土壤水动力学

合集下载

土壤水动力学

土壤水动力学
弯曲度不能直接测量,它可以通过图像分析或流动和溶质运输建模
来计算。在这项研究中,通过两种方法从流体速度场计算出曲折值。
在第一种方法中
其中u是局部流速的平均值,而uj是平均流动方向上的速度的j分
量,其可以在x,y或z方向上。 这种方法基于一个简单的模型,
其中假定多孔介质等效于一组平行通道。
第15页/共28页
±1); 当i = 7 ... 10时,i被定义为
(±1,±1,0); 当i = 11 ... 14时,
i被定义为(0,±1,±1); 当对i
= 15 ... 18时,i被定义为(±1,0,
±1)。如左图
格子Boltzmann方法中的d3Q19晶格结构
第10页/共28页
04 图像处理和数值建模
采用D3Q19 LB模型(三维空间中的19个速度
正粘质土壤团聚体图像然后将其用作三维孔隙几何形状来
进行LB模拟。最后,根据LB模拟结果评估土壤样品的宏
观水力特性。
第3页/共28页
研究方法与材料
第4页/共28页
03 方法和材料
样本1
样本2
样本3
样本4
Vertisol ( 黑 土 , 中 国 北 方 的 江 苏 省 ( 34°17'39.4˝N ,
度都显着下降。x,y和z方向的平均弯曲度值减少了20%至30%,这与渗透率的增
加相吻合。上图显示了基于速度场的第一种方法计算出的曲折的尺度依赖性。一般
来说,曲折的尺度依赖性与渗透性的一致。在不同尺度上,较大的弯曲度对应较小
的渗透率。总体而言,生物炭修正大大减少了不同规模的曲折。
第24页/共28页

像素(避免边缘效应)
选择合适的阈值将图

第2章_土壤水动力学基本方程

第2章_土壤水动力学基本方程

2.3非饱和土壤水运动的达西定律
2.3.3非饱和导水率的数学表达
含水量为 s Δ ,最大半径为 R1的毛管排空。 2 2 Δ M 1Δ M 1 i 1,2,, M 1 对一般情况 K s iΔ K s Δ 2 w g j 2 w g j i 1 h2 2 h2 j j 2 M M M 又
K s iΔ K s i M2 K s i 1,M , M 1 2, 1 Ks Δ1 M 1 例题2.1 2 2 j 1 h 2 2 w g j 1 h j j j 1 h j
j i 1 h 2 j
Δ 1 1 1 g 2 j i 1 h2 2 i h j w j j
H h z h 1 J w K h K h K h z z z
2.3非饱和土壤水运动的达西定律
2.3.2 Buckingham-Darcy通量定律
Buckingham-Darcy通量定律也可写成: 符号相反, 向下为正
非饱和流与饱和流的比较: 共同之处:都服从热力学第二定律,都是从水势高的地 方向水势低的地方运动。 不同之处: ①土壤水流的驱动力不同。 饱和流的驱动力是重力势和压力势;
非饱和流的是重力势和基质势。
②导水率差异 非饱和导水率远低于饱和导水率;当基质势从0降低到 -100kpa时,导水率可降低几个数量级,只相当于饱和导 水率的十万分之一。 ③土壤空隙的影响土壤。在高吸力下,粘土的非饱和导 水率比砂土高。
16~40cm/d
〉100cm/d

很高
40~100cm/d

2.3非饱和土壤水运动的达西定律
绝大多数田间和植物根区的土壤水流过程都处 在非饱和状态。非饱和流研究为土壤物理学最 活跃的研究领域之一。 2.3.1 非饱和流与饱和流的比较

土壤水动力学1(77)

土壤水动力学1(77)

二、土壤水的研究概况
研究概况
古希腊:构成自然界的2个元素:土壤,水
但真正的土壤水科学作为研究土壤中物质和能的状态和 运转的科学,却是非常年轻的。它比起土壤学其它分支 的发展,如土壤发生学和土壤化学要晚1或2个世纪。 从1856年达西(Darcy)公式的提出算起,土壤水分的试 验研究也就是150年的历史。 如同其它学科一样,它也经历了一个由经验到理论,由 静态到动态,由定性到定量(数值计算,电子计算机的 发展),由宏观到微观的研究发展过程。
吸湿系数(Hygroscopic Coefficient): 吸湿水达到最大时的土壤含水率。 最大分子持水率: 薄膜水达到最大时的土壤含水率。
凋萎系数(Wilting Point):
作物产生永久凋萎时的土壤含水率。 田间持水率(Field Capacity): 悬着毛管水达到最大时的土壤含水率。 饱和含水率(Saturation):
重量含水量
GRAVIMETRIC WATER CONTENT (GWC)
•GWC = Mw / Ms100%
qg
体积含水量
VOLUMETRIC WATER CONTENT (VWC)
qv
• VWC = Vw / Vt 100% • = Vw / (Vs + Vf) • = GWC BD / DW
第一章 土壤水分研究的回顾和展望
一、土壤水系统简介
土壤水(Soil water, Soil moisture):存在于土壤孔 隙里的水。 饱和水(Saturated water) :水全部充满土壤孔隙。 非饱和土壤水(Unsaturated water) :部分土壤孔隙 被水占据。 隔离水(不动水)(Insulate water or Immobile water):存在于土壤中封闭孔隙中的水分。

蒸发条件下土壤水分再分布的动力学研究

蒸发条件下土壤水分再分布的动力学研究

蒸发条件下土壤水分再分布的动力学研究随着气候变化的加剧以及人类行为对环境的不断破坏,土壤水分的变化成为一个极为重要的研究方向。

土壤水分分布的变化越来越多地影响着土壤的温度和结构,从而影响着土壤在进行农业生产领域中的性质和有效性,可以使土壤表面恢复特有的水分平衡,从而使土壤中的水分平衡以及土壤生物活动得以恢复。

因此,研究和了解蒸发条件下土壤水分再分布的动力学是非常重要的。

蒸发条件下土壤水分再分布的动力学研究以求估计土壤水分再分布的影响为主要目的。

土壤再分布受到气象因素的影响,特别是温度的影响,因此,蒸发条件下土壤水分再分布的动力学研究具有特殊的意义,研究过程中需要考虑温度、湿度、风速等气象参数对土壤水分再分布的影响,以分析研究介质中温度、湿度、风速等参数的变化对土壤水分再分布的影响。

综上所述,蒸发条件下土壤水分再分布的动力学研究的目的是准确估计温度、湿度、风速等气象参数对土壤水分再分布的影响。

根据研究目的,蒸发条件下土壤水分再分布的动力学研究的方法可以分为两个部分:一是野外实验,通过野外调查和实验,研究蒸发条件下土壤水分再分布的变化;二是室内实验,通过室内实验得到蒸发条件下土壤水分再分布的结果。

首先,在野外实验中,需要收集不同时期土壤水分的测试数据,然后确定蒸发时,土壤水分在深度上的分布情况,其次,对野外实验结果进行处理,探究室外蒸发时,土壤水分再分布的变化规律,最后,基于研究的发现,提出合理的解决方案来改善蒸发条件下土壤水分再分布的状况。

室内实验是收集蒸发条件下土壤水分再分布的有效数据的重要方法,它可以有效地表征土壤水分再分布的变化,并且可以更直观地模拟室外蒸发实验中发生的过程。

室内实验不仅可以研究蒸发条件下土壤水分再分布的变化,而且还可以研究其它影响,比如土壤温度、湿度、风速等气象参数的变化对土壤水分再分布的影响。

在蒸发条件下土壤水分再分布的动力学研究中,实验和实测的分析是实现研究目标的重要环节。

土壤水动力学的发展解析

土壤水动力学的发展解析
1. 土壤水动力学的发展
1.1 概述 1.2 土壤水势与土壤水分运动 1.3 SPAC 水热传输 1.4 土壤中溶质的迁移与转化 1.5 土壤水问题应用研究
1.1 概 述
❖ 科学 学科 学科分支
流体→液体→水→土壤水
流体动力学→水动力学
→多孔介质水动力学→饱和流、非饱和流
→土壤水动力学(地下水动力学、土壤水动力学)
❖ 土壤溶质迁移转化的研究背景 环境问题 —— 面源污染 (化肥、农药等) 土壤盐碱化
❖ 土壤溶质迁移基本方程
c
t
cs
z
Dsh
v.
c z
qc
z
SC
对 流: q c
弥 散: Dsh c/ z 分子扩散+机械弥散→水动力弥散
源汇项:S c
液相以外的动态贮存:cs
1.4.2 土壤溶质迁移转化行为
Rn
大气 c
λE
Ta
ea
冠层 cv cs
Rv
ra
ra
λE v
r1
T1
eb r1 rC e1*
Tb
Rs λE s
r2
r2 rs
土壤
G
显热 潜热
T2
e2
温度 水汽压
大叶模型
三个介质 土壤 植物(叶) 大气
两个介面 土壤-植物 植物-大气
1.3.2 SPAC水热传输
❖ SPAC水热传输模拟模型
能量平衡
RN RV RS RV CV EV RS CS ES E EV ES C CV CS
➢可动水体与非可动水体间的质量迁移
❖ 化学动力学反应方程
X+Y→Z Z/t = kXnYm Z/t = kXn n=0、1、2

土壤水动力学

土壤水动力学

§2 土壤水分运动线性化方程的入渗解……………………………….36
一、 水平入渗解……………………………………………………… 36
二、 垂直入渗解……………………………………………………… 37
§3 Green-Ampt 模型与δ 函数入渗解………………………………… 37
一、 Green-Ampt Model…………………………………………… 37
5. Water Flow in Soils
张蔚榛主编 D.希勒尔著 华雪,叶和才译 D.希勒尔 著 罗焕灰 等译 华孟 王坚 主编
Tsuyoshi Miyazaki
2
土壤水动力学
绪论
目录
绪论……………………………………………………………………………1 一、什么是土壤水动力学?…………………………………………….1 二、为什么要学习土壤水动力学?…………………………………….1 三、怎样学习土壤水动力学?………………………………………….1
§1 非饱和土壤水流动的达西定律………………………………… 15
§2 土壤水运动的主要参数………………………………………… 17
一、水力传导度…………………………………………………… 17
二、水分扩散度…………………………………………………… 18
三、容水度………………………………………………………… 18
4
土壤水动力学
绪论
二、 单根吸水的土壤水运动模型…………………………………… 57 §4 腾发量的估算……………………………………………………… 59
一、 概述……………………………………………………………… 59 二、 腾发量的估算方法……………………………………………… 59 三、 根据潜在腾发量估算实际腾发量………………………………..62 §5 考虑作物根系吸水时恒温条件下土壤水分运动的模拟………… 62

土壤水动力学1(77)

土壤水动力学1(77)

重量含水量
GRAVIMETRIC WATER CONTENT (GWC)
•GWC = Mw / Ms100%
qg
体积含水量
VOLUMETRIC WATER CONTENT (VWC)
qv
• VWC = Vw / Vt 100% • = Vw / (Vs + Vf) • = GWC BD / DW
二、土壤水的研究概况
研究概况
1931年理查兹(Richards)在用能量概念研究土壤水的基础 上对达西定律进行了推广,使其适用于非饱和土壤,大大推 动了土壤水的动态研究,也使土壤水运动的数学模拟得到了 发展。 近几十年来,土壤水的研究已成为土壤物理学中一个重要分 支,一个最活跃的领域。随着电子计算机的大量应用和各学 科的相互渗透,非饱和土壤水运动的研究发生了由经验到理 论,从定性到定量的深刻变化,从而形成相对独立的一个领 域——土壤水动力学。 土壤水分的研究已成为土壤物理、农田水利、水文学等众多 学科领域的前沿课题。如国家自然科学基金委员会的自然科 学发展战略的报告中,自然地理和土壤学科均把土壤圈(或 地表)物质(水、热、盐)循环和能量转换列为优先资助领 域。水利学科中的地表水、土壤水、地下水三水之间的转化 规律、SPAC水分传输理论等列为优先研究。
所有土壤孔隙都为水所充满时的土壤含水率。
土壤水分常数
土壤水分的有效性 土壤水 无效水 汽态水 吸着水 有效水 毛管水 过剩水 重力水
土壤水分状况:干 大气压:1000 105 ℃ 土壤 下 水分 烘 干 常数 土 31 15~16 吸 凋 湿 萎 系 系 数 数
湿
的土 0 引水 力之 全间
6.25 1/3 1/10 毛 最 毛 管 田 大 管 断 间 持 分 持 水 子 裂 持 水 含 水 量 持 量 水 量 水 量 量 毛管悬着水 吸湿水 膜状水 重力水 毛管上升水 难有效水 无效水 易有效水 多余水 65%田持 灌水下限

土壤水动力学SWD7SPAC水分传输

土壤水动力学SWD7SPAC水分传输
未知量:冠层 Tb、eb;叶片Tv、 地表热通量G
地表以下土壤层:
土壤水动力学SWD7SPAC水分传输
7.4.2 模型求解
1) 冠层温度Tb:二分法求解
2) 冠层水汽压eb、叶面温度Tv、地表热通量G 3) 地表蒸发速率Es、蒸腾速率Ev、根系吸水速率s(z,t) 4) 土壤水热迁移方程:FDM
u 反映土壤水分胁迫对腾发的影响,与根系层土 壤含水率的大小及分布、最大腾发强度有关
u FAO方法:
u 经验公式:如
土壤水动力学SWD7SPAC水分传输
7.2.6 根据水量平衡模型估算腾发量
以上腾发量估算中,计算Ks需 要根系层含水量资料,可根据 水量平衡模型来推算:
ΔW=W2-W1=P+I-ET-Q-R
物需水量) u ET——实际腾发量
n 双作物系数法:…
土壤水动力学SWD7SPAC水分传输
n 参考作物腾发量(Reference ET)
u 概念:参照作物腾发量为一种假想的参照作 物冠层(作物高度为0.12m,固定的叶面阻 力为70s/m,反射率为0.23,非常类似于表面 开阔、高度一致、生长旺盛、完全遮盖地面 而不缺水的绿色草地)的腾发速率
土壤水动力学SWD7SPAC水分传输
Bowen比法(测定两个高度处的温、湿度)
测定两个高度处的温度和湿度。由:
土壤水动力学SWD7SPAC水分传输
7.2.3 估算腾发量的经验方法
n 主要用于土壤供水充分条件下作物最大腾 发量(作物需水量)或参考作物腾发量的 估算
n 利用蒸发皿资料估算腾发量
u ETmi=αi E0
土壤水动力学SWD7SPAC水分传输
7.2.4 估算腾发量的理论方法
n 紊流扩散法(空气动力学法) n 能量平衡法 n 综合法

土壤水动力学

土壤水动力学

第一章土壤水的能态——土水势
1.1 概述
自然界中的水是循环运动的,和人类生活关系最密切的是陆地的水循环,在循环过程中,地表一下的水存储和运移在土壤、岩石空隙、岩石裂隙或孔洞中。

当土壤孔隙没有被水充满,土壤中的水分处于非饱和状态时,我们称该土壤区域为非饱和带(或称包气带),称其中的水分为非饱和土壤水。

当水充满了土壤的全部孔隙(含有少许不连通的充气孔隙),土壤中水分处于饱和状态时,该土壤区域称为胞和带(或称饱水带),而称其中的水分为饱和土壤水,即一般所指的地下水。

土壤水和地下水的共同特点是水分均存在于多孔介质的孔隙中,并在其中运动。

土壤作为一种多孔介质是有无数碎散的、形状不规则且排列错综复杂的固体颗粒组成。

多孔介质内孔隙的大小、形状与连通性各不相同,极大地影响着其中流体的性质和运动特征。

例如,将土壤视为小球体的集合,或假想为平行的小扁平体的集合,更多的是将土壤孔隙近似为直径大小不一的一束毛细管。

这些模型,特别是毛管模型,可以用来分析土壤中水分运动的某些现象,但由于这些模型都对真实土壤做了过分的简化和近似,其使用价值甚小。

目前的趋势不是用微观的方法去研究多孔介质中孔隙的大小、形状和分布以及孔隙空间中流体的流动特征,而是转向用宏观的方法。

宏观方法是在较大尺度范围内研究多孔介质大小及其中水流的平均状况。

此时为了求得一定区域内有关几何要素和运动要素的时空分析,必须首先确定多孔介质的物理点或质点的概念。

所谓多孔介质在数学点P处的物理点,是以P点为质心、体积为ΔV0的体积元(一般取为球体)来表征的。

ΔV0不能太大,否则平均的结果不能代表P点的值;。

土壤水动力学(6)

土壤水动力学(6)
三、饱和下渗理论
1911年,首先由由格林(Green)和安普特(Ampt) 年 首先由由格林( )和安普特( ) 所提出。该模型在50年代以前已广泛应用于入渗问题的研 所提出。该模型在 年代以前已广泛应用于入渗问题的研 七十年代以来, 究,七十年代以来,对Green- Ampt模型的研究及应用又 模型的研究及应用又 有所发展,在理论上也又新的解释。 有所发展,在理论上也又新的解释。
地下水埋深不变, 具有地下水埋深不变,即土壤水势为已知的有限土壤剖 除初始条件如上所述而外, 面,除初始条件如上所述而外,应将上下边界规定为 Dirchlet条件。 条件。 条件
三、饱和下渗理论
具有地下水埋深不变, 具有地下水埋深不变,即土壤水势为已知的有限土壤剖 除初始条件如上所述而外, 面,除初始条件如上所述而外,应将上下边界规定为 Dirchlet条件。 条件。 条件

土壤水动力学PPT课件

土壤水动力学PPT课件

mCT分析。
.
7
图像处理和数值建模
.
8
04 图像处理和数值建模
用SR-mCT扫描 处理团聚体
CT重建,每个聚合物总共获得 20482048像素的720个投影
用滤波反投影 算法重建图像
用累积直方图提高 图像识别的准确性
选择合适的阈值将图 像分为孔隙和固体
在图像分割之前,去 除样本中的环形伪影
将图像裁剪为400400 像素(避免边缘效应)
04 图像处理和数值建模
在每次模拟中,雷诺数保持小于1。然后通过平均整个域中的 孔隙尺度流速u来计算达西速度v。最后,通过达西定律计算渗透 率张量:
.
15
04 图像处理和数值建模
弯曲度不能直接测量,它可以通过图像分析或流动和溶质运输建模 来计算。在这项研究中,通过两种方法从流体速度场计算出曲折值。 在第一种方法中
.
10
04 图像处理和数值建模
当i =0时,i被定义为(0,0,0);
当i=1,2时,i被定义为(±1,0,0);
当i = 3,4时,i被定义为(0,±1,
0);当i = 5,6时,i被定义为(0,0,
±1); 当i = 7 ... 10时,i被定义为
(±1,±1,0); 当i = 11 ... 14时,
Evaluating Hydraulic Properties of Biochar-Amended Soil Aggregates by High-Performance Pore-Scale Simulations
(利用高性能的孔隙模拟法评价生物碳改善土壤团聚体的水力特性)
汇报人:李荣
01 作者简介
土壤团聚体图像然后将其用作三维孔隙几何形状来进行LB

土壤水动力学课件

土壤水动力学课件

一、土壤水分入渗过程及规律
(三)入渗过程中土壤含水量的垂直分布规律 2. 水分过渡带(区)
在饱和带以下,土壤含水量随深度的增加急剧减小, 形成一个水分过渡带。
3. 传导区
土壤含水量基本上保持在饱和含水量 与田间持水量之间,沿垂线均匀分布,形 成一个传导区,随着供水历时的增长湿润 锋不断下移,水分传导区不断向下延伸, 而土壤含水量则保持在上述数值范围内 (60-80%s),并且这一带毛管势梯度极 小,水分的传输运动主要为重力作用。
一、土壤水分入渗过程及规律
(三)入渗过程中土壤含水量的垂直分布规律 4. 湿润带(区)
是连续湿润锋面与水分传导带的一个含水量随深度 迅速减小的水分带,随着湿润锋的不断下移,使其下 面的干土含水量增加,变为湿润带。
5. 湿润锋
在湿润带的末端,土壤含水量突变,与下 层干土有明显界面,称为湿润锋。
新的认识
一、《土壤水动力学》学习思考问题
•微小单元体建模过程进行了假设与概化,土壤 质地与模型参数关系。 •土壤水运动方程与地下水运动方程的共同点与 区别。 •土壤水动力学在本专业研究现状与实际应用状 况。
一、《土壤水动力学》应用
•水库淹没抬田工程—获得工程设计(土层结构 及相应厚度)施工指标(压实度等) •排涝除渍工程。 •滩涂开发工程。 •盐碱化治理工程
z = 0, t > 0
➢具有地下水埋深不变,即土壤水势为已知的有限土壤剖 面,除初始条件如上所述而外,应将上下边界规定为 Dirchlet条件。
一、土壤水分入渗过程及规律 (四)影响入渗过程的条件
工程造价和工程施工分层方案和各层土质受周围可用土质影响保水保肥保耕作土土壤通气和适度渗漏需要第一部分国内外相关浸没和抬田工程技术发展研究现状42抬田工程的研究现状亭子口库区农田防护工程保水保土性能室内试验第一部分国内外相关浸没和抬田工程技术发展研究现状图4大型土柱试验装置42抬田工程的研究现状亭子口库区农田防护工程低地垫高方案第一部分国内外相关浸没和抬田工程技术发展研究现状图3防护区典型剖面设计52江西省峡江抬田工程关键技术研究技术路线峡江抬田工程关键技术研究抬田区内典型区划分相应的作物种植结构耕作制度灌溉制度作物各生长阶段根系深度土壤水分地下水位等耐渍指标调查类比原位测定分析原状各土层渗透系数密实度含水率模拟水库运行状态下测坑地下水位测试不同土层厚度耕作层粘土层填筑密度填筑含水量渗透系数分析原状土各层物理化学特性粘粒含量现状耕作层犁底层厚度及土壤特性调查测定模拟某填筑方案非水库运行水位耕作作物生长过程调查产量模拟水库运行状态下不同填筑高度形成的测坑地下水埋深对水稻各生长阶段可能产生的渍害程度野外调查与现场试验室内实验抬田区原状指标调查试验抬田工程填筑高度及各层填筑厚度密度等指标确定小区模拟试验测坑模拟试验室内实验模拟并测试不同土层厚度耕作层粘土层填筑密度填筑含水量渗透系数确定保水及控制含水率剖面观测并取耕作层厚度粘土层土样进行室内实验测试小区测坑试验填土各土层土样保水保肥粘粒含量抬田工程前后各项指标时间空间尺度监测数据库抬田工程技术经济评价制定抬田工程规范发表论文申请专利抬田工程申报奖项图图44抬田工程关键技术研究的技术路线第一部分国内外相关浸没和抬田工程技术发展研究现状第六章土壤水分的入渗入渗infiltration蒸发evaporation水循环入渗infiltration蒸发evaporation蒸腾transpiration田间土壤水循环的两种形态一土壤水分入渗过程及规律入渗是水分进入土壤的过程

土壤水动力学考题以及答案doc

土壤水动力学考题以及答案doc

1.土壤水基质势,P14。

土壤水的基质势是由于土壤基质对土壤水分的吸持作用引起的。

单位数量的土壤水分由非饱和土壤中的一点移至标准参考状态,除了土壤基质作用外其他各项维持不变,则土壤水所做的功即为该点土壤水分的基质势。

2.土壤水吸力,P18。

土壤水吸力是土壤基质势和溶质势的负数,在研究田间土壤水分运动时,溶质势一般不考虑,因此,一般所说的土壤水吸力指土壤基质的吸力。

3.导水率,P29非饱和土壤的导水率K又称为水力传导度,由于土壤中部分孔隙为气体所填充,故其值低于该土壤的饱和导水率。

4.土壤水扩散率,P38。

非饱和土壤水的扩散率)(θC的比值。

K和比水容量)(θD为导水率)(θ5.比水容量,P19土壤水分特征曲线斜率的倒数即单位基质势的变化引起的含水量变化,称为比水容量。

6.稳定蒸发P133在蒸发的起始阶段,表土的蒸发强度不随土壤含水率降低而变化,称为稳定蒸发阶段。

7.土壤水分入渗P77土壤水分入渗是指水分进入土壤的过程。

8. 零通量面P52 土壤中任一点的土壤水分通量由达西定律z K q m ∂∂⋅-=ψψ)(给出,当水势梯度0=∂∂zψ时,该处的通量q =0,则称该处的水平面为零通量面ZFP 。

9. 土壤入渗特性曲线受哪些因素的影响?各影响因素如何对其产生影响?P20土壤水分特征曲线受土壤质地、土壤机构、温度和土壤中水分变化的过程等因素的影响。

(1)一般说,土壤的粘粒含量愈高,同一吸力条件下土壤的含水率愈大,或同一含水率下其吸力值愈高。

这是因为土壤中粘粒含量增多会使土壤中的细小孔隙发育的缘故。

(2)土壤愈密实,则大孔隙数量愈减少,而中小孔径的孔隙愈增多,因此,在同一吸力值下,干容重愈大的土壤,相应的含水率一般也要大些。

(3)温度升高时,水的粘滞性和表面张力下降,基质势相应的增大,或说土壤水吸力减小,在低含水率时,这种影响表现的更加明显。

(4)对于同一土壤,即使在恒温条件下,由土壤脱湿过程和土壤吸湿过程测得的水分特征曲线也是不同的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

修订时间:2013年3月
太原理工大学
博士研究生入学考试专业基础课考试大纲
考试科目代码
2017
考试科目名称
土壤水动力学
招生学院代码
007
招生学院名称
水利科学与工程学院
招生专业代码
081500
招生专业名称
水利工程
参考书目
1.《土壤水动力学》,雷志栋,杨诗秀,谢森传,清华大学出版社,北京,1988
2.《土壤物理学》,华孟,王坚,北京农业大学出版社,1993
考查要点
一、土壤水分的形态和能态
1. 土壤水的形态
2. 土壤水分运动的能态
3. 非饱和土壤流的达西定律
4. 非饱和土壤水力传导度
5. 土壤水分特征曲线及其应用
重点:土水势、土壤水力传导度、土壤水分特征曲线
二、土壤水分运动的基本方程
1. 土壤的物理点
2. 多孔介质水分运动的基本假定
3. 直角坐标系下土壤水分运动的基本方程
4. 土壤水分运动的其他基本方程
5. 土壤水分运动通量法
重点:土壤水分运动过程的基本简化和假定、基本方程的变换和适用条件、土壤水分运动通量法。

三、土壤水分入渗
1. 土壤入渗过程
2. 土壤入渗过程的线性化解析解
3. Green-Ampt入渗模型
4. 水平渗吸条件下的Philip解
5.经验入渗公式与讨论
重点:土壤水分入渗过程及其驱动力、线性化解析解和各种经验入渗公式及其适用条件。

四、土壤水分蒸发
1. 土壤水分入渗蒸发过程
2. 定水位条件下均质土壤的稳定蒸发
3. 层状土壤的稳定蒸发
4. 非稳定蒸发过程
重点:土壤水分入渗蒸发过程及其控制条件、均质土壤的稳定蒸发过程的求解。

五、土壤水分运动参数的测定方法
1. 土壤水分运动参数室内测定方法
2. 土壤水分运动参数田间测定方法。

相关文档
最新文档