最新人教版七年级数学上册第三章课件
合集下载
人教版数学七年级上册3课件
9
• 9.在一次植树活动中,甲班植树的株数比乙班多20%,乙班植树的株 数比甲班的一半多10株,设乙班植树x株.
• (1)列两个不同的含x的代数式,分别表示甲班植树的株数; • (2)根据题意列出含未知数x的方程. • 解:(1)根据“甲班植树的株数比乙班多20%”,得甲班植树的株数为
(1+20%)x;根据“乙班植树的株数比甲班的一半多10株”,得甲班植 树的株数为2(x-10). • (2)由题意,得(1+20%)x=2(x-10).
C.1000(26-x)=2×800x
D.1000(26-x)=800x
12
13.已知关于 x 的方程 ax+4=1-2x 恰为一元一次方程,那么系数 a 应满足的 条件为___a_≠_-__2____ .
14.已知关于 x 的方程 3a-x=x2+3 的解为 2,则代数式 a2-2a+1 的值是__1___ . 15.x=2 是方程 ax-4=0 的解,检验 x=3 是不是方程 2ax-5=3x-4a 的解, 并说明理由.
第二次降价每个又减10元,经两次降价后售价为90元,则得到方程
()
A
• A.0.8x-10=90 B.0.08x-10=90
• C.90-0.8x=10 D.x-0.8x-10=90
7
• 5.已知8xa-1+5=0是关于x的一元一次方程,则a的值2为_____ .
• 6.【湖南湘西中考】若关于x的方程3x-kx+2=0的解为2,则k的4值
10
能力提升
• 10.方程-3(★-9)=5x-1,★处被盖住了一个数,已知方程的解是x
=5,则★处的数是
()
• A.1 B.2
A
• C.3
D.4
11
• 9.在一次植树活动中,甲班植树的株数比乙班多20%,乙班植树的株 数比甲班的一半多10株,设乙班植树x株.
• (1)列两个不同的含x的代数式,分别表示甲班植树的株数; • (2)根据题意列出含未知数x的方程. • 解:(1)根据“甲班植树的株数比乙班多20%”,得甲班植树的株数为
(1+20%)x;根据“乙班植树的株数比甲班的一半多10株”,得甲班植 树的株数为2(x-10). • (2)由题意,得(1+20%)x=2(x-10).
C.1000(26-x)=2×800x
D.1000(26-x)=800x
12
13.已知关于 x 的方程 ax+4=1-2x 恰为一元一次方程,那么系数 a 应满足的 条件为___a_≠_-__2____ .
14.已知关于 x 的方程 3a-x=x2+3 的解为 2,则代数式 a2-2a+1 的值是__1___ . 15.x=2 是方程 ax-4=0 的解,检验 x=3 是不是方程 2ax-5=3x-4a 的解, 并说明理由.
第二次降价每个又减10元,经两次降价后售价为90元,则得到方程
()
A
• A.0.8x-10=90 B.0.08x-10=90
• C.90-0.8x=10 D.x-0.8x-10=90
7
• 5.已知8xa-1+5=0是关于x的一元一次方程,则a的值2为_____ .
• 6.【湖南湘西中考】若关于x的方程3x-kx+2=0的解为2,则k的4值
10
能力提升
• 10.方程-3(★-9)=5x-1,★处被盖住了一个数,已知方程的解是x
=5,则★处的数是
()
• A.1 B.2
A
• C.3
D.4
11
人教版七年级数学上册第三章一元一次方程PPT教学课件全套
第三章 一元一次方程
3.1 从算式到方程
3.1.1 一元一次方程
学习目标
1.通过算术与方程方法的使用与比较,体验用方程解 决某些问题的优越性,提高解决实际问题的能力. 2.掌握方程、一元一次方程的定义以及解的概念,学 会判断某个数值是不是一元一次方程的解.(重点) 3.初步学会如何寻找问题中的等量关系,并列出方程. (难点)
从算式到方程是数学的进步!
观察与思考
观察下列方程,它们有什么共同点?
x x 1 60 70
70 y=60(y+1) 70(z-1)=60z
问题1 每个方程中,各含有几个未知数? 1个
问题2 说一说每个方程中未知数的次数. 1次
问题3 等号两边的式子有什么共同点? 都是整式
知识要点
一元一次方程
二 列方程
典例精析
例2 根据下列问题,设未知数并列出方程: (1) 用一根长24 cm的铁丝围成一个正方形,正方形
的边长是多少?
解:设正方形的边长为x cm.
等量关系:正方形边长×4=周长,
x
列方程:4x 24.
(2) 一台计算机已使用1700 h,预计每月再使用 150 h,经过多少月这台计算机的使用时间 达到规定的检修时间2450 h?
(7) 1 1. x6
典例精析
例1 若关于x的方程 2x n 1 9 0 是一元一次方程,则 n 的值为 2或-2 .
【变式题】加了限制条件,需进行取舍 方程(m 1)x m 1 0 是关于一元一次方程,则 m= 1 .
注:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
列方程:1.20.8x 20.960 x 87.
3.1 从算式到方程
3.1.1 一元一次方程
学习目标
1.通过算术与方程方法的使用与比较,体验用方程解 决某些问题的优越性,提高解决实际问题的能力. 2.掌握方程、一元一次方程的定义以及解的概念,学 会判断某个数值是不是一元一次方程的解.(重点) 3.初步学会如何寻找问题中的等量关系,并列出方程. (难点)
从算式到方程是数学的进步!
观察与思考
观察下列方程,它们有什么共同点?
x x 1 60 70
70 y=60(y+1) 70(z-1)=60z
问题1 每个方程中,各含有几个未知数? 1个
问题2 说一说每个方程中未知数的次数. 1次
问题3 等号两边的式子有什么共同点? 都是整式
知识要点
一元一次方程
二 列方程
典例精析
例2 根据下列问题,设未知数并列出方程: (1) 用一根长24 cm的铁丝围成一个正方形,正方形
的边长是多少?
解:设正方形的边长为x cm.
等量关系:正方形边长×4=周长,
x
列方程:4x 24.
(2) 一台计算机已使用1700 h,预计每月再使用 150 h,经过多少月这台计算机的使用时间 达到规定的检修时间2450 h?
(7) 1 1. x6
典例精析
例1 若关于x的方程 2x n 1 9 0 是一元一次方程,则 n 的值为 2或-2 .
【变式题】加了限制条件,需进行取舍 方程(m 1)x m 1 0 是关于一元一次方程,则 m= 1 .
注:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
列方程:1.20.8x 20.960 x 87.
3人教版七年级数学上册第三章 3.1.1 一元一次方程 优秀教学PPT课件
【素养提升】 18.(12分)某通讯公司推出两种手机付费方式:甲种方式不交月租费, 每通话1分钟付费0.15元;乙种方式需交18元月租费,每通话1分钟付费 0.10元.两种方式不足1分钟均按1分钟计算. (1)如果一个月通话x分钟,那么用甲种方式付费应付话费多少元?用乙 种方式应付话费多少元? (2)如果求一个月通话多少分钟时两种方式的费用相同,可以列出一个怎 样的方程?它是一元一次方程吗? 解:(1)甲种方式应付话费0.15x元,乙种方式应付话费(18+0.10x)元 (2)0.15x=18+0.10x,是一元一次方程
17.(10分)根据题意列出方程: (1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种 报纸共15份,他买的两种报纸各多少份? (2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张 10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张? (只列方程) 解:(1)设买《文摘报》x份,则买《信息报》(15-x)份,根据题意列方 程,得0.5x+0.4(15-x)=7 (2)设出售成人票x张,则出售学生票(128-x)张,根据题意列方程,得 10x+60%×10×(128-x)=912
当x = 4,5,6时呢?
1.若k是方程 2x=3 的解,则 4k+2=______.
2.若 xn2 4 0 是关于x的一元一次方程,则
n=______.
3.已知方程 x a 1 1是关于x的一元一次方程,则
a=______.
1. 一元一次方程的概念: 只含有一个未知数,未知数的次数是1,等号两 边都是整式,这样的方程叫做一元一次方程.
回顾思考
1.你知道什么叫做方程吗?
方程: 含有未知数的等式叫方程.
3人教版七年级数学上册第三章 3.1.2 等式的性质 优秀教学PPT课件
通常用a b表示一般的等式.
试一试
我们可以直接看出像4x=24,x+1=3这样简单 方程的解,但是仅靠观察来解比较复杂的方 程是困难的。因此,我们还要讨论怎样解方 程。方程是含有未知数的等式,为了讨论解 方程,我们先来看看等式有什么性质。
对比天平与等式,你有什么发现?
等式的左边
等式的右边
等号
把一个等式看作一个天平,把等号两边的式子看作天平两边的砝码, 则等号成立就可看作是天平保持两边平衡.
1、什么叫方程的解?
使方程左右两边的值相等的未知数的值叫 做方程的解。
2、什么叫解方程?
求出使方程左右两边都相等的未 知数的值的过程叫做解方程。
检验一个数值是不是方程的解的步骤:
1.将数值代入方程左边进行计算,
2.将数值代入方程右边进行计算, 3.比较左右两边的值,若左边=右边,则是方程的 解,反之,则不是.
第三章 一元一次方程 3.1 从算式到方程 3.1.2 等式的性质
学习目标
1. 理解、掌握等式的性质. (重点) 2. 能正确应用等式的性质解简单的一元一次方程.
(难点)
1. 什么是方程?
方程是含有未知数 的等式。
2. 什么是一元一次方程? 只含有一个未知数(元),未知数的次数都是1,等 号两边都是整式,这样的方程叫一元一次方程。
(1)a,b,c三个物体就单个而言哪个最重? (2)若天平一边放一些物体a,另一边放一些物体c,要使天平平衡,天平 两边至少应该分别放几个物体a和物体c?
解:(1)根据图示,知 2a=3b,2b=3c,所以 a=32 b,b=32 c,则 a=
9 4
c,因为94
c>32
c>c,即 a>b>c,所以 a,b,c 三个物体就单个而言,
试一试
我们可以直接看出像4x=24,x+1=3这样简单 方程的解,但是仅靠观察来解比较复杂的方 程是困难的。因此,我们还要讨论怎样解方 程。方程是含有未知数的等式,为了讨论解 方程,我们先来看看等式有什么性质。
对比天平与等式,你有什么发现?
等式的左边
等式的右边
等号
把一个等式看作一个天平,把等号两边的式子看作天平两边的砝码, 则等号成立就可看作是天平保持两边平衡.
1、什么叫方程的解?
使方程左右两边的值相等的未知数的值叫 做方程的解。
2、什么叫解方程?
求出使方程左右两边都相等的未 知数的值的过程叫做解方程。
检验一个数值是不是方程的解的步骤:
1.将数值代入方程左边进行计算,
2.将数值代入方程右边进行计算, 3.比较左右两边的值,若左边=右边,则是方程的 解,反之,则不是.
第三章 一元一次方程 3.1 从算式到方程 3.1.2 等式的性质
学习目标
1. 理解、掌握等式的性质. (重点) 2. 能正确应用等式的性质解简单的一元一次方程.
(难点)
1. 什么是方程?
方程是含有未知数 的等式。
2. 什么是一元一次方程? 只含有一个未知数(元),未知数的次数都是1,等 号两边都是整式,这样的方程叫一元一次方程。
(1)a,b,c三个物体就单个而言哪个最重? (2)若天平一边放一些物体a,另一边放一些物体c,要使天平平衡,天平 两边至少应该分别放几个物体a和物体c?
解:(1)根据图示,知 2a=3b,2b=3c,所以 a=32 b,b=32 c,则 a=
9 4
c,因为94
c>32
c>c,即 a>b>c,所以 a,b,c 三个物体就单个而言,
人教版七年级上册数学第三章《一元一次方程》全章课件
2
1、像这种用等号“=”来表示相 归纳:
等关系的式子,叫等式。
2、像这样含有未知数的等式 叫做方程。
练习1:
判断下列各式是不是方程,是的打“√”,不 是的打“×”并说明原因。
(1)-2+5=3 (×) (3) m=0 (√ ) (5)χ+y=8 ( √ ) (2) 3χ-1=7 (4) χ﹥ 3 (√ ) ( ×) (√ )
探索新知
方程的解
2x-4=0
40+10χ=70 X=2 X=3 使方程左 右两边相 等的未知 数检验下列各数是不是方程 3 x 2 10 x 的解:
(1) x 2
解:把 x
(2) x 3
把
2 代入原方程
8 右边= 10 2
解: 设这个学校有
x名学生。根据题意列方程,得
52 0 0 x ( x 52 0 0 x) 80
3 n 5 2 x 6 10 是一元一次方 3、(1)若关于 x 的方程
程,求 n 的值; 解:∵方程是一元一次方程
3n 5 1
(2)如果方程 (m 1) x m 2 0 是关于 x 的一元一次
(2)、一台计算机已使用1700小时,预计每月再使 用150小时,经过多少月这台计算机的使用时间达到 规定的检修时间2450小时? 设经过 x个月这台计算机的使用时间达到规定 解: 的检修时间。根据题意列方程,得
150 x 1700 2450
(3)、某校女生占全校人数的52%,比男生多80 人,这个学校有多少学生?
(6) 2χ2-5χ+1=0(√ )
(7) 2a +b (× ) (8)x=4
探索新知
一辆客车和一辆卡车同时从A地出发沿同 一公路同方向行驶,客车的速度是70km/h,卡车的 速度是60km/h,客车比卡车早1小时到达B地,A、B 两地间的路程是多少?
1、像这种用等号“=”来表示相 归纳:
等关系的式子,叫等式。
2、像这样含有未知数的等式 叫做方程。
练习1:
判断下列各式是不是方程,是的打“√”,不 是的打“×”并说明原因。
(1)-2+5=3 (×) (3) m=0 (√ ) (5)χ+y=8 ( √ ) (2) 3χ-1=7 (4) χ﹥ 3 (√ ) ( ×) (√ )
探索新知
方程的解
2x-4=0
40+10χ=70 X=2 X=3 使方程左 右两边相 等的未知 数检验下列各数是不是方程 3 x 2 10 x 的解:
(1) x 2
解:把 x
(2) x 3
把
2 代入原方程
8 右边= 10 2
解: 设这个学校有
x名学生。根据题意列方程,得
52 0 0 x ( x 52 0 0 x) 80
3 n 5 2 x 6 10 是一元一次方 3、(1)若关于 x 的方程
程,求 n 的值; 解:∵方程是一元一次方程
3n 5 1
(2)如果方程 (m 1) x m 2 0 是关于 x 的一元一次
(2)、一台计算机已使用1700小时,预计每月再使 用150小时,经过多少月这台计算机的使用时间达到 规定的检修时间2450小时? 设经过 x个月这台计算机的使用时间达到规定 解: 的检修时间。根据题意列方程,得
150 x 1700 2450
(3)、某校女生占全校人数的52%,比男生多80 人,这个学校有多少学生?
(6) 2χ2-5χ+1=0(√ )
(7) 2a +b (× ) (8)x=4
探索新知
一辆客车和一辆卡车同时从A地出发沿同 一公路同方向行驶,客车的速度是70km/h,卡车的 速度是60km/h,客车比卡车早1小时到达B地,A、B 两地间的路程是多少?
第三章代数式复习课件人教版数学七年级上册
巩固练习4.代数式的值及应用
3
2.已知a=12,b=-18,求下表中代数式的值:
代数式
a+b
a-b
ab
代数式的值 -6
30
-216
巩固练习4.代数式的值及应用
3.已知方程x-2y=5,则整式x-2y-1的值为 4 .
解:∵x-2y=5, ∴x-2y-1=5-1=4.
4.已知x2-2x-1=0,则代数式2x2-4x+3的值是 5 . 解:∵x2-2x-1=0, ∴x2-2x=1, ∴2x2-4x+3=2(x2-2x)+3=2×1+3=5.
代数式的意义 列代数式 代数式的值
48a+48×6=(48a+288)元
巩固练习2.列代数式表示数量关系
4.用代数式表示: (1)棱长为a的正方体的表面积. 棱长为a的正方体的表面积为6a2. (2)位于江苏省常州市金坛区的华罗庚纪念馆目前累计接待中外参观 者a万人,预计今后每年平均接待参观者6万人,c年后累计接待的 总人数为多少万人? c年后累计接待的总人数为(a+6c)万人.
巩固练习3.列代数式表示反比例关系
2.下列几个关系中,成反比例关系的是( C ) A.正三角形的面积与周长 B.人的身高与年龄 C.三角形面积一定时,一边与这边上的高 D.矩形的长与宽 A.正三角形的面积与其周长不成比例,故A不符合题意; B.人的身高与年龄不成比例,故B不符合题意; C.三角形面积一定时,一边与这边上的高成反比例,故C符合题意; D.矩形的长与宽不成比例,故D不符合题意;
知识点3.列代数式表示反比例关系
正比例关系:
两个相关联的量,一个量变化,另一个量也随着变化,且这两 个量的比值或商一定,所以它们是成正比例的量,它们的关系是成 正比例关系.
人教版七年级上数学教学课件第三章一元一次方程全章
如果a=b(c≠0),那么 a b . cc
【等式性质1】 如果a b,那么a c b c.
【等式性质2】 如果a b,那么ac bc.
如果a bc 0 ,那么a b .
cc
1.等式两边都要参加运算,并且是作同一种运算.
注 2.等式两边加或减,乘或除以的数一定是同一个数
意
或同一个式子.
检验一个数值是不是方程的解的步骤: 1.将数值代入方程左边进行计算, 2.将数值代入方程右边进行计算, 3.比较左右两边的值,若左边=右边,则是方程的解, 反之,则不是.
请你判断下列给定的t的值中,哪个是方程2t+1=7-t 的解?
(1)t=-2 (2)t=2 (3)t=1
根据方程的解的定义,我们得到t=2是方程2t+1=7-t 的解.
试妨问决
一分题这
50千米
70千米
青山
翠湖 秀水
地名 王家庄 青山 秀水
时间 10:00 13:00 15:00
问题:如图,汽车匀速行驶途经王家庄、青
山、秀水三地的时间如表所示,翠湖在青山、
秀水两地之间,距青山50千米,距秀水70千米,
王家庄到翠湖的路程有多远?
回顾:路程=速度×时间 速度=路程÷时间
(3) y 3 6 y 9 (5) x2 1
(4) 0.32m (3 0.02m) 0.7
(6) 1 y 4 1 y
2
3
例1 根据下列问题,设未知数并列出方程: (1)用一根长24 cm的铁丝围成一个正方形,正方形的边 长是多少? 解:设正方形的边长为x cm, 根据题意列方程得:4x=24. 变式:用一根长24 cm的铁丝围成一个长方形,使它的长 是宽的1.5倍,长方形的长、宽各是多少? 解:设长方形的宽为x cm,则它的长为1.5x cm, 根据题意列方程得:2(x+1.5x)=24.
【等式性质1】 如果a b,那么a c b c.
【等式性质2】 如果a b,那么ac bc.
如果a bc 0 ,那么a b .
cc
1.等式两边都要参加运算,并且是作同一种运算.
注 2.等式两边加或减,乘或除以的数一定是同一个数
意
或同一个式子.
检验一个数值是不是方程的解的步骤: 1.将数值代入方程左边进行计算, 2.将数值代入方程右边进行计算, 3.比较左右两边的值,若左边=右边,则是方程的解, 反之,则不是.
请你判断下列给定的t的值中,哪个是方程2t+1=7-t 的解?
(1)t=-2 (2)t=2 (3)t=1
根据方程的解的定义,我们得到t=2是方程2t+1=7-t 的解.
试妨问决
一分题这
50千米
70千米
青山
翠湖 秀水
地名 王家庄 青山 秀水
时间 10:00 13:00 15:00
问题:如图,汽车匀速行驶途经王家庄、青
山、秀水三地的时间如表所示,翠湖在青山、
秀水两地之间,距青山50千米,距秀水70千米,
王家庄到翠湖的路程有多远?
回顾:路程=速度×时间 速度=路程÷时间
(3) y 3 6 y 9 (5) x2 1
(4) 0.32m (3 0.02m) 0.7
(6) 1 y 4 1 y
2
3
例1 根据下列问题,设未知数并列出方程: (1)用一根长24 cm的铁丝围成一个正方形,正方形的边 长是多少? 解:设正方形的边长为x cm, 根据题意列方程得:4x=24. 变式:用一根长24 cm的铁丝围成一个长方形,使它的长 是宽的1.5倍,长方形的长、宽各是多少? 解:设长方形的宽为x cm,则它的长为1.5x cm, 根据题意列方程得:2(x+1.5x)=24.
人教版数学七年级上册第三章一元一次方程一元一次方程课件
3.1.1 一元一次方程
栏目索引
知识点二 一元一次方程
定义 条件
只含有一个未知数,未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程.如2x-3=0,5y +2=9等
(1)只含有一个未知数,如x-y=3含有两个未知数x,y,所以它不是一元一次方程; (2)未知数的次数都是1,如x2-4=0中,x的次数是2,所以它不是一元一次方程;
两个未知数,所以不是一元一次方程.方程②③⑤都是一元一次方程. 答案 B
温馨提示 当方程中含有未知数的同类项时,要先化简,然后根据一元
一次方程的定义进行判断.
3.1.1 一元一次方程
栏目索引
知识点三 方程的解与解方程
内容
实质
解方程
求出使方程中等号左右两边相等的未知数的值的过程 变形
方程 的解
使方程中等号左右两边相等的未知数的值叫做方程的解 数值
3.1.1 一元一次方程
知识点一 方程的概念
栏目索引
3.1.1 一元一次方程
栏目索引
例1 下列各式是方程的是 ( ) A.4-5=-1 B.3x+y-1 C.s+2t=5 D.x-5>7 解析 选项A中的式子是等式,但不含未知数,所以它不是方程;选项B中 的式子含有未知数x,y,但不是等式,所以它不是方程;选项C中的式子是 等式,且含有未知数s,t,所以它是方程;选项D中的式子不是等式,所以它 不是方程. 答案 C 温馨提示 方程中的未知数可以用x表示,也可以用其他字母表示,方程 中未知数的个数不一定是一个,可以是两个或两个以上.
3.1.1 一元一次方程
栏目索引
2.下列各数是方程2x-1=3x+1的解的是 ( ) A.2 B.-2 C.1 D.1或-2 答案 B 把各选项代入方程检验即可.
人教版七年级数学上册第三章《一元一次方程》课件(12份)
去括号,看符号:是“+”号,不变号;是“―”号, 全变号。
需要更完整的资源请到 新世纪教 育网 -
我校去年加强节能措施,提倡节约用电, 去年下半年与上半年相比,月平均用电量减少 1000度,全年用电9万度,我校去年上半年每 月平均用电多少度?
解:设上半年每月平均用电x度,则下半年每月平均用电(x-1000)度, 上半年共用电6x度,下半年共用电6(x-1000)度。 根据题意列方程得:
移项,合并同类项,系数化为1, 要注意什么? ①移项要变号。 ②合并同类项,系数相加,字母部分 不变。
③系数化为1,要方程两边同时除以
未知数前面的系数。
需要更完整的资源请到 新世纪教 育网 -
我校去年加强节能措施,提倡节约 用电,去年下半年与上半年相比,月平均 用电量减少1000度,全年用电9万度,我 校去年上半年每月平均用电多少度?
移项,得
去括号变形错,有一项 没变号,改正如下:
3 0.4 x 2 0.2 x
去括号,得3-0.4x-2=0.2x
0.4 x 0.2 x 3 2
移项,得 -0.4x-0.2x=-3+2 合并同类项,得 -0.6x=-1 系数化为1,得 x= -1÷(-0.6)
5 x 3
合并同类项,得 系数化为1,得
0.2 x 5
x 25
需要更完整的资源请到 新世纪教 育网 -
1.解方程:
x 2 (5x 1) 10
2.根据条件列出方程,并求出方程的解:
一个数的2倍与3的和比这个数与7的差大 50,这个数是什么?
需要更完整的资源请到 新世纪教 育网 -
分析:若设上半年每月平均用电x度, (x-1000) 则下半年每月平均用电 度 上半年共用电 度, 6x 下半年共用电 6(x-1000)度 因为全年共用了9万度电, 所以,可列方程 6x+ 6(x-1000)=90000 。
需要更完整的资源请到 新世纪教 育网 -
我校去年加强节能措施,提倡节约用电, 去年下半年与上半年相比,月平均用电量减少 1000度,全年用电9万度,我校去年上半年每 月平均用电多少度?
解:设上半年每月平均用电x度,则下半年每月平均用电(x-1000)度, 上半年共用电6x度,下半年共用电6(x-1000)度。 根据题意列方程得:
移项,合并同类项,系数化为1, 要注意什么? ①移项要变号。 ②合并同类项,系数相加,字母部分 不变。
③系数化为1,要方程两边同时除以
未知数前面的系数。
需要更完整的资源请到 新世纪教 育网 -
我校去年加强节能措施,提倡节约 用电,去年下半年与上半年相比,月平均 用电量减少1000度,全年用电9万度,我 校去年上半年每月平均用电多少度?
移项,得
去括号变形错,有一项 没变号,改正如下:
3 0.4 x 2 0.2 x
去括号,得3-0.4x-2=0.2x
0.4 x 0.2 x 3 2
移项,得 -0.4x-0.2x=-3+2 合并同类项,得 -0.6x=-1 系数化为1,得 x= -1÷(-0.6)
5 x 3
合并同类项,得 系数化为1,得
0.2 x 5
x 25
需要更完整的资源请到 新世纪教 育网 -
1.解方程:
x 2 (5x 1) 10
2.根据条件列出方程,并求出方程的解:
一个数的2倍与3的和比这个数与7的差大 50,这个数是什么?
需要更完整的资源请到 新世纪教 育网 -
分析:若设上半年每月平均用电x度, (x-1000) 则下半年每月平均用电 度 上半年共用电 度, 6x 下半年共用电 6(x-1000)度 因为全年共用了9万度电, 所以,可列方程 6x+ 6(x-1000)=90000 。
人教版数学七年级上册第三章《代数式》复习课课件
在有理数混合运算中,要细心观察题目特点,适当运用运算 律,可使计算简单.
代数式在实际生活中的应用 例7 综合与实践. 某校组织学生外出研学,旅行社报价每人收费120元,当研学 人数超过100时,旅行社给出两种优惠方案: 方案一:研学团队先交1000元后,每人收费100元. 方案二:每人收费打九折(九折即原价的90%).
p为
.(用含w、h的式子表示p)
(2)李老师的身高是1.70 m,体重是60 kg,他的体重是否适中?
解:(1)根据题意得他的身体质量指数p为hw2. (2)李老师的身体质量指数为1.67002≈20.76, 因为18.5<20.76<24,所以他的体重适中.
反比例关系 例4 下列两个量的关系一定不是反比例关系的是( D ) A.若r为圆柱底面的半径,h为圆柱的高,当圆柱的侧面积一定 时,h与r之间的关系 B.路程一定时,汽车的行驶速度v(km/h)与行驶时间t(h)之间 的关系
C.三角形的面积一定,则三角形的底边长a与对应的高h之间 的关系
D.长方形的周长一定,其面积S与长方形的一边长x之间的关 系
变式训练 1.已知|3x-6|+(y+3)2=0,则3x+2y的值是 0 .
2.已知a、b互为相反数,c、d互为倒数,|m|=3,求(-cd)2024+m220a2+4b+m的值.
解:因为a、b互为相反数,c、d互为倒数,|m|=3, 所以a+b=0,cd=1,m2=9. 所以原式=(-1)2024+9-0=1+9=10.
变式训练 如图,在一个底为a、高为h的 三角形铁皮上剪去一个半径 为r的半圆. (1)用含a、h、r的代数式表示剩下铁皮(阴影部分)的面积S. (2)请求出当a=8,h=6,r=3时,S的值.
最新部编人教版七年级上学期数学《第三章章末复习》精品课件
x=m 的形式.
知识清单 四、实际问题与一元一次方程
1. 列方程解决实际问题的一般步骤:
审:审清题意,分清题中的已知量、未知量.
设:设未知数,设其中某个未知量为x.
列:根据题意寻找等量关系列方程.
解:解方程.
验:检验方程的解是否符合题意.Biblioteka 答:写出答案 (包括单位).
审题是基础,找 等量关系是关键.
解:设应调至甲地 x 人,则调至乙地的人数为 (17-x) 人,根据调配后甲乙两地人数的数 量关系得
28 x 2 15 (17 x).
3 解得 x = 8. 则17-x=9.
答:应调至甲地 8 人,乙地 9 人.
考点讲练
针对训练 5. 春节期间,甲、乙两商场有某品牌服装共 450件,由于甲商场销量上升,需从乙商场调运该服 装50件,调运后甲商场该服装的数量是乙商场的2倍, 求甲、乙两商场原来各自有该品牌服装的数量.
知识清单
三、一元一次方程的解法
解一元一次方程的一般步骤:
(1) 去分母:方程两边都乘各分母的最小公倍数, 别漏乘.
(2) 去括号:注意括号前的系数与符号. (3) 移项:把含有未知数的项移到方程的左边,常
数项移到方程右边,移项注意要改变符号. (4) 合并同类项:把方程化成 ax = b (a≠0)的形式. (5) 系数化为1:方程两边同除以 x 的系数,得
解:设当标价总额是 x 元时,甲、乙超市实付款一
样.由题意知,当 x ≤ 500 时,甲超市的促销力度大于
乙超市,此时,标价总额一样的条件下,甲超市实付
款始终小于乙超市实付款,所以 x>500.
根据题意得 0.88x = 500×(1-10%) + 0.8(x-500),
知识清单 四、实际问题与一元一次方程
1. 列方程解决实际问题的一般步骤:
审:审清题意,分清题中的已知量、未知量.
设:设未知数,设其中某个未知量为x.
列:根据题意寻找等量关系列方程.
解:解方程.
验:检验方程的解是否符合题意.Biblioteka 答:写出答案 (包括单位).
审题是基础,找 等量关系是关键.
解:设应调至甲地 x 人,则调至乙地的人数为 (17-x) 人,根据调配后甲乙两地人数的数 量关系得
28 x 2 15 (17 x).
3 解得 x = 8. 则17-x=9.
答:应调至甲地 8 人,乙地 9 人.
考点讲练
针对训练 5. 春节期间,甲、乙两商场有某品牌服装共 450件,由于甲商场销量上升,需从乙商场调运该服 装50件,调运后甲商场该服装的数量是乙商场的2倍, 求甲、乙两商场原来各自有该品牌服装的数量.
知识清单
三、一元一次方程的解法
解一元一次方程的一般步骤:
(1) 去分母:方程两边都乘各分母的最小公倍数, 别漏乘.
(2) 去括号:注意括号前的系数与符号. (3) 移项:把含有未知数的项移到方程的左边,常
数项移到方程右边,移项注意要改变符号. (4) 合并同类项:把方程化成 ax = b (a≠0)的形式. (5) 系数化为1:方程两边同除以 x 的系数,得
解:设当标价总额是 x 元时,甲、乙超市实付款一
样.由题意知,当 x ≤ 500 时,甲超市的促销力度大于
乙超市,此时,标价总额一样的条件下,甲超市实付
款始终小于乙超市实付款,所以 x>500.
根据题意得 0.88x = 500×(1-10%) + 0.8(x-500),
3.1列代数式表示数量关系(课件)2024-2025学年人教版(2024)数学七年级上册
① 数与字母相乘或字母与字母相乘,通常将乘号省略;② 数与字母相乘时数在前。
③ 带单位时,相加或相减的式子用括号括起来。
(1)某产品前年n件,去年的产量是前年产量的m倍,用式子表
示去年的产量为 mn 件;两年的总产量为( n+mn) 件。
④ 除以一个数或式子,改写成乘这个数或式子的倒数;
(2)一个直角三角形的两直角边长都是a
(3)现在的售价为(1.1x一80)元
-17-
任务三 师生互动,合作探究
例3、甲、乙两地之间公路全长240 km,汽车从甲地开往乙地。行映速度
为 v km/h.
(1)汽车从甲地到乙地要行驶多少小时?
(2)如汽车的行速度增加3 km/h,那么汽车从甲地到乙地需要行驶多少小时?
汽车加速后可以早到多少小时?
任务二 用字母表示数
(1)该机器人10s能识别多大范围内的苹果?60s呢?
100s呢?ts呢?
5×10
60×10
100×10
5×t=5t
观察上面的式子,同学们思考一下,如果要用一个式子表
示识别范围,你会选哪个?为什么?
5t
-3-
任务二 用字母表示数
(2)该机器人识别n 范围内的苹果需要多少秒?
(3)若该机器人搭载了10个机械手,他与采摘工人同时工作1h,假设
(2)(a + b)2
(3)( + )( − )
(4)2n 2n+1或2n-1
-16-
任务三 师生互动,合作探究
例2、用代数式表示:
(1)购买2个单价为a元的面包和3意单价为6元的饮科所需的钱数。
(2)爸爸把a元钱存入银行,存期3年,年利率为2.75%、到期时的利息是少
③ 带单位时,相加或相减的式子用括号括起来。
(1)某产品前年n件,去年的产量是前年产量的m倍,用式子表
示去年的产量为 mn 件;两年的总产量为( n+mn) 件。
④ 除以一个数或式子,改写成乘这个数或式子的倒数;
(2)一个直角三角形的两直角边长都是a
(3)现在的售价为(1.1x一80)元
-17-
任务三 师生互动,合作探究
例3、甲、乙两地之间公路全长240 km,汽车从甲地开往乙地。行映速度
为 v km/h.
(1)汽车从甲地到乙地要行驶多少小时?
(2)如汽车的行速度增加3 km/h,那么汽车从甲地到乙地需要行驶多少小时?
汽车加速后可以早到多少小时?
任务二 用字母表示数
(1)该机器人10s能识别多大范围内的苹果?60s呢?
100s呢?ts呢?
5×10
60×10
100×10
5×t=5t
观察上面的式子,同学们思考一下,如果要用一个式子表
示识别范围,你会选哪个?为什么?
5t
-3-
任务二 用字母表示数
(2)该机器人识别n 范围内的苹果需要多少秒?
(3)若该机器人搭载了10个机械手,他与采摘工人同时工作1h,假设
(2)(a + b)2
(3)( + )( − )
(4)2n 2n+1或2n-1
-16-
任务三 师生互动,合作探究
例2、用代数式表示:
(1)购买2个单价为a元的面包和3意单价为6元的饮科所需的钱数。
(2)爸爸把a元钱存入银行,存期3年,年利率为2.75%、到期时的利息是少
最新人教版七年级上册数学第3章一元一次方程PPT课件
客车和卡车从A地到B地的行驶时间,可以分别表示
想一想,如何用式子表示两
车的行驶时间之间的关系?
因为客车比卡车早1 h经过B地,
所以 x 比 x 小1,即 70 60 x x =1. ① 60 70
知1-导
知识点
思考:式子
1
方程的定义
x x =1 有什么共同点? 60 70
ì 1、含有字母 ï ï ï 可以发现 ï í ï ï ï ï î 2、等号的两边都是整式
A.不可能是-1
C.不可能是0
B.不可能是-2
D.不可能是2
知4-讲
知识点
4
方程的解
1.使方程中等号左右两边相等的未知数的值,就是 这个方程的解. 2.求方程的解的过程叫做解方程.
知4-讲
例5
下列说法中正确的是( C ) A.y=4是方程y+4=0的解 B.x=0.00
根据等式的性质填空,并在后面的括号内填 上变形的根据. x =-2( 等式的性质1 ); (1)如果4x=x-2,那么4x-____ 9 等式的性质1 ); (2)如果2x+9=1,那么2x=1-____(
导引:(1)中方程的右边由x-2到-2,减了x,所以左边也
要减x;(2)中方程的左边由2x+9到2x,减了9,所
知1-导
知识点
1
等式的性质1
你发现了什么?
知1-导
你发现了什么?
知1-导
归 纳
我们可以发现,如果在平衡的天平的两边都 加(或减)同样的量,天平还保持平衡.
知1-讲
等式的性质1: 等式两边加(或减)同一个数(或式子),结果仍相等,
用公式表示:如果a=b,那么a±c=b±c;
这里的a,b,c可以是具体的一个数,也可以是一 个代数式.
人教版初中数学七年级上册教学课件 第三章 一元一次方程 实际问题与一元一次方程 (第2课时)
两件衣服的成本(即进价).
如果设盈利的那件衣服的进价为x 元, 根据进价、利润率、售价之间的关系, 你能列出方程求解吗?同理,如果设另 一件衣服的进价为 y 元呢?
探究新知
解:(1) 设盈利25%的衣服进价是 x 元,
依题意得 x+0.25 x=60. 解得 x=48.
(2) 设亏损25%的衣服进价是 y元, 与你猜想的
A. 盈利
B. 亏损
C. 不盈不亏
¥60
¥60
探究新知
思考:销售的盈亏取决于什么?
取决于总售价与总成本(两件衣服的成本之和)的关系.
总售价(120元) > 总成本 盈 利 总售价(120元) < 总成本 亏 损 总售价(120元) = 总成本 不盈不亏
探究新知
现在两件衣服的售价为已知条件,要知道卖这两 件衣服是盈利还是亏损,还需要知道什么?
商品售价=标价× 折扣数 10
●商品售价、进价、利润率的关系: 商品售价= 商品进价 ×(1+利润率)
探究新知
素养考点 1 判断销售中的盈余问题
例1 一商店在某一时间以每件60元的价格卖出两件衣服, 其中一件盈利25% ,另一件亏损25% ,卖这两件衣服总 的是盈利还是亏损,或是不盈不亏? 你估计盈亏情况是怎样的?
100a
70% 至 a 元,则这种药品在2015 年涨价前的价格为39 元.
链接中考
一商店在某一时间以每件120元的价格卖出两件衣服,其中
一件盈利20%,另一件亏损20%,在这次买卖中,这家商店
( C)
A.不盈不亏 B.盈利20元 C.亏损10元 D.亏损30元
解析:设两件衣服的进价分别为x、y元,
根据题意得:120﹣x=20%x,y﹣120=20%y, 解得:x=100,y=150,
如果设盈利的那件衣服的进价为x 元, 根据进价、利润率、售价之间的关系, 你能列出方程求解吗?同理,如果设另 一件衣服的进价为 y 元呢?
探究新知
解:(1) 设盈利25%的衣服进价是 x 元,
依题意得 x+0.25 x=60. 解得 x=48.
(2) 设亏损25%的衣服进价是 y元, 与你猜想的
A. 盈利
B. 亏损
C. 不盈不亏
¥60
¥60
探究新知
思考:销售的盈亏取决于什么?
取决于总售价与总成本(两件衣服的成本之和)的关系.
总售价(120元) > 总成本 盈 利 总售价(120元) < 总成本 亏 损 总售价(120元) = 总成本 不盈不亏
探究新知
现在两件衣服的售价为已知条件,要知道卖这两 件衣服是盈利还是亏损,还需要知道什么?
商品售价=标价× 折扣数 10
●商品售价、进价、利润率的关系: 商品售价= 商品进价 ×(1+利润率)
探究新知
素养考点 1 判断销售中的盈余问题
例1 一商店在某一时间以每件60元的价格卖出两件衣服, 其中一件盈利25% ,另一件亏损25% ,卖这两件衣服总 的是盈利还是亏损,或是不盈不亏? 你估计盈亏情况是怎样的?
100a
70% 至 a 元,则这种药品在2015 年涨价前的价格为39 元.
链接中考
一商店在某一时间以每件120元的价格卖出两件衣服,其中
一件盈利20%,另一件亏损20%,在这次买卖中,这家商店
( C)
A.不盈不亏 B.盈利20元 C.亏损10元 D.亏损30元
解析:设两件衣服的进价分别为x、y元,
根据题意得:120﹣x=20%x,y﹣120=20%y, 解得:x=100,y=150,
人教版七年级上册数学第三章一元一次方程课件PPT课件PPT
等式的性质1: 等式两边加(或减)同一个数(或式子),结果 仍相等. 如果a=b,那么a±c=__b_±__c_____;
等式的性质2: 等式两边同乘一个数,或除以同一个_不__为__0__的数, 结果仍相等.
如果a=b,那么ac=__b_c___; ab
如果a=b(c≠0),那么 c=___c__.
4. 若关于 x 的方程(a 2)x2 ax 1 0 是一元一次方程, 则 a=___2____.
分析:根据一元一次方程的定义——未知数的
指数都是1,则a 2 0 ,所以 a 2
5.根据问题,设未知数,列出方程: 练习 本每本0.6元,小明拿了15元钱买了若干本, 还找回4.2元.问:小明买了几本练习本?
1.一辆客车和一辆卡车同时从A地出发沿着同公路 同方向行驶,客车的行驶速度是70km/h,卡车的行驶 速度是60km/h,客车比卡车早1h经过B地,A、B两 地间的路程是多少?
(1)你会用算术方法解决这个问题吗?列算式试试.
(2)我们知道,在匀速运动中
.
如果设A,B两地相距 ,则
时间
路程 速度
x
客车从A地到B地的行驶时间为___70__h_____ 想一想,如何
的值应是__6___.同样地,方程 1700+150x=2450中的
未知数 x 的值应是___5____.
上面的分析过程可以表示如下:
实际问题
设未知数 找相等关系
列方程
分析实际问题中的数量关系,利用其中的相等 关系列出方程,是用数学解决实际问题的一种 方法.
1.根据下列问题,设未知数,列出方程: (1)环形跑道一周长400m ,沿跑道跑多少周,可以跑3000m ? (2)甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买 了两种铅笔共20支,两种铅笔各买了多少支? (3)一个梯形的下底比上底多2cm ,高是5cm,面积是40cm2 , 求上底. (4)用买10个大水杯的钱,可以买15个小水杯,大水杯 比小水杯的单价多5元,两种水杯的单价各是多少元?
人教版七年级数学上课件第三章2.3.1.2等式的性质课件
cc
(1)等式两边都要参加运算,并且是作同一种运算。 (2)等式两边加或减,乘或除以的数一定是同一个数或同 一个式子。 (3)等式两边不能都除以0,即0不能作除数或分母.
3.解一元一次方程的实质就是利用等式的性质求 出未知数的值x=a(常数)
作业: P83复习巩固第4题
小结:
1、等式的性质有几条?用字母怎样表示?
2、解方程最终必须将方程化作什么形式?
1.【等式性质1】 等式两边加(或减)同一个数(或式子),
结果仍相等。 如果a=b,那么a±c=b±c
2.【等式性质2】
等式两边乘同一个数,或除以同一个不为 0的数,结果仍相等。
注意
如果a=b,那么ac=bc 如果a=b,那么(c≠a0)b
上述两个问题反映出等式具有什么性质?
等式的两边都加上(或减去)同一个式 子,所得的结果仍是等式.
性质1 等式两边都加(或减)同一个数 (或式子),结果仍相等。
用式子的
如果a b, 那么a c b c 形式怎样
表示?
口答:
(1)从x=y能否得到x+5=y+5?为什么? (2)从a+2=b+2能否得到a=b?为什么? (3)从a+b=b+c能否得到a=c?为什么? (4)怎样从等式5x=4x+3得到等式x=3?
注意:要带入原方程。
小试牛刀 一、利用等式的性质解下列方程并检验
(1) x 5 6 (2) 0.3x 45
(3) 5x 4 0
(4) 2 1 x 3 4
快乐练习
二、填空
(1)如果x-3=6,那么x= 9 , 依据 等式的性质1 ;
(2)如果2x=x-1,那么x=,-1 依据等式的性质1 ; (3)如果-5x=20,那么x= -4, 依据 等式的性质2 。
(1)等式两边都要参加运算,并且是作同一种运算。 (2)等式两边加或减,乘或除以的数一定是同一个数或同 一个式子。 (3)等式两边不能都除以0,即0不能作除数或分母.
3.解一元一次方程的实质就是利用等式的性质求 出未知数的值x=a(常数)
作业: P83复习巩固第4题
小结:
1、等式的性质有几条?用字母怎样表示?
2、解方程最终必须将方程化作什么形式?
1.【等式性质1】 等式两边加(或减)同一个数(或式子),
结果仍相等。 如果a=b,那么a±c=b±c
2.【等式性质2】
等式两边乘同一个数,或除以同一个不为 0的数,结果仍相等。
注意
如果a=b,那么ac=bc 如果a=b,那么(c≠a0)b
上述两个问题反映出等式具有什么性质?
等式的两边都加上(或减去)同一个式 子,所得的结果仍是等式.
性质1 等式两边都加(或减)同一个数 (或式子),结果仍相等。
用式子的
如果a b, 那么a c b c 形式怎样
表示?
口答:
(1)从x=y能否得到x+5=y+5?为什么? (2)从a+2=b+2能否得到a=b?为什么? (3)从a+b=b+c能否得到a=c?为什么? (4)怎样从等式5x=4x+3得到等式x=3?
注意:要带入原方程。
小试牛刀 一、利用等式的性质解下列方程并检验
(1) x 5 6 (2) 0.3x 45
(3) 5x 4 0
(4) 2 1 x 3 4
快乐练习
二、填空
(1)如果x-3=6,那么x= 9 , 依据 等式的性质1 ;
(2)如果2x=x-1,那么x=,-1 依据等式的性质1 ; (3)如果-5x=20,那么x= -4, 依据 等式的性质2 。
人教新课标七年级数学上册第三章 一元一次方程-PPT精选
选一选:根据以上解题过程,你能
为小平的爸爸作选择了吗?
• 如果小平的爸爸业务活动较多,与外界 的联系一定不少,使用时间肯定多于300 分,那么他应该选择“方式一”。
• 如果小平的爸爸业务活动较少,与外界 的联系一定较少,使用时间肯定少于300 分,那么他应该选择“方式二”。
• 假如你爸爸也遇到同样的问题,请为你 爸爸作个选择。
题的数学模型的作用.
1.重点:会列一元一次方程解决实际问题,•并会合 并同类项解一元一次方程.
2.难点:会列一元一次方程解决实际问题. 3.关键:抓住实际问题中的数量关系建立方程模型
某校三年共购买计算机140台,去年购买数量是前年的2 倍,今年购买数量是去年的2倍,前年这个学校购买了多 少台计算机?
• 4x=24
1700+150x=2450
•
0.52x-(1-0.52)x=80
x-50 = x+70
3
5
只含有一个未知数,并且未知 数的次数都是1,这样的方程 叫做一元一次方程
巩固练习
一、判断下列式子是不是一元一次方程,为什么? (1)7x+5=9; (2)3x-6; (3)2x2-4x=5; (4)2y+3=-6y; (5)x-y=5; (6)2a>9.
青山 翠湖
秀水
• (1)汽车从王家庄行驶到青山用了多少时间?
青山到秀水呢?
• (2)青山与翠湖、秀水与翠湖的距离分别是 多少?
• (3)本题求的是什么?
• (4)你会用算术方法解决这个实际问题吗?
设王家庄到翠湖的路程有x千米,你能列出方
X千米
程吗?
50千米 70千米
王家庄
青山 翠湖
秀水
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二 列方程
典例精析
例2 根据下列问题,设未知数并列出方程: (1) 用一根长24 cm的铁丝围成一个正方形,正方形
的边长是多少?
解:设正方形的边长为x cm.
等量关系:正方形边长×4=周长,
x
列方程:4x 24.
(2) 一台计算机已使用1700 h,预计每月再使用 150 h,经过多少月这台计算机的使用时间 达到规定的检修时间2450 h?
(7) 1 1. x6
典例精析
例1 若关于x的方程 2x n 1 9 0 是一元一次方程,则 n 的值为 2或-2 .
【变式题】加了限制条件,需进行取舍 方程(m 1)x m 1 0 是关于x的一元一次方程,则 m= 1 .
注:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
七年级数学上(RJ) 教学课件
第三章 一元一次方程
3.1 从算式到方程
3.1.1 一元一次方程
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.通过算术与方程方法的使用与比较,体验用方程解 决某些问题的优越性,提高解决实际问题的能力. 2.掌握方程、一元一次方程的定义以及解的概念,学 会判断某个数值是不是一元一次方程的解.(重点) 3.初步学会如何寻找问题中的等量关系,并列出方程. (难点)
含有未知数的等式叫做方程.
讲授新课
一 方程及一元一次方程的概念
合作探究
一辆快车和一辆慢车同时从A地出发沿同一公路
同方向行驶,快车的行驶速度是70 km/h,慢车的行
驶速度是60 km/h,快车比慢车早1 h经过B地,A,B
两地间的路程是多少?
1h 60 km/h
70 km/h
(1) 上述问题中涉及到了哪些量? 路程: AB之间的路程 速度:快车70 km/h,慢车60 km/h
快车每小时比 慢车多走10km
时间:快车比慢车早1h经过B地
相同的时间,快车 比慢车多走60km
慢车 610hkm 快车走了6h
A
快车 B
算式:60 ÷(70-60)×70=420(km)
(2)如果将AB之间的路程用x表示,用含x的式子表示 下列时间关系: 慢车 1h
A
快车 B
快车行完AB全程所用时间:7x0 h 慢车行完AB全程所用时间:6x0 h
知识要点
方程的解 使方程左右两边相等的未知数的值叫方程的
解.求方程解的过程叫做解方程.
x=420是
x 60
x 70
1方程的解吗?
例4 x=1000和x=2000中哪一个是方程 0.52x-(1-0.52)x =80的解? 解:当x=1000时, 方程左边=0.52×1000-(1-0.52)×1000=520-480=40, 右边=80,左边≠右边,所以x=1000不是此方程的解. 当x=2000时, 方程左边= 0.52×2000-(1-0.52)×2000=1040-960=80, 右边=80,左边=右边,所以x=2000是此方程的解.
(一元)
(一次)
只含有一个未知数, 未知数的次数都是1,
等号两边都是整式,这样的方程叫做一元一次方程.
练一练
下列哪些是一元一次方程?
(1) 2x 1 ;
(√2)2m 15 3 ;
(√3)3x 5 5x 4 ;(4)x2 2x 6 0 ;
(5) 3x 1.8 3y ; (6)3a 9 15 ;
列方程:1.20.8x 20.960 x 87.
请同学们思考: 1. 怎样将一个实际问题转化为方程问题? 2.列方程的依据是什么?
实际问题 抓关键句子找等量关系 一元一次方程 设未知数列方程
分析实际问题中的数量关系,利用其中的相 等关系列出方程,是用数学解决实际问题的一种 方法.
解:设x月后这台计算机的使用时间达到2450 h. 等量关系:已用时间+再用时间=检修时间, 列方程:1700 150x 2450 .
(3) 某校女生占全体学生数的52%,比男生多80人, 这个学校有多少学生?
解:设这个学校的学生人数为x,那么女生人数为 0.52x,男生人数为(1-0.52)x. 等量关系:女生人数-男生人数=80, 列方程:0.52x- (1-0.52)x=80.
例3 某文具店一支铅笔的售价为1.2元,一支圆珠 笔的售价为2元.该店在“6·1”儿童节举行文具优 惠售卖活动,铅笔按原价打8折出售,圆珠笔按原 价打9折出售,结果两种笔共卖出60支,卖得金额 87元等量关系:x支铅笔的售价+(60-x)支圆珠 笔的售价=87,
导入新课
情境引入
数学无处不在,即便是一些综艺节目中,也时常会 用到一些数学知识.其中在“奔跑吧,兄弟”中, 有一期节目就涉及中国古代著名典型趣题之一—— 鸡兔同笼问题. 观看视频,你能帮陈赫解决问题吗?
问 下 上今 雉 有 有有 兔 九 三雉 各 十 十兔 几 四 五同 何 足 头笼 ? , ,,
你有哪些方法解 决这道经典有趣 的数学题?
温故知新
小学我们已经学过简易方程,你能判断出下列 各式哪些是方程吗?
(1) 2 5 3 ( × )
(2) 3x 1 7
(√ )
(3) 2a b ( × )
(4) x 3
(× )
(5) x y 8 ( √ )
(6) 2x2 5x 1 0 ( √ )
(4)如果用z表示慢车行完AB的总时间,你能 找到等量关系列出方程吗?
慢车 1h
A
快车 B
等量关系:慢车z小时路程=快车提前1小时走的路程
方 程: 70(z-1)=60z
比较:列算式和列方程 列算式:列出的算式表示解题的计算过程, 只能用 已知数.对于较复杂的问题,列算式比较困难.
列方程:方程是根据题中的等量关系列出的等式. 既可用已知数,又可用未知数,解决问题比较方便.
两车所用的时间关系为:快车比慢车早到1h
即:(慢车用时 )- ( 快车用时)=1
x x 1
方程
60 70
(3)如果用y表示快车行完AB的总时间,你能从 快车与慢车的路程关系中找到等量关系,从 而列出方程吗?
慢车 1h
A
快车 B
等量关系:快车y小时路程=慢车(y+1)小时路程
方 程:
70 y =60(y+1)
从算式到方程是数学的进步!
观察与思考
观察下列方程,它们有什么共同点?
x x 1 60 70
70 y=60(y+1) 70(z-1)=60z
问题1 每个方程中,各含有几个未知数? 1个
问题2 说一说每个方程中未知数的次数. 1次
问题3 等号两边的式子有什么共同点? 都是整式
知识要点
一元一次方程