遍程度 • ⑴公式: 公式: • ⑵表现形式:双重计量单位 表现形式: • ⑶注 意:分子、分母可互换(总量、相对、平均) 分子、分母可互换(总量、相对、平均) • ↙ ↘ • 正指标 逆指标 数值大小与现象程度成正比) 成反比) (数值大小与现象程度成正比) (成反比) • 例:97年某地区 个县市土地总面积为 年某地区8个县市土地总面积为 年某地区 个县市土地总面积为15000平 平 方公里,总人口300万人,全年粮食产量120万吨, 方公里,总人口 万人,全年粮食产量 万吨, 万人 万吨 共有零售商店6000个。 共有零售商店 个
人口年龄比为 1:6.4:1.2 14岁以下人口的 比重为11.58﹪ 2008年南京常住口数 741.3万人,其中14岁以 下人口85.8万人,15-59 岁548.9万人60岁以上 106.6万人。人均 GDP8409美元。 老年抚养比 为1:5
15-59岁人口的 比重为74.042﹪
人均GDP是 上海的0.8倍
51.5 48.5
结构相对指标
总体中某一部分数值 ×100% 结构相对数(%)= 总体中全部数值
结构相对指标 2008年中国产业结构 2008年中国产业结构
2008年
第一产业 第二产业 第三产业 合计
说 明
11.3% 48.6% 40.1% 100%
⒈为无名数; ⒉同一总体各组的结构相对数之和为1; ⒊用来分析现象总体的内部构成状况。
全国总人口
132802 其中: 其中:城镇 60667 乡村 72135 其中: 其中:男性 68357 女性 64445
乡村人口所占比重= 乡村人口所占比重 72135 = 54.3% 132802
68357 = 51.5% 男性人口所占比重= 男性人口所占比重 132802 女性人口所占比重 64445 = 48.5% = 132802
第四章 总量指标与相对指标
• 第二节
相对指标
回 顾
一.什么是总量指标
总量指标 反映总体总规模、 反映总体总规模、总水平的指标
总量指标的意义: 总量指标的意义:是计算其他指标的基础
总 量指 二 、 总量 指 标 的 种 类
按
总 量 指 标 的 种 类
按 反 映 时 间 分
反 映 内 容 分
总体单位总量
60岁以上人口 比重 为14.38%
人均GDP是 贵州的6.6倍
小
结
结构相对指标、比例相对指标和比较相对指标
• 子项与母项的内容
–结构相对指标:总体内部分数值与总体数值之比 结构相对指标:总体内部分数值 总体数值之比 部分数值与 结构相对指标 –比例相对指标:总体内部分数值与另一部分数值之比 比例相对指标:总体内部分数值 另一部分数值之比 部分数值与 比例相对指标 –比较相对指标:同类指标同一时间不同空间之比 比较相对指标:同类指标同一时间不同空间 不同空间之比 比较相对指标