2020年中考数学专题复习1新情境应用问题
2020年中考数学一轮复习基础巩固练习题:一元一次方程的应用(附答案)
2020年中考数学一轮复习基础巩固练习:一元一次方程的应用一.选择题(共6小题)1.某件商品降价20%出售相当于打()折出售.A.二B.三C.八D.九2.一件工程,甲单独做需12天完成,乙单独做需8天完成,现先由甲、乙合作2天后,乙有其他任务,剩下的工程由甲单独完成,则甲还需要()天才能完成该工程.A.6B.7C.6D.73.小明在某月的日历上圈出了三个数a,b,c,并求出了它们的和为39,则这三个数在日历中的排位位置不可能的是()A.B.C.D.4.将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22B.70C.182D.2065.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.288B.296C.312D.3206.正在建设的轻轨即将在2020年底验收,预计轻轨开通后,可以缩短很多人的上下班时间.小徐住在A处,每天去往B处上班,他预计乘轻轨比乘公交车上班时间将减少45分钟.已知乘轻轨从A到B处的路程比乘公交车多1千米,若轻轨行驶的平均速度为60千米/时,公交车行驶的平均速度为20千米/时,求从A到B处的乘公交车路程.若设从A到B处的乘公交车路程为x千米,则符合题意的方程是()A.﹣=B.﹣=C.﹣=45D.﹣=45二.填空题(共3小题)7.松桃县城某商店把一件商品按成本价提高50%后标价,又打8折销售,现售价为240元,设这件商品的成本价为x元,则可列方程:.8.儿子今年12岁,父亲今年40岁,则再过年,父亲的年龄是儿子的年龄的2倍.9.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程.三.解答题(共9小题)10.某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,其中初一(1)班有40多人,初一(2)班有50多人,教育基地门票价格如下:购票张数1~50张51~100张100张以上每张票的价格12元10元8元原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?11.如图,射线OM上有三点A、B、C,OC=45cm,BC=15cm,AB=30cm,已知动点P、Q同时运动,其中动点P从点O出发沿OM方向以速度2cm/s匀速运动,动点Q从点C 出发沿CA方向匀速运动,当点Q运动到点A时,点Q停止运动(点P继续运动).设运动时间为t秒.(1)求点P运动到点B所用的时间;(2)若点Q运动速度为每秒1cm,经过多少秒时,点P和点Q的距离为30cm;(3)当P A=2PB时,点Q恰好在线段AB的三等分点的位置,求点Q的速度.12.平价商场经销的甲、乙两种商品,甲种商品每件售价98元,利润率为40%;乙种商品每件进价80元,售价128元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为3800元,求购进甲、乙两种商品各多少件?(3)在“元且“期间,该商场只对乙种商品进行如下的优惠促销活动:按下表优惠条件,打折前一次性购物总金额优惠措施少于等于480元不优惠超过480元,但不超过680元其中480元不打折,超过480元的部分给予6折优惠超过680元按购物总额给予7.5折优惠若小华一次性购买乙种商品实际付款576元,求小华在该商场购买乙种商品多少件?13.请根据图中提供的暖瓶和水杯的售价信息,回答下列问题:(1)一个暖瓶与一个水杯的售价分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,在新年期间,两家商场都在搞促销活动.甲商场规定:这两种商品都打8.5折;乙商场规定:两种商品都不打折,但买一个暖瓶赠送一个水杯,若某单位想要买4个暖瓶和16个水杯,请问这个单位选择哪家商场购买更合算,并说明理由.14.滴滴快车是一种便捷的出行工具,分为普通快车和优享型快车两种.如表是普通快车收费标准:计费项目起步价里程费时长费远途费计费价格8 2.0元/公里0.4元/分 1.0元/公里注:车费由起步价、里程费、时长费、远途费四部分组成,其中起步价包含里程2公里,时长5分钟;里程>2公里的部分按计价标准收取里程费;时长>5分钟的部分按计价标准收取时长费;远途费的收取方式为:行车15公里以内(含15公里)不收远途费,超过15公里的,超出部分每公里加收1.0元.(1)张敏乘坐滴滴普通快车,行车里程7公里,行车时间15分钟,求张敏下车时付多少车费?(2)王红乘坐滴滴普通快车,行车里程22公里,下车时所付车费63.4元,则这辆滴滴快车的行车时间为多少分钟?15.为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?16.列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?17.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?18.“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?参考答案一.选择题(共6小题)1.【解答】解:设定价为a,相当于打x折出售,则a(1﹣20%)=a•,解得x=8,故选:C.2.【解答】解:设甲还需要x天才能完成该工程,(+)×2+x=1解得:x=7,故选:D.3.【解答】解:A、设最小的数是x,则x+(x+1)+(x+8)=39,解得x=10,故本选项不符合题意;B、设最小的数是x,则x+(x+8)+(x+14)=39,解得x=,故本选项符合题意;C、设最小的数是x,则x+(x+8)+(x+16)=39,解得x=5,故本选项不符合题意;D、设最小的数是x,则x+(x+1)+(x+2)=39,解得:x=12,故本选项不符合题意.故选:B.4.【解答】解:由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,∴T字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.A、由题意,令框住的四个数的和为22,则有:8n+6=22,解得n=2.符合题意.故本选项不符合题意;B、由题意,令框住的四个数的和为70,则有:8n+6=70,解得n=8.符合题意.故本选项不符合题意;C、由题意,令框住的四个数的和为182,则有:8n+6=182,解得n=22.符合题意.故本选项不符合题意;D、由题意,令框住的四个数的和为206,则有:8n+6=206,解得n=25.由于数2n﹣1=49,排在数表的第5行的最右边,它不能处于T字框内中间且靠上方的数,所以不符合题意.故框住的四个数的和不能等于206.故本选项符合题意;故选:D.5.【解答】解:设第一次购物购买商品的价格为x元,第二次购物购买商品的价格为y元,当0<x<100时,x=90;当100≤x<350时,0.9x=90,解得:x=100;∵0.9y=270,∴y=300.∴0.8(x+y)=312或320.所以至少需要付312元.故选:C.6.【解答】解:设从A到B处的乘公交车路程为x千米,则﹣=.故选:A.二.填空题(共3小题)7.【解答】解:设这件商品的成本价为x元,则可列方程:(1+50%)x×0.8=240,故答案为:(1+50%)x×0.8=240.8.【解答】解:设x年后父亲的年龄是儿子的年龄的2倍,根据题意得:40+x=2(12+x),解得:x=16.答:16年后父亲的年龄是儿子的年龄的2倍,故答案为:16.9.【解答】解:设有x辆车,则可列方程:3(x﹣2)=2x+9.故答案是:3(x﹣2)=2x+9.三.解答题(共9小题)10.【解答】解:(1)设初一(1)班x人,初一(2)班y人,根据题意可得:12x+10y=1106,由于x,y都是整数,且40<x<50,50<x<100,当初一(1)班有48人时,48×12=576,1106﹣576=530,530÷10=53.当初一(1)班有43人时,43×12=516,1106﹣516=590,590÷10=59.所以,初一(2)班共有53人或59人;(2)两个一起买票更省钱,①8×(48+53)=808,1106﹣808=298(元).②8×(43+59)=816,1106﹣816=290(元).这样比原计划节省298元或290元.11.【解答】解:(1)∵OC=45cm,BC=15cm,∴OB=60cm,∴t==30s;(2)设经过x秒,点P和点Q的距离为30cm,由题意可得:45+x=2x+30,或45+15+30+30=2x,∴x=15或60,∴经过15秒或60秒,点P和点Q的距离为30cm;(3)∵P A=2PB,∴90﹣OP=2(60﹣OP),或90﹣OP=2(OP﹣60),∴OP=30,或OP=70,当OP=30cm,点Q的速度==cm/s,或点Q的速度==cm/s;当OP=70cm,点Q的速度==cm/s,或点Q的速度==1cm/s.12.【解答】解:(1)设甲种商品的进价为a元,则98﹣a=40%a.解得a=70.即甲种商品每件进价为70元,×100%=60%,即每件乙种商品利润率为60%.故答案是:70;60%;(2)设该商场购进甲种商品x件,根据题意可得:70x+80(50﹣x)=3800,解得:x=20;乙种商品:50﹣20=30(件).答:该商场购进甲种商品20件,乙种商品30件.(3)设小华在该商场购买乙种商品b件,根据题意,得①当过480元,但不超过680元时,480+(128b﹣480)×0.6=576解得b=5.②当超过680元时,128b×0.75=576解得b=6.答:小华在该商场购买乙种商品5或6件.13.【解答】解:(1)设一个暖瓶x元,则一个水杯(38﹣x)元,根据题意得:2x+3(38﹣x)=84,解得:x=30,38﹣30=8(元).故一个暖瓶的售价是30元,一个水杯的售价是8元.(2)这个单位在甲商场购买更算.理由:在甲商场购买所需费用为:(4×30+16×8)×85%=210.8(元);在乙商场购买所需费用为:4×30+(16﹣4)×8=216(元);因为210.8<216,所以这个单位在甲商场购买更算.14.【解答】解:(1)由题意可得,8+(7﹣2)×2+(15﹣5)×0.4=22(元),答:张敏下车时付22元车费;(2)设这辆滴滴快车的行车时间为x分钟,8+(22﹣2)×2+(x﹣5)×0.4+(22﹣15)×1=63.4,解得,x=26答:这辆滴滴快车的行车时间为26分钟.15.【解答】解:设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米,由题意,得2x+(x+x﹣2)=26,解得x=7,所以乙工程队每天掘进5米,(天)答:甲乙两个工程队还需联合工作10天.16.【解答】解:设买羊为x人,则羊价为(5x+45)元钱,5x+45=7x+3,x=21(人),5×21+45=150(元),答:买羊人数为21人,羊价为150元.17.【解答】解:设城中有x户人家,依题意得:x+=100解得x=75.答:城中有75户人家.18.【解答】解:(1)设当走路慢的人再走600步时,走路快的人的走x步,由题意得x:600=100:60∴x=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+y∴y=500答:走路快的人走500步才能追上走路慢的人.。
2305866747497938976-3458788252104786056-初中数学解题技巧
2305866747497938976-3458788252104786056-初中数学解题技巧目录一选择填空题解题技巧(一)二选择填空题解题技巧(二)三初中数学常用十大解题技巧举例四数学思想在初中数学解题中的应用选择题与填空题解题技巧(一)选择题和填空题是中考中必考的题目,主要考查对概念、基础知识的理解、掌握及其应用.填空题所占的比例较大,是学生得分的重要来源.近几年,随着中考命题的创新、改革,相继推出了一些题意新颖、构思精巧、具有一定难度的新题型.这就要求同学切实抓好基础知识的掌握,强化训练,提高解题的能力,才能在中考中减少失误,有的放矢,从容应对.解题规律:要想迅速、正确地解选择题、填空题,除了具有准确计算能力、严密的推理能力外,还要有解选择题、填空题的方法与技巧.常用方法有以下几种:(1)直接推演法:直接从命题给出的条件出发,运用概念,公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法.(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代人条件中去验证,找出正确答案.此法称为验证法(也称代入法).当遇到定量命题时,常用此法.(3)特值法:用合适的特殊元素(如数或图形)代人题设条件或结论中去,从而获得解答.这种方法叫特殊元素法.(4)排除、筛选法;对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法.(5)图解法:借助于符合题设条件的图形或图像的性质、特点来判断,作出正确的选择称为图解法.图解法是解选择题常用方法之一.(6)分析法:直接通过对选择题的条件和结论,作详尽地分析、归纳和判断,从而选出正确的结果,称为分析法.(7)整体代入法:把某一代数式进行化简,然后并不求出某个字母的取值,而是直接把化简的结果作为一个整体代入。
【典例剖析】1.(直接推演法)下列命题中,真命题的个数为()①对角线互相垂直平分且相等的四边形是正方形,②如果四边形的两条对角线互相垂直,那么它的面积等于两条对角线长的积的一半,③在一个圆中,如果弦相等,那么所对的圆周角相等,④已知两圆半径分别为5,3,圆心距为2,那么两圆内切()A.1 B.2 C.3 D.42.(整体代入法)已知抛物线与轴的一个交点为,则代数式的值为()A.2006 B.2007 C.2008 D.20093.(图解法)已知二次函数的图象过点A(1,2),B(3,2),C(5,7).若点M(-2,y1),N(-1,y2),K(8,y3)也在二次函数的图象上,则下列结论正确的是()A.y1<y2<y3 B.y2<y1<y3 C.y3<y1<y2 D.y1<y3<y24.(特值法)如图所示是二次函数的图象在轴上方的一部分,对于这段图象与轴所围成的阴影部分的面积,你认为与其最接近的值是()A.4 B. C. D.5.(排除、筛选法)已知:二次函数的图像为下列图像之一,则的值为()A.-1B.1C.-3D.-46.(图解法)如图,在直角梯形ABCD中,DC∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点M从点D出发,以1cm/s的速度向点C运动,点N从点B同时出发,以2cm/s的速度向点A运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形AMND的面积y(cm2)与两动点运动的时间t(s)的函数图象大致是()7.(分析法)已知α为锐角,则m=sinα+cosα的值()A.m>1 B.m=1 C.m<1 D.m≥18.(验证法:)下列命题:①若,则;②若,则一元二次方程有两个不相等的实数根;③若,则一元二次方程有两个不相等的实数根;④若,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是().A.只有①②③B.只有①③④C.只有①④D.只有②③④.9.(直接推理法)如图,菱形(图1)与菱形(图2)的形状、大小完全相同.ww(1)请从下列序号中选择正确选项的序号填写;①点;②点;③点;④点.如果图1经过一次平移后得到图2,那么点对应点分别是;如果图1经过一次轴对称后得到图2,那么点对应点分别是;如果图1经过一次旋转后得到图2,那么点对应点分别是;(2)①图1,图2关于点成中心对称,请画出对称中心(保留画图痕迹,不写画法);②写出两个图形成中心对称的一条性质:.(可以结合所画图形叙述)10.(图象信息法)绍兴黄酒是中国名酒之一.某黄酒厂的瓶酒车间先将散装黄酒灌装成瓶装黄酒,再将瓶装黄酒装箱出车间,该车间有灌装、装箱生产线共26条,每条灌装、装箱生产线的生产流量分别如图1、2所示.某日8:00~11:00,车间内的生产线全部投入生产,图3表示该时段内未装箱的瓶装黄酒存量变化情况,则灌装生产线有条.11.(直接计算法)如图,大圆的半径是小圆的直径,且有垂直于圆的直径.圆的切线交的延长线于点,切点为.已知圆的半径为,则_______;________12.(分析法)如图所示,直线,垂足为点O,A、B是直线上的两点,且OB=2,AB=.直线绕点O按逆时针方向旋转,旋转角度为()。
中考数学专题复习新情景问题
新情景问题【专题点拨】新情境应用问题有以下特点:(1)问题的背景材料新而不陌生,提出的问题新而不怪;(2)注重考查阅读理解能力,许多这类的试题所涉及的数学知识不多也不难,但能读、读懂题目是问题解答的关键;(3)注重考查问题的转化能力.解答这类应用性问题的难点是能否将实际问题抽象转化为数学问题,在问题转化中的关键是对题目进行认真的阅读,冷静的思考,针对性的分析.【解题策略】从阅读情景入手→理解情景内容和要求→针对问题进行转化→将实际问题转化为数学问题→借助数学知识解答【典例解析】类型一:几何型新情景问题例题1:(2016·江西·10分)如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A 逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角",△AOP为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形"(△AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE′.【归纳猜想】(3)图1、图2中的“叠弦角”的度数分别为15°,24°;(4)图n中,“叠弦三角形”是等边三角形(填“是"或“不是”)(5)图n中,“叠弦角”的度数为(用含n的式子表示)【解析】几何变换综合题.(1)先由旋转的性质,再判断出△APD≌△AOD',最后用旋转角计算即可;(2)先判断出Rt△AEM≌Rt△ABN,在判断出Rt△APM≌Rt△AON 即可;(3)先判断出△AD′O≌△ABO,再利用正方形,正五边形的性质和旋转的性质,计算即可;(4)先判断出△APF≌△AE′F′,再用旋转角为60°,从而得出△PAO是等边三角形;(5)用(3)的方法求出正n边形的,“叠弦角”的度数.【解答】解:(1)如图1,∵四ABCD是正方形,由旋转知:AD=AD’,∠D=∠D’=90°,∠DAD’=∠OAP=60°,∴∠DAP=∠D’AO,∴△APD≌△AOD'(ASA)∴AP=AO,∵∠OAP=60°,∴△AOP是等边三角形,(2)如图2,作AM⊥DE于M,作AN⊥CB于N.∵五ABCDE是正五边形,由旋转知:AE=AE’,∠E=∠E’=108°,∠EAE'=∠OAP=60°∴∠EAP=∠E’AO∴△APE≌△AOE’(ASA)∴∠OAE’=∠PAE.在Rt△AEM和Rt△ABN中,∠AEM=∠ABN=72°,AA AE=AB ∴Rt△AEM≌Rt△ABN (AAS),∴∠EAM=∠BAN,AM=AN.在Rt△APM和Rt△AON中,AP=AO,AM=AN∴Rt△APM≌Rt△AON (HL).∴∠PAM=∠OAN,∴∠PAE=∠OAB∴∠OAE'=∠OAB (等量代换).(3)由(1)有,△APD≌△AOD’,∴∠DAP=∠D′AO,在△AD′O和△ABO中,,∴△AD′O≌△ABO,∴∠D′AO=∠BAO,由旋转得,∠DAD′=60°,∵∠DAB=90°,∴∠D′AB=∠DAB﹣∠DAD′=30°,∴∠D′AD=∠D′AB=15°,同理可得,∠E′AO=24°,故答案为:15°,24°.(4)如图3,∵六边形ABCDEF和六边形A′B′C′E′F′是正六边形,∴∠F=F′=120°,由旋转得,AF=AF′,EF=E′F′,∴△APF≌△AE′F′,∴∠PAF=∠E′AF′,由旋转得,∠FAF′=60°,AP=AO∴∠PAO=∠FAO=60°,∴△PAO是等边三角形.故答案为:是(5)同(3)的方法得,∠OAB=[(n﹣2)×180°÷n﹣60°]÷2=60°﹣故答案:60°﹣.变式训练1:(2016·山东省德州市·4分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)类型二:方程型新情景问题例题2:(2016·四川攀枝花)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?【考点】一次函数的应用.【分析】(1)设每吨水的政府补贴优惠价为m元,市场调节价为n元,根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的范围内y与x之间的函数关系,注意自变量的取值范围;(3)根据小英家5月份用水26吨,判断其在哪个范围内,代入相应的函数关系式求值即可.【解答】解:(1)设每吨水的政府补贴优惠价为m元,市场调节价为n元.,解得:,答:每吨水的政府补贴优惠价2元,市场调节价为3.5元.(2)当0≤x≤14时,y=2x;当x>14时,y=14×2+(x﹣14)×3。
中考总复习数学01- 第二部分 专题一 运算求解题
∴1※(-2)=3×1+4×(-2)
=3+(-8)
=-5,
∴1※(-2)的值为-5.
8
9
10
11
12
专题一
返回类型清单
运算求解题—新定义
(2)若5※3=16,2※(-3)=-2,求a与b的值.
解:(2)∵5※3=16,2※(-3)=-2,
5a+3b=16①,
∴൝
①+②得7a=14,解得a=2,
数学
专题一
运算求解题
专题一
运算求解题
类型清单
类型一
缺项
类型二
运算过程纠错
类型三
新定义
类型四
数轴情境问题
专题一
返回类型清单
运算求解题—缺项
类型一
缺项
题型讲解
缺项的有关题目,通常给定一个代数式或者式子的部分信息,要求我们按
要求补全缺项,利用相应的运算法则,解决问题.主要通过观察、分析、
尝试、计算,验证结论,解决问题,培养了学生的符号意识和运算能力.
+
∴m= .
−
8
9
10
11
12
专题一
返回类型清单
运算求解题—数轴情境问题
类型四
数轴情境问题
题型讲解
数轴情境类题型主要考查学生对数轴概念的理解能力,培养学生借助
数轴建立数式联系,运用数学知识解决问题,培养学生的抽象思维和学
习习惯.
例题
13
14
15
专题一
返回类型清单
运算求解题—数轴情境问题
题型讲解
7.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只
中考数学专题复习—— 应用性问题
中考数学专题复习——应用性问题足球场上有句顺口溜:“向着球门跑,越近就越好;歪着球门跑,射点要选好!”从数学角度看是何道理?应用题是中考试题的经典试题,解决应用题的思想方法如下:实际问题分析、联想、转化、抽象解答数学问题建立数学模型应用性问题的常见模型有:方程模型、不等式模型、函数模型、统计模型、几何模型方程(组)型应用题一般步骤:(1)审:未知量、已知量、相等关系;(2)设:用字母表示未知数(写明单位);(3)列:列出方程(组);(4)解:解所列方程(组);(5)验:检验答案是否符合方程、符合题意(6)答:写出答案。
例1、5.12汶川大地震发生以后,全国人民众志成城.首长到帐篷厂视察,布置赈灾生产任务,下面是首长与厂长的一段对话:首长:为了支援灾区人民,组织上要求你们完成12000顶帐篷的生产任务.厂长:为了尽快支援灾区人民,我们准备每天的生产量比原来多一半.首长:这样能提前几天完成任务?厂长:请首长放心!保证提前4天完成任务!根据两人对话,问该厂原来每天生产多少顶帐篷?不等式(组)型应用题现实世界中不等关系是普遍存在的,有关最佳决策、合理调配、统筹安排等最优化问题,一般可通过对给出的一些数据进行分析、转化、建立不等式模型,再求在约束条件下的不等式的解集.例2:某校师生积极为汶川地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。
学校花去捐款96000元,正好可供2300人临时居住。
(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷;(2)学校现计划租用甲、乙两种型号的卡车共20辆将这批帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大帐篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷。
如何安排甲、乙两种卡车可一次性将这批帐篷运往灾区?有哪几种方案?初三数学第1 页共4 页初三数学 第 2 页 共 4 页4%函数型应用问题一般步骤:(1)审:常量、变量、相等关系;(2)设:用两个字母分别表示自变量、因变量;(3)列:列出函数关系式(写出自变量的取值范围)(4)解:解决函数问题;(5)验:检验答案是否符合函数关系、符合题意(6)答:写出答案.例3、红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m (件)与时间t (天)的关系如下表:未来40天内,前20天每天的价格1y (元/件)与时间t (天)的函数关系式为1254y t =+(120t ≤≤且t 为整数),后20天每天的价格2y (元/件)与时间t (天)的函数关系式为21402y t =-+(2140t ≤≤且t 为整数).下面我们就来研究销售这种商品的有关问题: (1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m (件)与t (天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a 元利润(a <4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t (天)的增大而增大,求a 的取值范围.统计型应用问题:统计的内容有着非常丰富的实际背景,其实际应用性特别强,与统计有关的实际问题可建立统计模型,并利用统计的知识加以解决。
2020北京市中考数学专题复习---新定义问题
2020北京市中考数学专题复习---新定义问题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN二、重难专题突破专题九新定义问题(必考)类型一新定义点与函数问题(8年4考:2017.29、2015.29、2014.25、2013.25)1. (2019房山区一模)在平面直角坐标系xOy中,⊙C的半径为r,给出如下定义:若点P的横、纵坐标均为整数,且到圆心C的距离d≤r,则称P为⊙C的关联整点.(1)当⊙O的半径r=2时,在点D(2,-2),E(-1,0),F(0,2)中,为⊙O的关联整点的是;(2)若直线y=-x+4上存在⊙O的关联整点,且不超过7个,求r的取值范围;(3)⊙C的圆心在x轴上,半径为2,若直线y=-x+4上存在⊙C的关联整点.求圆心C的横坐标t的取值范围.第1题图2. (2019丰台区二模)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得点P 在射线BC 上,且∠APB =14∠ACB (0°<∠ACB <180°),则称P 为⊙C 的依附点.(1)当⊙O 的半径为1时,①已知点D (-1,0),E (0,-2),F (2.5,0),在点D ,E ,F 中,⊙O 的依附点是 ;②点T 在直线y =-x 上,若T 为⊙O 的依附点,求点T 的横坐标t 的取值范围;(2)⊙C 的圆心在x 轴上,半径为2,直线y =-x +2与x 轴、y 轴分别交于点M ,N .若线段MN 上的所有点都是⊙C 的依附点,直接写出圆心C 的横坐标m 的取值范围.3. (2019西城区一模)在平面直角坐标系xOy中,对于两个点P,Q和图形W,如果在图形W上存在点M,N(M,N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.第3题图①(1)如图①,已知点A (0,3),B (2,3).①设点O 与线段AB 上一点的距离为d ,则d 的最小值是 ,最大值是 ;②在P 1(32,0),P 2(1,4),P 3(-3,0)这三个点中,与点O 是线段AB 的一对平衡点的是 ; (2)如图②,已知⊙O 的半径为1,点D 的坐标为(5,0).若点E (x ,2)在第一象限,且点D 与点E 是⊙O 的一对平衡点,求x 的取值范围;(3)如图③,已知点H (-3,0),以点O 为圆心,OH 长为半径画弧交x 轴的正半轴于点K .点C (a ,b )(其中b ≥0)是坐标平面内一个动点,且OC =5,⊙C 是以点C 为圆心,半径为2的圆.若HK ︵上的任意两个点都是⊙C 的一对平衡点,直接写出b 的取值范围.第3题图② 第3题图③4. (2019朝阳区二模)M (-1,-12),N (1,-12)是平面直角坐标系xOy 中的两点,若平面内直线MN 上方的点P 满足:45°≤∠MPN ≤90°,则称点P 为线段MN 的可视点.(1)在点A 1(0,12),A 2(12,0),A 3(0,2),A 4(2,2)中,线段MN 的可视点为 ; (2)若点B 是直线y =x +12上线段MN 的可视点,求点B 的横坐标t 的取值范围; (3)直线y =x +b (b ≠0)与x 轴交于点C ,与y 轴交于点D ,若线段CD 上存在线段MN 的可视点,直接写出b 的取值范围.第4题图类型二 新定义距离与函数问题(8年2考:2018.28、2012.25)1. (2012北京)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|;若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图①中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).第1题图①(1)已知点A (-12,0),B 为y 轴上的一个动点, ①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值;(2)已知C 是直线y =34x +3上的一个动点, ①如图②,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标; ②如图③,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标.第1题图2. (2019东城区一模)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.第2题图(1)已知点A的坐标为(-3,1),①在点E(0,3),F(3,-3),G(2,-5)中,为点A的“等距点”的是;②若点B在直线y=x+6上,且A,B两点为“等距点”,则点B的坐标为;(2)直线l:y=kx-3(k>0)与x轴交于点C,与y轴交于点D,①若T1(-1,t1),T2(4,t2)是直线l上的两点,且T1与T2为“等距点”,求k的值;②当k=1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M,N两点为“等距点”,直接写出r的取值范围.备用图3.(2018北京)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q 为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d(M,N).已知点A(-2,6),B(-2,-2),C(6,-2).(1)求d(点O,△ABC);(2)记函数y=kx(-1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.4.(2019石景山一模)在平面直角坐标系xOy中,正方形ABCD的顶点分别为A(0,1),B(-1,0),C(0,-1),D(1,0).对于图形M,给出如下定义:P为图形M上任意一点,Q为正方形ABCD边上任意一点,如果P,Q两点间的距离有最大值,那么称这个最大值为图形M的“正方距”,记作d(M).(1)已知点E(0,4),①直接写出d(点E)的值;②直线y=kx+4(k≠0)与x轴交于点F,当d(线段EF)取最小值时,求k的取值范围;(2)⊙T的圆心为T(t,3),半径为1,若d(⊙T)<6,直接写出t的取值范围.类型三新定义图形与函数问题(仅2016.29考查)1.(2019石景山区二模)对于平面直角坐标系xOy中的点P,Q,给出如下定义:若P,Q为某个三角形的顶点,且边PQ上的高h,满足h=PQ,则称该三角形为点P,Q的“生成三角形”.(1)已知点A(4,0).①若以线段OA为底的某等腰三角形恰好是点O,A的“生成三角形”,求该三角形的腰长;②若Rt△ABC是点A,B的“生成三角形”,且点B在x轴上,点C在直线y=2x-5上,则点B的坐标为;(2)⊙T的圆心为点T(2,0),半径为2,点M的坐标为(2,6),N为直线y=x+4上一点,若存在Rt△MND,是点M,N的“生成三角形”,且边ND与⊙T有公共点,直接写出点N的横坐标x N的取值范围.2.(2018平谷区一模)在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,23),则以AB为边“坐标菱形”的最小内角为°;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD表达式;(3)⊙O的半径为2,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.图①图②第2题图类型四 新定义几何问题(2019.28新考查)1. (2019北京)在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE ︵上的所有点都在△ABC 的内部或边上,则称DE ︵为△ABC 的中内弧.例如,如图①中DE ︵是△ABC 的一条中内弧.第1题图① 第1题图②(1)如图②,在Rt △ABC 中,AB =AC =22,D ,E 分别是AB ,AC 的中点,画出△ABC 的最长的中内弧DE ︵,并直接写出此时DE ︵的长;(2)在平面直角坐标系中,已知点A (0,2),B (0,0),C (4t ,0)(t >0).在△ABC 中,D ,E 分别是AB ,AC 的中点.①若t =12,求△ABC 的中内弧DE ︵所在圆的圆心P 的纵坐标的取值范围; ②若在△ABC 中存在一条中内弧DE ︵,使得DE ︵所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.2.P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把P A·PB的值称为点P关于⊙O的“幂值”.第2题图(1)⊙O的半径为6,OP=4.①如图,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为;②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙O的“幂值”的取值范围;(2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围;(3)在平面直角坐标系xOy中,C(1,0),⊙C的半径为3,已知点M(t,0),N(0,-t),若在直线MN 上存在点P,使得点P关于⊙C的“幂值”为6,请直接写出t的取值范围.参考答案类型一新定义点与函数问题1. 解:(1)E,F;【解法提示】∵D(2,-2),E(-1,0),F(0,2),O(0,0),∴OD=22+22=22>2,OE=1<2,OF=2,∴E,F为⊙O的关联整点;(2)如解图①,当⊙O与直线y=-x+4相切时,切点为G(2,2),则r=OG=22+22=22.当⊙O过点Q(-2,6)时,则r=OQ=22+62=210,结合图象,当直线y=-x+4上存在⊙O的关联整点,且不超过7个时,r的取值范围为22≤r<210;第1题解图①(3)如解图②,当⊙C过点M(3,1)时,CM=2,ME=1,则CE=3,此时点C的横坐标t=3-3,当⊙C′过点N(5,-1)时,则FC′=3,此时点C′的横坐标t=5+3,结合函数图象,圆心C的横坐标t的取值范围为3-3≤t≤5+3.第1题解图②2. 解:(1)①E、F;【解法提示】如解图①,根据P为⊙O的依附点,可知:当r<OP<3r(r为⊙O的半径)时,点P为⊙O的依附点.第2题解图①∵D(-1,0),E(0,-2),F(2.5,0),∴OD=1,OE=2,OF=2.5,∴1<OE<3,1<OF<3,∴点E,F是⊙O的依附点,故答案为:E、F;②如解图②,第2题解图②当点T 在第四象限,OT ′=1时,作T ′N ⊥x 轴于点N ,易知N (22,0),OT =3时,作TM ⊥x 轴于点M ,易知M (322 ,0),∴满足条件的点T 的横坐标t 的取值范围为22 <t <322. 当点T 在第二象限时,同理可得满足条件的t 的取值范围为-322 <t <-22, 综上所述,满足条件的t 的值的范围为22 <t <322 或-322 <t <-22. (2)4<m <42 或-4<m <2-22 .【解法提示】如解图③,当点C 在点M 的右侧时,第2题解图③由题意M (2,0),N (0,2),当CN =6时,OC =CN 2-ON 2 =42 ,此时C (42 ,0),当CM =2时,此时C (4,0),∴满足条件的m 的值的范围为4<m <42 .如解图④,当点C 在点M 的左侧时,第2题解图④当⊙C 与直线MN 相切时,易知C ′(2-22 ,0),当CM =6时,C (-4,0),∴满足条件的m 的值的范围为-4<m <2-22 ,综上所述,满足条件的m 的值的范围为:4<m <42 或-4<m <2-22 . 3. 解:(1)① 3,13 ;【解法提示】d 的最小值=OA =3,d 的最大值=OB =22+32 =13 . ②P 1;【解法提示】由题图①可知,P 1到线段AB 的最小距离=OA =3,最大距离=P 1A =(32)2+32 =352,则线段AB 上存在点M ,N ,使得P 1M =ON ;P 2到线段AB 的最大距离=12+12 =2 ,∵2 <3,∴P 2不符合题意;P 3到线段AB 的最小距离=32+32 =32 ,∵32 >13 ,∴P 3不符合题意.(2)第3题解图①由题意得,点D 到⊙O 的最近距离是4,最远距离是6,点D 与点E 是⊙O 的一对平衡点,此时需要满足E 1到⊙O 的最大距离是4,即OE 1=3,根据OE 1=3解出此时x =5 ;同理当E 2到圆O 的最小距离是6,即OE 2=7, 根据OE 2=7,解得此时x =35 , ∴5 ≤x ≤35 ; (3)4143≤b ≤5.【解法提示】点C 在以O 为圆心,半径为5的上半圆上运动,以C 为圆心,半径为2的圆刚好与弧HK 相切,此时要想弧HK 上的任意两点都是⊙C 的平衡点,需要满足CK ≤6,如解图②,当CK =6,此时a =-13 ,b =4143 ,同理,当CH =6时,a =13 ,b =4143 .在两者中间时,如解图③所示,此时a =0,b =5,∴4143≤b ≤5.第3题解图②第3题解图③4. 解:(1)A 1,A 3;【解法提示】如解图①,以MN 为直径的半圆交y 轴于点E ,以E 为圆心,EM 长为半径的⊙E 交y 轴于点F ,∵MN 是⊙G 的直径,M (-1,-12 ),N (1,-12 ),∴∠MA 1N =90°,MN ⊥EG ,EG =1,MN =2.∴EF =EM =2 ,∴∠MFN =12 ∠MEN =45°,∵45°≤∠MPN ≤90°,∴点P 应落在⊙E 内部,且落在⊙G 外部(包含边界),且不与点M 、N 重合.∴线段MN 的可视点为A 1,A 3.第4题解图①(2)如解图②,以(0,-12 )为圆心,MN 为直径作⊙G ,以(0,12 )为圆心,2 为半径作⊙E ,两圆在直线MN 上方的部分与直线y =x +12分别交于点E ,F .如解图②,过点F 作FQ ⊥x 轴于点Q ,过点E 作EH ⊥FQ 于点H ,∵FQ ⊥x 轴, ∴FQ ∥y 轴,∴∠EFH =∠MEG =45°. ∵∠EHF =90°,EF =2 , ∴EH =FH =1. ∵E (0,12 ),∴F (1,32).只有当点B 在线段EF 上时,满足45°≤∠MBN ≤90°,点B 是线段MN 的可视点. ∴点B 的横坐标t 的取值范围是0≤t ≤1;第4题解图②(3)-32 <b ≤-32 或12 ≤b ≤52;【解法提示】如解图③,⊙G 与x 轴交于点H ,与y 轴交于点E ,连接GH ,OG =12 ,GH =1,∴OH =GH 2-OG 2 =12-(12)2 =32,∴H (32 ,0),E (0,12). 当直线y =x +b (b ≠0)与x 轴交于点C ,与y 轴交于点D ,若线段CD 上存在线段MN 的可视点, ①当直线y =x +b 与y 轴交点在y 负半轴上,将H (32 ,0)代入y =x +b 得32 +b =0,解得b 1=-32, 将N (1,-12 )代入y =x +b 得1+b =-12 ,解得b 2=-32 ,∴-32 <b ≤-32;②当直线y =x +b 与y 轴交点在y 正半轴上, 将 E (0,12 )代入得b =12,当直线y =x +b 与⊙E 相切于T 时交y 轴于Q ,连接ET ,则ET ⊥TQ , ∵∠EQT =45°, ∴TQ =ET =EM =2 ,∴EQ =ET 2+TQ 2 =(2)2+(2)2 =2. ∴OQ =OE +EQ =12 +2=52 .∴12 ≤b ≤52. 综上所述:-32 <b ≤-32 或12 ≤b ≤52.第4题解图③类型二 新定义距离与函数问题1. 解:(1)①B (0,2)或B (0,-2)(写出一个答案即可); ②12; (2)①设C 点坐标为(m ,34m +3),D (0,1);于是当非常距离最小时有|m |=|34 m +3-1|,解得 m 1=-87 ,m 2=8(舍去),于是点C 的坐标为(-87 ,157);②平移直线y =34 x +3与⊙O 相切,切点为点E ,与x 轴、y 轴交点分别为点A 、B ,由切线的性质可知点E 即为最接近直线y =34x +3的点,亦为题中所求的点.第1题解图如解图,过点E 作EF ⊥x 轴于点F . 设点E 的坐标为E (x 0,y 0),x 0<0; 易知:Rt △EFO ∽ Rt △AOB , ∴FO EF =OB AO =34 ,即-x 0y 0 =34, 又∵点E 为⊙O 上的点,∴可得方程组:⎩⎪⎨⎪⎧x 20 +y 20 =1,4x 0+3y 0=0,解得:x 0=-35 ,y 0=45 ,∴点E 的坐标为(-35 ,45).设点C 的坐标为C (a ,34 a +3),由①可知:当|-35 -a |=|(34 a +3)-45 |时有最小值,∴a =-85 或325(舍去),∴点C 的坐标为C (-85 ,95 ),此时最小值为-35 -(-85 )=1.2. 解:(1)①E ,F ;【解法提示】点A 到x ,y 轴的距离中的最大值等于3,点E 到x ,y 轴的距离中的最大值等于3,点F 到x ,y 轴的距离中的最大值等于3,点G 到x ,y 轴的距离中的最大值等于5;∴点E ,F 是点A 的“等距点”.②(-3,3);【解法提示】∵点A 到x ,y 轴的距离中的最大值等于3,A ,B 两点为“等距点”,∴点B 到x ,y 轴的距离中的最大值等于3,∵点B 在直线y =x +6上,∴设B (a ,a +6),当a =3时,a +6=9,不符合题意,当a +6=3时,a =-3,符合题意,∴B (-3,3).(2)①∵T 1(-1,t 1),T 2(4,t 2)是直线l 上的两点, ∴t 1=-k -3,t 2=4k -3. ∵k >0,∴|-k -3|=k +3>3,4k -3>-3, 依题意可得:当-3<4k -3<4时,k +3=4,解得k =1; 当4k -3≥4时,k +3=4k -3,解得k =2. 综上所述,k 的值为1或2; ②32≤r ≤32 . 【解法提示】当k =1时,y =x -3,则点C 的坐标为(3,0),点D 的坐标为(0,-3);如解图,过点O 作OE ⊥CD 于点E ,过点E 作EF ⊥x 轴于点F ,∵CD =32+32 =32 ,∴OE =CE =322 .∴EF =22×322 =32 .则线段CD 上的点到x ,y 轴的距离中的最小值等于32 ,∴半径r 的最小值为32;线段CD 到x ,y 轴的距离中的最大值等于3,∴半径为r 的⊙O 上存在一点M ,使得点M 到x ,y 轴的距离中的最大值等于3,如解图,过点G (3,3)作x 轴的垂线,垂足为点C ,连接OG ,则OG =32+32 =32 ,∴⊙O 的半径r 的最大值为32 ;综上所述,r 的取值范围是32≤r ≤32 .第2题解图3. 解:(1)如解图①,d (点O ,△ABC )=2; (2)-1≤k ≤1且k ≠0;【解法提示】如解图①,y =kx (k ≠0)经过原点,在-1≤x ≤1范围内,函数图象为线段.第3题解图①当y =kx (-1≤x ≤1,k ≠0)经过(1,-1)时,k =-1, 此时d (G ,△ABC )=1,当y =kx (-1≤x ≤1,k ≠0)经过(-1,-1)时,k =1, 此时d (G ,△ABC )=1, ∴-1≤k ≤1, ∵k ≠0,∴-1≤k≤1且k≠0.(3)如解图②,⊙T与△ABC的位置关系分三种情况:①⊙T在△ABC的左侧时,d(⊙T,△ABC)=1,此时,t=-4;②⊙T在△ABC的内部时,d(⊙T,△ABC)=1,此时,0≤t≤4-22;③⊙T在△ABC的右侧时,d(⊙T,△ABC)=1,此时,t=4+22;综上,t=-4或0≤t≤4-22或t=4+22.第3题解图②4. 解:(1)①5;【解法提示】∵正方形ABCD的顶点分别为A(0,1),B(-1,0),C(0,-1),D(1,0),点E(0,4)在y轴上,∴点E到正方形ABCD边上C点间的距离有最大值,EC=5,即d(点E)的值为5.②如解图①所示:∵d(点E)=5,∴d(线段EF)的最小值是5,∴符合题意的点F满足d(点F)≤5,当d(点F)=5时,BF1=DF2=5,∴点F1的坐标为(4,0),点F2的坐标为(-4,0),将点F1的坐标代入y=kx+4得:0=4k+4,解得:k=-1,将点F2的坐标代入y=kx+4得:0=-4k+4,解得:k=1,∴k=-1或k=1.∴当d(线段EF)取最小值时,EF1直线y=kx+4中k≤-1,EF2直线y=kx+4中k≥1,∴当d(线段EF)取最小值时,k的取值范围为:k≤-1或k≥1;(2)t的取值范围为-3<t<3.【解法提示】⊙T的圆心为T(t,3),半径为1,当d(⊙T)=6时,如解图②所示:CM=CN=6,OH=3,∴T1C=TC=5,CH=OC+OH=1+3=4,∴T1H=T1C2-CH2=52-42=3,TH=TC2-CH2=52-42=3,∴d(⊙T)<6,t的取值范围为-3<t<3.图①图②第4题解图类型三 新定义图形与函数问题1. 解:(1)①如解图①,不妨设满足条件的三角形为等腰△OAR ,则OR =AR .过点R 作RH ⊥OA 于点H ,∴OH =HA =12OA =2,∵以线段OA 为底的等腰△OAR 恰好是点O ,A 的“生成三角形”, ∴RH =OA =4.∴OR =OH 2+RH 2 =25 . 即该三角形的腰长为25 ;第1题解图①②(1,0),(3,0)或(7,0)【解法提示】如解图②所示:若A 为直角顶点时,点B 的坐标为(1,0)或(7,0); 若B 为直角顶点时,点B 的坐标为(1,0)或(3,0). 综上,点B 的坐标为(1,0),(3,0)或(7,0).第1题解图②(2)如解图③可得:若N 为直角顶点:-1-2 ≤x N ≤0;第1题解图③如解图④可得:若M 为直角顶点:-6≤x N ≤-2;第1题解图④综上,点N 的横坐标x N 的取值范围为:-6≤x N ≤0. 2. 解:(1)60;【解法提示】如解图①所示,∵点A (2,0),B (0,23 ), ∵OA =2,OB =23 ,在Rt △AOB 中,由勾股定理得:AB =22+(23)2 =4, ∵OA =12 AB ,∠AOB =90°,∴∠ABO =30°, ∵四边形ABCD 是菱形,∴∠ABC=2∠ABO=60°,∵AB∥CD,∴∠DCB=180°-60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°;第2题解图①(2)如解图②,第2题解图②∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.过点C作CE⊥DE于点E.∴D(4,5)或(-2,5).∴直线CD的表达式为:y=x+1或y=-x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如解图③,第2题解图③∵⊙O的半径为2,且△OQ′D是等腰直角三角形,∴OD=2 OQ′=2,∴BD=3-2=1,∵△P′DB是等腰直角三角形,∴P′B=BD=1,∴P′(3,1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(3,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=-x,再作圆的两条切线,且平行于直线y=-x,如解图④,∵⊙O的半径为2,且△OQ′D是等腰直角三角形,∴OD=2 OQ′=2,∴BD=3-2=1,∵△P′DB是等腰直角三角形,∴P′B=BD=1,∴P′(3,-1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(3,-5),∴当-5≤m≤-1时,以QP为边的“坐标菱形”为正方形;综上所述,m的取值范围是1≤m≤5或-5≤m≤-1.第2题解图④类型四 新定义几何问题1. 解:(1)画出DE ︵如解图①所示,DE ︵与BC 相切时,△ABC 的中内弧最长.此时DE ︵的长为以DE 长为直径的半圆.∵在Rt △ABC 中,AB =AC =22,∴BC =2AB =2·22=4.∵D 、E 分别为AB 、AC 的中点,∴DE =12BC =12×4=2.∴lDE ︵=180π360×2=π;第1题解图①(2)①当t =12时,C (2,0).连接DE ,当DE ︵在DE 的下方时,点P 的纵坐标最小时点P 为DE 的中点,如解图②所示.∵A (0,2),∴BA =2.∵点D 是BA 的中点,∴BD =1.∵点D 、E 分别为AB 、AC 的中点,∴DE =12BC =12×2=1.∴⊙P 的半径PD =12.∵12<1,∴DE ︵是△ABC 的中内弧.∴y P ≥1.第1题解图②第1题解图③当DE ︵在DE 的上方时,点P 的纵坐标最大时,⊙P 与AC 相切于点E .如解图③所示,作DE 的垂直平分线FG 交DE 于点F ,交x 轴于点G ,则四边形DBGF 是矩形,圆心P 在FG 上.∵C (2,0),A (0,2),∴BC =BA =2.∴Rt △ABC 是等腰直角三角形.∴∠ACB =45°.∵点D 、E 分别为AB 、AC 的中点,∴DE ∥BC .∴∠AED =∠ACB .∴∠AED =45°.连接PE ,∵⊙P 与AC 相切于点E ,∴PE ⊥AC .∴∠PEA =90°.∴∠PEF =∠PEA -∠AED =45°.∵PF ⊥DE ,∴∠FPE =45°.∴∠PEF =∠FPE .∴PF =EF .∵FG 平分DE ,∴DF =EF =12DE =12×1=12.∴PF =12.∵FG =BD =1,∴PG =FG -PF =1-12=12.∴P (12,12).∴y P ≤12.综上,圆心P 的纵坐标y P 的取值范围为y P ≥1或y P ≤12 ;②0<t ≤2 .【解法提示】ⅰ. 当P 在DE 上方时,如解图④所示,圆心P 在边AC 上且DE ︵与边BC 相切于点F 时,符合题意.∵C (4t ,0),∴BC =4t .∵D 、E 分别为AB 、AC 的中点,∴DE ∥BC ,DE =12 BC =12 ×4t =2t .连接PF .∵⊙P 与BC 相切于点F ,∴PF ⊥BC .∵DE ∥BC ,∴DE ⊥PF .∴DG =12 DE =12 ×2t =t .∵PF ⊥BC ,∴PF ∥y 轴.∴△EPG ∽△EAD .∴PG AD =EG ED =12 .∴PG =12 AD =12 ×1=12.又∵GF =BD =1,∴PF =PG +GF =12 +1=32 .∴DP =32 .在Rt △PDG 中,由勾股定理得DP 2=DG 2+GP 2,即(32 )2=t 2+(12 )2.解得t =±2 .∵t >0,∴t =2 .∴t 的取值范围是0<t ≤2 .第1题解图④ⅱ. 当P 在DE 下方时,如解图⑤.⊙P 与AC 相切于点E 为临界状态,过P 作PM ⊥DE 于点M ,DE 为△ABC 的中内弧,只需PM ≤1即可.此时易得△EMP ∽△ABC ,∴PM CB =EM AB ,即PM 4t =t2 .得PM =2t 2,故0<t ≤22.第1题解图⑤综上,t 的取值范围为0<t ≤2 .2. 解:(1)①20;【解法提示】如解图①所示:连接OA、OB、OP.∵OA=OB,P为AB的中点,∴OP⊥AB.∵在Rt△PBO中,由勾股定理得:PB=OB2-OP2=62-42=25,∴P A=PB=25.∴⊙O的“幂值”=25×25=20.第2题解图①②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值.证明:如解图②,AB为⊙O中过点P的任意一条弦,且不与OP垂直.过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′,OA′.第2题解图②∵在⊙O中,∠AA′P=∠B′BP,∠AP A′=∠BPB′,∴△AP A′∽△B′PB.∴P APB′=P A′PB.∴P A·PB=P A′·PB′=20.∴当弦AB的位置改变时,点P关于⊙O的“幂值”为定值.(2)r2-d2;【解法提示】如解图③所示,连接OP,过点P作AB⊥OP,交圆O与A、B两点,连接OA,OB.第2题解图③∵AO=OB,PO⊥AB,∴AP=PB.∴点P关于⊙O的“幂值”=AP·PB=P A2.在Rt△APO中,AP2=OA2-OP2=r2-d2.∴点P关于⊙O的“幂值”=r2-d2.(3)1-6≤t≤6+1.【解法提示】如解图④所示:过点C作CP⊥AB交AB于点P.第2题解图④∵点P关于⊙C的“幂值”为6,若⊙O半径为r,CP=d,则由(2)可知r2-d2=6.∴d2=3,即d=3.如解图⑤,以点C为圆心,3为半径作辅助圆⊙C′,∵点P在直线MN上,∴当直线MN与⊙C′相交即可满足条件.当点M在x轴正半轴时,直线MN与⊙C′相切如解图⑤,∵M(t,0)、N(0,-t),∴ON=OM=t,∵OM=ON,∴∠OMN=45°.∴在直角三角形CPM中,PM=CP=3.则CM=CP2+PM2=6,∴OM=6+1.∴t=6+1.同理当点M在x轴负半轴时,解得t=1-6,结合函数图象,t的取值范围为1-6≤t≤6+1.第2题解图⑤。
中考数学专题复习:实际应用问题
(1)若围成的花园面积为91 m2,求花园的边长;
(2)在点P处有一棵树与墙CD,AD的距离分别为12 m和6 m,要能将这棵树围
在花园内(含边界,不考虑树的粗细),又使得花园面积有最大值,
求此时花园的边长.
解:(1)设AB长为a m,则BC长为(20-a)m.
在花园内(含边界,不考虑树的粗细),又使得花园面积有最大值,求此时花
园的边长.
解: (2)设花园的一边长为 x,面积为 y,
则 y=x(20-x)=-x2+20x=-(x-10)2+100,
≥ 6,
≥ 12,
由题意得
或
20- ≥ 12 20- ≥ 6,
解得:6≤x≤8 或 12≤x≤14.
(2)每台 A 型机器人售价 3 万元,每台 B 型机器人售价 2 万元,该公司计划采购 A,B 两种型号的机器
人共 20 台,必须满足每天搬运的货物不低于 1 800 吨,请根据以上要求,求出 A,B 两种机器人分别
采购多少台时,所需费用最低?最低费用是多少?
【自主解答】(1)设每台 A 型机器人每天搬运货物 x 吨,每台 B 型机器人每天搬运
二次函数应用题是中考的必考题,每年中考试题
都要考查二次函数应用题,其重要程度不言而喻.
专题四
例1
方程(组)、函数在商品销售利润问题中的应用
[安徽中考]某超市销售一种商品,成本为每千克40元,规定每千克售
价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千
克售价x(元)满足一次函数关系,部分数据如下表:
例题1 为庆祝中国共产党建党100周年,某校加强了学生对党史知识的学习,并组
2020年中考备考数学专题复习--第1部分 第2章 第9节 一次不等式(组)及其应用
A
B
C
D
3.[2019 包头,14]已知不等式组2x-x+k9>>1-6x+1, 的解 集为 x>-1,则 k 的取值范围是_k_≤_-__2___.
2x+a>0, 4.[2018 呼和浩特,15]若不等式组21x>-a4+1 的解集 中的任意 x,都能使不等式 x-5>0 成立,则 a 的取值范围 是_a_≤_-__6___.
2 结合题意填空,完成本题的解答.
【自主解答】 (1)解不等式①,得________________; (2)解不等式②,得________________; (3)把不等式①和不等式②的解集在数轴上表示出来:
例 1 题图 (4)原不等式组的解集为________________; (5)原不等式组的整数解的个数为____________.
2 x+1 >x①,
解:
1-2x≥x+7②, 2
解①得 x>-2,解②得 x≤-1,
在数轴上表示出不等式组的解集如答图.
. 例 1 题答图 故不等式组的解集为-2<x≤-1, 不等式组的整数解为-1,∴整数解的个数为 1 个.
【巩固训练】 1.[2019 呼和浩特一模]已知实数 m 是一个不等于 2 的常
性质2
以)同一个正数,不等号 的方向不变
②__>_bc或ac③ >
b c
不等式两边都乘(或除
若a>b,c<0,则
性质3 以)同一个负数,不等号 ac④__<____ bc
的方向改变
或ac⑤
<
b c
一元一次不等式的解法及其解集表示 (2017.21)
1.解一元一次不等式的一般步骤:去分母、去括号、移 项、合并同类项、系数化为 1(注意不等号的方向是否改变).
2020中考数学知识梳理系统复习专题训练: 一元一次方程应用(附答案)
2020中考数学知识梳理系统复习专题训练:一元一次方程应用1.李明和爸爸比身高,两人站一起时,发现自己的身高只到爸爸身高的一半.他又去搬来28cm高的小板凳,发现这时到了爸爸身高的处.问李明和爸爸的身高分别为多少?2.生态公园计划在园内的坡地上种植一片有A、B两种树的混合林,需要购买这两种树苗共100棵.假设这批树苗种植后成活95棵,种植A、B两种树苗的相关信息如下表:品名单价(元/棵)栽树劳务费(元/棵)成活率A15 3 96%B20 4 92% (1)设购买A种树苗x棵,则购买B种树苗棵,根据题意可列方程为,解得x=.(2)求种植这片混合林的总费用需多少元?3.洛书(如图1),古称龟书,现已入选国家级非物质文化遗产名录.洛书是术数中乘法的起源,“戴九履一,左三右七,二四为肩,六八为足,五居中宫”是对洛书形象的描述,洛书对应的九宫格(如图2)填有1到9这九个正整数,满足任一行、列、对角线上三个数之和相等.洛书的填法古人是怎么找到的呢?在学习了方程相关知识后,小凯尝试探究其中的奥秘.【第一步】设任一行、列、对角线上三个数之和为S,则每一行三个数的和均为S,而这9个数的和恰好为1到9这9个正整数之和,由此可得S=;【第二步】再设中间数为x,利用包含中间数x的行、列、对角线上的数与9个数的关系可列出方程,求解中间数x.请你根据上述探究,列方程求出中间数x的值.4.我市某水果批发市场苹果的价格如下表:购买苹果(千克)不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元(1)李明分两次共购买苹果40千克,第二次购买的数量多于第一次购买的数量,共付216元,若设第一次购买x千克,用x的代数式表示第二次购买苹果的数量为千克.(2)根据(1)的题意,列出正确的方程是.A.6x+4(40﹣x)=216B.5x+4(40﹣x)=216C.6x+5(40﹣x)=216D.5x+6(40﹣x)=216(3)张强分两次共购买苹果100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问张强第一次,第二次分别购买苹果多少千克?(列方程解应用题)5.甲车从A地出发,匀速开往B地,到达B地后,立刻沿原路以原速返回A地,乙车在甲车出发15min后,从A地出发,匀速开往B地,已知甲车每小时行驶120km,乙车的速度是甲车速度的一半,设甲车途中行驶的时间为xh(x>).(1)根据题意,填写下列表格:行驶速度(km/h)行驶时间(h)行驶路程(km)甲车120 x乙车(2)已知A、B两地相距akm(a>30).①当甲车到达B地时,求乙车与B地的距离(用含a表示代数式表示,结果需简化).②当两车相遇时,用方程描述甲、乙两车行驶路程之间的相等关系.③当x=时,甲车到达A地,当x=时,乙车到达B地(用含a的代数式表示,结果需简化),先到达(填甲或乙).6.根据题意,列出关于x的方程(不必解方程):(1)如图是2018年2月份的日历:如果用如图所示的十字形框,框住日历上的五个数,这五个数的和为80,求这五个数中最小的那个数.解:设最小的那个数为x,根据题意可列出方程.(2)某农场有试验田1080m2,种植A、B、C三种农作物.已知三种农作物的种植面积比是2:3:4,求三种农作物的种植面积分别是多少.解:设A种农作物的种植面积是2xm2,根据题意可列出方程.(3)小明参加1000米比赛,他以4米/秒的速度跑了一段路程后,又以5米/秒的速度跑完了剩余的路程,一共用时4分钟.求小明以5米/秒的速度跑了多少米?解:设小明以5米/秒的速度跑了x米,根据题意可列出方程.7.根据题意设未知数,并列出方程(不必求解).(1)有两个工程队,甲队人数30名,乙队人数10名,问怎样调整两队的人数,才能使甲队的人数是乙队人数的7倍.(2)有一个班的同学准备去划船,租了若干条船,他们计算了一下,如果比原计划多租1条船,那么正好每条船坐6人;如果比原计划少租1条船,那么正好每条船坐9人.问这个班共有多少名同学?8.某文艺团体的一场义演为“希望工程”募捐,门票共售出1000张,得票款6950元.已知成人票为一张8元,学生票为一张5元,成人票与学生票各售出多少张?若设成人票售出x张,则成人票得款8x元,学生票得款5(1000﹣x)元,可以画出线形示意图:你能根据相等关系列出方程求解吗?9.先运用教材中小敏同学尝试、检验的方法求出下列实际问题的答案.再根据题意设未知数,列出方程,不必求解.1.小华有55元,已经购买了15元的小说一本,12元的杂志一本,剩下的钱还可以买7元的钢笔几支?2.甲、乙两个花坛原来共有246盆花,后又运来60盆花,其中20盆放在甲花坛,40盆放在乙花坛,这时甲花坛里的花的盆数是乙花坛里的2倍.问原来甲、乙两个花坛各有多少盆花?10.列方程表示下列语句所表示的相等关系:(1)某地2011年9月6日的温差是10℃,这天最高气温是t℃,最低气温是t℃;(2)七年级学生人数为n,其中男生占45%,女生有110人;(3)一种商品每件的进价为a元,售价为进价的1.1倍,现每件又降价10元,现售价为每件210元;(4)在5天中,小华共植树60棵,小明共植树x(x<60)棵,平均每天小华比小明多种2棵树.11.根据题意设未知数列出方程.(1)某电脑公司计划在5月1日开始将500台电脑投放市场,经市场调研发现,该批电脑每隔10天平均日销售量会减少2台,现准备用38天销售完这批电脑,则预计该公司5月1日至5月10日的平均日销售量是多少台.(2)一件羽绒服降价10%后售出价是270元,原价的60%是其成本,则它的成本是多少.(3)某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学共有多少名.12.某学校七年级四个班为灾区捐款:七年级(1)班捐的钱数是四个班的捐款总和的;七年级(2)班捐的钱数是四个班捐款总和的;七年级(3)班捐的钱数是四个班捐款总和的;七年级(4)班捐了169元.求这四个班捐款的总和.若设这四个班捐款的总和为x元,那么你能列出方程吗?并检验x=676是不是所列方程的解.13.甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运动A、B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A、B两工地的运费分别是140元/吨、150元/吨,乙仓库运到A、B两工地的运费分别是200元/吨、80元/吨,本次运送水泥总运费需要25900元,问甲仓库运到A工地水泥的吨数.(运费:元/吨,表示运送每吨水泥所需的人民币)(1)设甲仓库运到A工地水泥的吨数为x吨,请在下面表格中用x表示出其他未知量.甲仓库乙仓库A工地xB工地x+10 (2)用含x的代数式表示运送甲仓库100吨水泥的运费为元.(写出化简后的结果)(3)请根据题目中的等量关系和以上的分析列出方程.(只列出方程即可,写成ax+b=0的形式,不用解)14.有一位旅客携带了30kg重的行李从上海乘飞机去北京,按民航总局规定:旅客最多可免费携带20kg重的行李,超重部分每千克按飞机票价格1.5%购买行李票,现该旅客购买了180元的行李票,则飞机票价格应是多少元?15.我国明代数学家程大为曾提出过这样一个有趣的问题:有一个人赶着一群羊在前面走,另一个人牵着一只羊跟在后面.后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊的人回答:“我如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只.”请问这群羊有多少只?请设未知数,列出方程.参考答案1.解:设李明的身高为xcm,则爸爸的身高为2xcm,根据题意,得x+28=•2x,解得:x=84,则2x=168.答:李明的身高是84cm,爸爸的身高是168cm.2.解:(1)设购买A种树苗x棵,则购买B种树苗(100﹣x)棵,依题意,得:96%x+92%(100﹣x)=95,解得:x=75.故答案为:(100﹣x);96%x+92%(100﹣x)=95;75.(2)(15+3)×75+(20+4)×(100﹣75)=1950(元).答:种植这片混合林的总费用需1950元.3.解:(1)S=(1+2+3+…+9)÷3=45÷3=15.故答案为15;(2)由计算知:1+2+3+…+9=45.设中间数为x,依题意可列方程:4×15﹣3x=45,解得:x=5.故中间数x的值为5.4.解:(1)由题意,可得第二次购买苹果的数量为(40﹣x)千克.故答案为(40﹣x);(2)设第一次购买x千克,则第二次购买(40﹣x)千克.∵第二次购买的数量多于第一次购买的数量,∴40﹣x>x,解得x<20,∴﹣x>﹣20,∴40﹣x>20,又x>0,∴40﹣x<40,∴20<40﹣x<40.根据题意,得6x+5(40﹣x)=216.故选C;(3)设第一次购买x千克苹果,则第二次购买(100﹣x)千克苹果.分三种情况考虑:①当第一次购买苹果不超过20千克,第二次购买苹果超过20千克以上但不超过40千克的时候,显然不够100千克,不成立;②当第一次购买苹果不超过20千克,第二次购买苹果超过40千克,根据题意,得6x+4(100﹣x)=432,解得:x=16,则100﹣x=100﹣16=84(千克);③第一次购买苹果20千克以上但不超过40千克,第二次购买苹果超过40千克,根据题意,得5x+4(100﹣x)=432,解得:x=32,则100﹣x=100﹣32=68(千克).答:第一次购买16千克苹果,第二次购买84千克苹果或者第一次购买32千克苹果,第二次购买68千克苹果.5.解:(1)由题意可得,甲车行驶的路程为:120x,乙车行驶的速度为:120×=60km/h,行驶的时间为:x﹣=(x﹣)h,行驶的路程为:60(x﹣)km,故答案为:120x;60,x﹣,60(x﹣);(2)①当甲车到达B地时,乙车与B地的距离为:a﹣60()=()km;②当两车相遇时,甲、乙两车行驶路程之间的相等关系是:120x+60(x﹣)=2a;③甲车到达A地时,x=×2=,当乙车到达B地时,x==,故甲先到达,故答案为:,,甲.6.解:(1)设最小的那个数为x,根据题意可列出方程:x+x+6+x+7+x+8+x+14=80,故答案为:x+x+6+x+7+x+8+x+14=80;(2)设A种农作物的种植面积是2xm2,根据题意可列出方程2x+3x+4x=1080,故答案为:2x+3x+4x=1080;(3)设小明以5米/秒的速度跑了x米,根据题意可列出方程+=240,故答案为: +=2407.解:(1)设从乙队调x人去甲队,则乙队现在有10﹣x人,甲队有30+x人,由题意得30+x=7(10﹣x);(2)设这个班共有x名同学,由题意得﹣1=+1.8.解:设成人票售出x张,则成人票得款8x元,学生票得款5(1000﹣x)元,根据题意可得:5(1000﹣x)+8x=6950.9.解:1、设剩下的钱还可以买7元的钢笔x支,由题意,得7x+15+12=55;2、设原来甲花坛有m盆花,则原来乙花坛有(246﹣m)盆花,则20+m=2(246﹣m+40).10.解:(1)根据题意,得t﹣t=10;(2)根据题意,得n=45%n+110;(3)根据题意,得1.1a﹣10=210;(4)根据题意,得﹣=2.11.解:(1)设预计该公司5月1日至5月10日的平均日销售量是x台,根据题意得:10x+10(x﹣2)+10(x﹣4)+8(x﹣6)=500,解得x=16,故答为:预计该公司5月1日至5月10日的平均日销售量是16台;(2)设原价为x元,由题意得,x(1﹣10%)=270,解得:x=300,300×60%=180(元).故答:它的成本是180元;(3)设参加美术活动的同学有x人,根据题意得:x+3x+2x=240,即6x=240,解得:x=40,即参加美术活动的同学有40人.故答:参加美术活动的同学共有40名.12.解:若设这四个班捐款的总和为x元,根据题意,得: x+x+x+169=x,当x=676时,左边=x+x+x+169=x+169=676=右边,∴x=676是所列方程的解.13.解:(1)设甲仓库运到A工地水泥的吨数为x吨,则运到B地水泥的吨数为(100﹣x)吨,乙仓库运到A工地水泥的吨数为(70﹣x)吨,则运到B地水泥的吨数为(x+10)吨,补全表格如下:甲仓库乙仓库A工地x70﹣xB工地100﹣x x+10 (2)运送甲仓库100吨水泥的运费为140x+150(100﹣x)=﹣10x+15000,故答案为:﹣10x+15000;(3)140x+150(100﹣x)+200(70﹣x)+80(x+10)=25900,整理得:﹣130x+3900=0.14.解:设飞机票价格应是x元,由题意得:(30﹣20)×1.5% x=180,解之得:x=1200,答:飞机票价格应是1200元.15.解:设这群羊有x只,根据题意得:x+x+x+x+1=100.。
中考数学专题复习1新情境应用问题
中考数学专题复习1:新情境应用问题Ⅰ、综合问题精讲:以现实生活问题为背景的应用问题,是中考的热点,这类问题取材新奇,立意巧妙,有利于对考生应用水平、阅读理解水平.问题转化水平的考查,让考生在变化的情境中解题,既没有现成的模式可套用,也不可能靠知识的简单重复来实现,更多的是需要思考和分析,新情境应用问题有以下特点:〔1〕提供的背景材料新,提出的问题新;〔2〕注重考查阅读理解水平,许多中测试题中涉及的数学知识并不难,但是读懂和理解背景材料成了一道“关〞;〔3〕注重考查问题的转化水平.解应用题的难点是能否将实际问题转化为数学问题,这也是应用水平的核心.Ⅱ、典型例题剖析【例1】〔2022,宜宾〕如图〔8〕,在某海滨城市O附近海面有一股台风,据监测,当前台风中央位于该城市的东偏南70°方向200千米的海面P处,并以20千米/ 时的速度向西偏北25°的PQ的方向移动,台风侵袭范围是一个圆形区域,当前半径为60千米,且圆的半径以10千米/ 时速度不断扩张.(1)当台风中央移动4小时时,受台风侵袭的圆形区域半径增大到千米;又台风中央移动t小时时,受台风侵袭的圆形区域半径增大到千米.(2)当台风中央移动到与城市O距离最近时,这股台风是否侵袭这座海滨城市?请说明理由(参考数据2 1.41≈).≈,3 1.73+;解:(1)100;〔2〕(6010)t⑶作OH PQOH=〔千米〕,设经过t小时时,台风中央从P ⊥于点H,可算得1002141移动到H,那么201002==算得52t=,此时,受台PH t风侵袭地区的圆的半径为:601052130.5+⨯≈〔千米〕<141〔千米〕∴城市O不会受到侵袭.点拨:对于此类问题常常要构造直角三角形.利用三角函数知识来解决,也可借助于方程.【例2】如图2-1-5所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O点的正北方向10海里外的A 点有一涉嫌走私船只正以 24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问:⑴需要几小时才能追上(点B 为追上时的位置)⑵确定巡逻艇的追赶方向〔精确到0.1°〕.解:设需要t 小时才能追上,那么A B=24 t,OB=26t .〔l 〕在Rt △AOB 中,OB 2= OA 2+ A B 2,即〔26t 〕2=102 +〔24 t 〕2解得t=±l,t=-1不合题意,舍去,t=l,即需要1小时才能追上.〔2〕在Rt △AOB 中,由于sin ∠AOB=AB OB = 24t 26t =1213≈0.9231 ,所以∠AOB ≈6 7.4°, 即巡逻艇的追赶方向为北偏东67.4°.点拨:几何型应用题是近几年中考热点,解此类问题的关键是准确读图.【例3】〔2022,河南〕〔10分〕某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购置机器所耗资金不能超过34万元.⑴按该公司要求可以有几种购置方案?⑵假设该公司购进的6台机器的日生产水平不能低于380个,那么为了节约资金应选择哪种方案?解:〔1〕设购置甲种机器x 台,那么购置乙种机器〔6-x 〕台.由题意,得75(6)34x x +-≤,解这个不等式,得2x ≤,即x 可以取0、1、2三个值,所以,该公司按要求可以有以下三种购置方案:方案一:不购置甲种机器,购置乙种机器6台;方案二:购置甲种机器1台,购置乙种机器5台;方案三:购置甲种机器2台,购置乙种机器4台;〔2〕按方案一购置机器,所耗资金为30万元,新购置机器日生产量为360个;按方案二购置机器,所耗资金为1×7+5×5=32万元;,新购置机器日生产量为1×100+5×60=400个;按方案三购置机器,所耗资金为2×7+4×5=34万元;新购置机器日生产量为2×100+4×60=440个.因此,选择方案二既能到达生产水平不低于380个的要求,又比方案三节约2万元资金,故应选择方案二.【例4】〔2022,临沂〕某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商场出售的这种瓷砖有大、小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,假设大、小包装均不拆开零售,那么怎样制定购置方案才能使所付费用最少?解:根据题意,可有三种购置方案;方案一:只买大包装,那么需买包数为:48048505=;由于不拆包零卖.所以需买10包.所付费用为30×10=300(元) 方案二:只买小包装.那么需买包数为:4801630= 所以需买1 6包,所付费用为1 6×20=320(元)方案三:既买大包装.又买小包装,并设买大包装x 包.小包装y 包.所需费用为W 元.那么50304803020x y W x +=⎧⎨=+⎩ 103203W x =-+ ∵050480x <<,且x 为正整数,∴x =9时,最小W =290(元).∴购置9包大包装瓷砖和l 包小包装瓷砖时,所付费用最少.为290元.答:购置9包大包装瓷砖和l 包小包装瓷砖时,所付费用最少为290元.点拨:数学知识来源于生活,效劳于生活,对于实际问题,要富有创新精神和初中水平,借助于方程或不等式来求解.【例5】如图2-2-4所示,是某次运动会开幕式上点燃火炬时在平面直角坐标系中的示意图,在有O 、A 两个观测点,分别测得目标点火炬C 的仰角分别为α,β,OA=2米,tan α=35 , tan β=23,位于点O 正上方2 米处的点D 的发身装置可以向目标C 同身一个火球点燃火炬,该火球运行地轨迹为一抛物线,当火球运行到距地面最大高度20米时,相应的水平距离为12米(图中E 点).⑴求火球运行轨迹的抛物线对应的函数解析式;⑵说明按⑴中轨迹运行的火球能否点燃目标C ?解:⑴由题意可知:抛物线顶点坐标为(12,20),D 点的坐标为(0,2),所以抛物线解析式为2(),y a x h k =-+即2(12)20y x x =-+∵点D 在抛物线上,所以2=21(12)20,8a a -+=-即∴抛物线解析式为:2132(0128y x x x =-++≤≤+⑵过点C 作CF 丄x 轴于F 点,设CF=b,AF=a,那么 2tan 33tan 25b a b a a β⎧==⎪⎪⎨⎪==⎪+⎩,解得:18.12.a β=⎧⎨=⎩那么点C 的坐标为(20,12),当x=20时,函数值y= 2120320212,8-⨯+⨯+=所以能点燃目标C .点拨:此题是三角函数和抛物线的综合应用题,解此题的关键是建立数学模型,即将实际问题转化为数学问题来解决.Ⅲ、综合稳固练习:〔100分 90分钟〕一、选择题〔每题3分,共30分〕1.某研究结果显示,由父母的身高预测子女身高的公式为:假设父亲的身高为a 米,母亲的身高为b 米,那么儿子成年后的身高约为a+b 2×1.08米,女儿成年后身高约为0.923a+b 2米,初一女学生赵楠的父亲身高为1.75米,母亲身高为1.62米,请同学们根据公式预测一下赵楠成年后的身高约为〔 〕A .1.65米B .1.62米C .1.7 5米D .l .6 0米2.小亮同学想在房子附近开辟一块绿化场地,现共有.米长的篱笆材料,他设计了两种方案,一种是围成正方形的场地,另一种是围成圆形的场地,那么选用哪一种方案围成场地的面积较大〔 〕A 、围成正方形B .围成圆形C 、两者一样大D .不能确定3、将一张矩形白纸对折,再沿着与折痕方向平行的方向反复对折,问经过n 〔1≤n ≤7〕次后,将纸展开共可得到的折痕条数为〔 〕A 、2 n -1B .2 nC 、 2 n-1D .2 n4、在昆明“世博会〞期间,为方便游客参观,铁道部门临时加开了南宁至昆明的直达列车.南宁至昆明的路程为828km,普快列车与直快列车由昆明到南宁时,直快列车平均速度是普快 的1.5倍,假设直快列车比普快列车晚出发2 h 而先到4h,求两列车的平均速度分别是多少?设普快列车的速度为xKm/h,那么直快列车的速度为1.5xkm /h .依题意,所列方程正确的选项是〔 〕 828828.24 1.5A x x ++= 828828.24 1.5B x x+-=; 828828.24 1.5C x x --=; 828828.24 1.5D x x -+= 5、某公司市场营销部的个人月收入与其每月的销售量成一次函数数关系,其图象如图2-2-5所示,由图给长进可知,营销人员没有销售时的收入是〔 〕A .310元B .300元C .290元D .280元6.小美开了一家服装店,有一次去批发市场进货,发现一款牛仔裤,预想能畅销,就用4000元购置了一个批发商的所有这种裤子,还想买二倍数量的这种牛仔裤,又到另一个批发商处用88 00元购进,只是单价比前面购进的贵5元.回来后小美按每件89元销售,销路很好,最后剩下10件,按七五折销售,很快售完,那么小美这笔生意盈利〔〕A.8335元; B.8337.5元; C.8340元; D.8342.5元7.某产品的生产流水线每小时可生产100件产品,生产前无产品积压,生产3小时后安排工人装箱,假设每小时装产品150件.未装箱的产品数量y是时间t的函数,那么这个函数的大致图象〔如图2-2-6所示〕只能是〔〕8.60名初三学生在毕业典礼晚会上,男女生各自相互握手道别男生比女生多2人,班长是一名女生,她与所有男生握过手.那么在这次晚会上,全班学生共握手的次数为〔〕 A.1770 B.902 C.899 D.8869.随着通讯市场竞争日异剧烈,某通讯公司的市话收费标拍每分钟降低了a元后,再次下调了25%,现在的收费标准是每分钟b元,那么原收费标准每分钟为〔〕A.5()4b a-;B.5()4b a+;C.3()4b a+;D.4(+)3b a10 某公司员工分别住在 A、B、C三个住宅区,A区有 30人,B区有 15人,C区有10人,三个区在同一条直线上,位置如2-2-7所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在〔〕A.A区 B.B区 C.C区 D.A、B两区之间二、填空题〔每题 3分,共 15分〕11 经测算,某林场现有生长着的木材存量为a立方米,木材生长的年增长率为25%,为满足生产、生活的需要,该林场每年需采伐加工x立方米木材.⑴用含a与x的代数式表示一年后该林场的木材存量为_______立方米;⑵用含a与x的代数式表示二年后该林场的木材存量为_______立方米;⑶假设条件中的a=122万,要保证三年后该林场的木材存量至少到达1.5 a立方米,那么该林场每年采伐加工的木材最多是__________立方米.12 有一群猴子,在小树林中玩耍,总数的8的平方只猴子在欢乐地蹦跳,还有12只猴子愉快地啼叫,那么小树林中的猴子总数为_______只.13 1平方千米的土地,一年内从太阳得到的能量相当于燃烧1.3 ×105吨煤所产生的能量.,我国西部的广阔地区约有 6.4×106平方千米的广阔面积,那么,我国西部地区一年内从太阳得到的能量相当于燃烧__________吨煤所产生的能量.14 某小区规划在一个长40米,宽26米的矩形场地上修建三条同样宽的两路,使其中两条与短边平行,另一条与长边平行,其余局部种草.假设使每块草坪的面积都是144平方米,那么两路宽_________米.15 某居民小区根据分期付款形式福利分房,小明家购得一套现价为120000元的住房,购房时首期〔第一年〕付款30000元,从第二年起,以后每年应付的房款为5000元与上一年剩余欠款的利息之和,设剩余欠款的年利率为0.4%,假设第x年小明家交房款y元,那么y与x的函数解析式为__________.三、解做题〔16~20题各9分,21题10分,共55分〕16 .某公司欲招聘甲、乙、丙三个工种的工人,这三个工种每人的月工资分别为800元、1000元、1500元.甲、乙两工种合计需聘30人,乙、丙两种工种合计需聘20人,且甲工种的人数不少于乙工种人数的2倍,丙工种人数不少于12人.问甲、乙、两三个工种各招聘多少人,可使每月所付的工资总额最少?17. 如图2-2-8所示,大江的一侧有甲、乙两个工厂,它们都有垂直于江边的小路,长度分别为m千米及n千米,设两条小路相距l千米,现在要在江边建立一个抽水站,把水送到甲、乙两厂去,欲使供水管路最短.抽水站应建在哪里?18 .某商场有一座自下向上运动着的电动扶梯,李明到商场买东西,他从电动扶梯底部走到顶,共走了75级,而当他买完东西向下走时,他的行走速度〔以单位时间走多少级计算〕是上行时速度的3倍.结果他走了150级到达底部,那么这个电动扶梯露在外面能够看到的有多少级?19.如图2-2-9所示:这是某防空部队进行射击练习时在平面直角坐标系中的示意图,在地面O 、A 两个观测点测得空中固定目标的仰角分别为α和β,OA=1千米,tan α=928,tan β= 38 ,于O 点正上方53km 的 D 点处的直升飞机向目标 C 发射防空导弹,该导弹运行到达距地面最大高度3km 时,相应的水平距离为4km (即图中E 点).⑴假设导弹运行轨道为一抛物线,求该抛物线的解析式;⑵说明问〕中轨道运行的导弹能否击中目标 C 的理由.21.某园林门票每张10元,只供一次使用,考虑到人们的不同需求,也为了吸引更多游客,该园林除保存原有的售票方法外,还推出一种“购个人年票〞的售票方法〔个人年票从购置之日起,可供持票者使用一年八年票分A 、B 、C 三类;A 类年票每张120元,持票者进人园林时无需再购置门票出类年票每张60元,持票者进入园林时,需再购置门票,每次2元几类年票每张440元,持票者进入该园林时,需再购置门票,每次3元.⑴ 如果你只选择一种购置门票的方式,并且你方案在一年中用80元花在该园林的门票上,试通过计算,找出可使进人该园林的次数最多的购票方式;⑵ 求一年中进人该园林至少超过多少次时,购置A 类票比拟合算.21.阅读以下材料:十六大提出全面建设小康社会,国际上常用恩格尔系数〔记作n 〕 来衡量一个国家和地区人民生活水平的状况,它的计算公式为: n=100% 食品消费支出总额消费支出总额各类家庭的恩格尔系数如下表所示:根据以上材料,解答以下问题:小明对我市一个乡的农民家庭进行抽样调查,从1998年至2022年间,该乡每户家庭消费支出总额每年平均增加 500元;其中食品消费支出总额平均每年增加200元.1998年该乡农民家庭平均刚到达温饱水平,该年每户家庭消费支出总额平均为8000元.⑴ 1998年该乡平均每户家庭食品消费支出总额为多少元?⑵ 设从1998年起m 年后该乡平均每户的恩格尔系数n m (m 为正整数),请用m 的代数式表示该乡平均每户当年恩格尔系数n m ,那么并利用这个公式计算2022年该乡平均每户以恩格尔系数〔百分号前保存整数〕⑶ 按这样的开展,该乡农民能否实现十六大提出的 2022年我国全面进人小康社会的目标?。
2020年中考数学专题复习《代数应用性问题复习》的教案精品版
中考数学专题复习《代数应用性问题复习》的教案——一、教学目标:(一)知识目标:通过复习,使学生能够分析和表示不同背景下的实际问题中的数量关系,并能够运用方程、不等式、函数等代数有关知识解决实际问题中的增长率问题,调配问题、最值问题等,使学生体会数学建模思想及其步骤。
(二)过程与方法:通过复习如何分析和表示不同背景下实际问题中的等量、不等量及变量之间的函数关系,培养学生分析和判断能力,通过运用代数性的知识解决实际问题,培养学生的数学应用能力。
(三)情感目标:能过对解决问题的基本策略进行反思,进一步体会数学与人类社会的密切联系,了解数学的应用价值,提高学生的环保意识,增进对数学的理解和学数学的信心,培养创新精神和实践能力。
二、教学重点与难点:(一)教学重点:把实际问题转化为数学问题,并建立方程、不等式、函数模型解决实际问题。
(二)教学难点:正确的理解题意,找准数量关系,建立数学模型。
三、教学准备多媒体课件。
三、教学过程教学内容师生行为设计意图一、创设情境,引入复习。
1、直接点题;2、观看视频(关天北京天气的新闻)。
学生认真观看,引领学生进入到实际问题的情境中。
运用最近发生的时事,激起学生的学习兴趣,并认识到环保的重要性,让学生感受到数学就来源于生活。
二、例题讲解1.【例1】为保护环境,响应市政府“创建国家森林城市”的号召,黄岩某小区计划购进A、B两种树苗共20棵,已知A种树苗每棵60元,B种树苗每棵40元.学生独立思考,发表自己的见解,师板书并进行点拨,提醒解题的几个注意点。
通进对问题的分析,抽象出方程、不等式、函数等数学模型,并使(1)若购进A、B两种树苗刚好用去1000元,问购进A种树苗多少棵?(2)若购进A、B两种树苗花费小于1000元,问最多购进A种树苗多少棵?(3)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用。
2.小结并板书数学建模思想实际问题数学问题实际问题的解数学问题的解一般步骤:①审;②设;③列;④解;⑤验;⑥答。
中考数学复习第四讲《情景应用型问题》练习题含答案
中考数学复习专题第四讲情景应用问题【要点梳理】情境应用问题是以现实生活为背景,取材新颖,立意巧妙,重在考查阅读理解能力和数学建模能力,让学生在阅读理解的基础上,将实际问题转化为数学问题.其主要类型有代数型(包括方程型、不等式型、函数型、统计型)和几何型两大类.解决代数型应用问题:关键是审题,弄清关键词句的含义;重点是分析,找出问题中的数量关系,并将其转化为数学式子,进行整理、运算、解答.解决几何型应用问题:一般是先将实际问题转化为几何问题,再运用相关的几何知识进行解答,要注重数形结合,充分利用“图形”的直观性和“数”的细微性.【学法指导】(1)方程(组)、不等式、函数型情境应用题:解决这类问题的关键是针对背景材料,设定合适的未知数,找出相等关系,建立方程(组)、不等式、函数型模型来解决;(2)统计概率型应用题:解决这类问题:①要能从多个方面去收集数据信息,特别注意统计图表之间的相互补充和利用;②通过对数据的整理,能从统计学角度出发去描述、分析,并作出合理的推断和预测;(3)几何型情境应用题:解决这类问题的关键是在理解题意的基础上,对问题进行恰当地抽象与概括,建立恰当的几何模型,从而确定某种几何关系,利用相关几何知识来解决.几何求值问题,当未知量不能直接求出时,一般需设出未知数,继而建立方程(组),用解方程(组)的方法去求结果,这是解题中常见的具有导向作用的一种思想.【考点解析】方程型情境应用题(2017湖北宜昌)某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【考点】AD:一元二次方程的应用;B7:分式方程的应用.【分析】(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x、b的值可得答案.(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得.【解答】解:(1)三年用于辅助配套的投资将达到54×=36(亿元);(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,根据题意,得:,解得:,∴市政府2015年年初对三项工程的总投资是7x=35亿元;(3)由x=5得,2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,由题意,得:20(1﹣y)2=5,解得:y1=0.5,y2=1.5(舍)答:搬迁安置投资逐年递减的百分数为50%.不等式型情境应用题(2017山东聊城)在推进城乡义务教育均衡发展工作中,我市某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生用电脑和教师用笔记本电脑,其中,A乡镇中学更新学生用电脑110台和教师用笔记本电脑32台,共花费30.5万元;B乡镇中学更新学生电脑55台和教师用笔记本电脑24台,共花费17.65万元.(1)求该型号的学生用电脑和教师用笔记本电脑单价分别是多少万元?(2)经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的少90台,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设该型号的学生用电脑的单价为x万元,教师用笔记本电脑的单价为y万元,根据题意列出方程组,求出方程组的解得到x与y的值,即可得到结果;(2)设能购进的学生用电脑m台,则能购进的教师用笔记本电脑为(m ﹣90)台,根据“两种电脑的总费用不超过预算438万元”列出不等式,求出不等式的解集.【解答】解:(1)设该型号的学生用电脑的单价为x万元,教师用笔记本电脑的单价为y万元,依题意得:,解得,经检验,方程组的解符合题意.答:该型号的学生用电脑的单价为0.19万元,教师用笔记本电脑的单价为0.3万元;(2)设能购进的学生用电脑m台,则能购进的教师用笔记本电脑为(m ﹣90)台,依题意得:0.19m+0.3×(m﹣90)≤438,解得m≤1860.所以m﹣90=×1860﹣90=282(台).答:能购进的学生用电脑1860台,则能购进的教师用笔记本电脑为282台.统计与概率型情境应用题(2017山东临沂)为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计9要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:学生最喜爱的节目人数统计表百分比节目人数(名)最强大脑510%朗读者15b%中国诗词大会a40%出彩中国人1020%根据以上提供的信息,解答下列问题:(1)x=50,a=20,b=30;(2)补全上面的条形统计图;(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.【分析】(1)根据最强大脑的人数除以占的百分比确定出x的值,进而求出a与b的值即可;(2)根据a的值,补全条形统计图即可;(3)由中国诗词大会的百分比乘以1000即可得到结果.【解答】解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,b=×100=30;故答案为:50;20;30;(2)中国诗词大会的人数为20人,补全条形统计图,如图所示:(3)根据题意得:1000×40%=400(名),则估计该校最喜爱《中国诗词大会》节目的学生有400名.【点评】此题考查了条形统计图,用样本估计总体,以及统计表,弄清题中的数据是解本题的关键.几何型情境应用题(2017山东临沂)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.【分析】(1)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再得出∠AEC=45°,即可得出等腰直角三角形,即可;(判断∠ADE=∠ABC也可以先判断出点A,B,C,D四点共圆)(2)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再用三角函数即可得出结论.【解答】解:(1)BC+CD=AC;理由:如图1,延长CD至E,使DE=BC,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=45°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CE+DE=CD+BC,∴BC+CD=AC;(2)BC+CD=2AC•cosα.理由:如图2,延长CD至E,使DE=BC,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,过点A作AF⊥CE于F,∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα.【点评】此题是几何变换综合题,主要考查了全等三角形的判定,四边形的内角和,等腰三角形的判定和性质,解本题的关键是构造全等三角形,是一道基础题目.【真题训练】训练一:(2017重庆B)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.训练二:(2017甘肃天水)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?训练三:(2017•温州)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)训练四:(2017湖北咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF= CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.训练五:(2017湖北随州)如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD交AF于点H.…请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求的值;(3)在(2)的条件下,若=k(k为大于的常数),直接用含k的代数式表示的值.参考答案:训练一:(2017重庆B)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【分析】(1)利用枇杷的产量不超过樱桃产量的7倍,表示出两种水果的质量,进而得出不等式求出答案;(2)根据果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同得出等式,进而得出答案.【解答】解:(1)设该果农今年收获樱桃x千克,根据题意得:400﹣x≤7x,解得:x≥50,答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,整理可得:8y2﹣y=0解得:y1=0,y2=0.125∴m1=0(舍去),m2=12.5∴m2=12.5,答:m的值为12.5.【点评】此题主要考查了一元一次不等式的应用以及一元二次方程的应用,正确表示出水果的销售总金额是解题关键.训练二:(2017甘肃天水)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y 万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【解答】解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:≤a≤,因为a是整数,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.训练三:(2017•温州)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)【考点】X6:列表法与树状图法;V5:用样本估计总体;VC:条形统计图.【专题】11 :计算题.【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.【解答】解:(1)480×18=90,15+27+18+36估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率=26=1 3.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.\训练四:(2017湖北咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF= CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.【考点】MR:圆的综合题.【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).训练五:(2017湖北随州)如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD交AF于点H.…请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求的值;(3)在(2)的条件下,若=k(k为大于的常数),直接用含k的代数式表示的值.【考点】SO:相似形综合题.【分析】(1)证法一,利用菱形性质得AB=CD,AB∥CD,利用平行四边形的性质得AB=EF,AB∥EF,则CD=EF,CD∥EF,再根据平行线的性质得∠CDM=∠FEM,则可根据“AAS”判断△CDM≌△FEM,所以DM=EM;证法二,利用菱形性质得DH=BH,利用平行四边形的性质得AF∥BE,再根据平行线分线段成比例定理得到==1,所以DM=EM;(2)由△CDM≌△FEM得到CM=FM,设AD=a,CM=b,则FM=b,EF=AB=a,再证明四边形ABCD为正方形得到AC=a,接着证明△ANF为等腰直角三角形得到NF=a+b,则NE=NF+EF=2a+b,然后计算的值;(4)由于==+=k,则=,然后表示出==•+1,再把=代入计算即可.【解答】解:(1)如图1,证法一:∵四边形ABCD为菱形,∴AB=CD,AB∥CD,∵四边形ABEF为平行四边形,∴AB=EF,AB∥EF,∴CD=EF,CD∥EF,∴∠CDM=∠FEM,在△CDM和△FEM中,∴△CDM≌△FEM,∴DM=EM,即点M是DE的中点;证法二:∵四边形ABCD为菱形,∴DH=BH,∵四边形ABEF为平行四边形,∴AF∥BE,∵HM∥BE,∴==1,∴DM=EM,即点M是DE的中点;(2)∵△CDM≌△FEM,∴CM=FM,设AD=a,CM=b,∵∠ABE=135°,∴∠BAF=45°,∵四边形ABCD为菱形,∴∠NAF=45°,∴四边形ABCD为正方形,∴AC=AD=a,∵AB∥EF,∴∠AFN=∠BAF=45°,∴△ANF为等腰直角三角形,∴NF=AF=(a+b+b)=a+b,∴NE=NF+EF=a+b+a=2a+b,∴===;(4)∵==+=k,∴=k﹣,∴=,∴==•+1=•+1=.。
2020年中考数学复习《分式方程应用题》 中考常见题型练习题(附解析)
《分式方程应用题》中考常见题型练习1.随着生活水平的提高,人们对饮水品质的需求越来越高某公司根据市场需求代理A,B 两种型号的净水器,每台A型净水器比每台B型净水器进价多300元,用4万元购进A 型净水器与用3.4万元购进B型净水器的数量相等(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划购进A、B两种型号的净水器共50台进行试销,购买资金不超过9.85万元,其中A型净水器为x台试销时A型净水器每台售价2499元,B型净水器每台售价2099元.公司决定从销售A型净水器的利润中按每台捐献a元(80<a<100)作为公司帮扶贫困村饮水改造资金,设该公司售完50台净水器并捐献扶贫资金后获得的利润为W (元),求W的最大值.2.市政府计划对城区道路进行改造,现安排甲、乙两个工程队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队改造240米的道路比乙队改造同样长的道路少用2天.(1)甲、乙两个工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天的改造费用为7万元,乙队工作一天的改造费用为5万元,如需改造的道路全长为1800米,改造总费用不超过220万元,至少安排甲队工作多少天?3.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于2100元,则第二批衬衫每件至少要售多少元?4.在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?5.某书店在图书批发中心选购A、B两种科普书,A种科普书每本进价比B种科普书每本进价多25元,若用2000元购进A种科普书的数量是用750元购进B种科普书数量的2倍.(1)求A、B两种科普书每本进价各是多少元;(2)该书店计划A种科普书每本售价为130元,B种科普书每本售价为95元,购进A 种科普书的数量比购进B种科普书的数量的还少4本,若A、B两种科普书全部售出,使总获利超过1240元,则至少购进B种科普书多少本?6.哈市某段地铁工程由甲、乙两工程队合作30天可完成,若单独施工,甲工程队比乙工程队多用45天.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费1.5万元,乙工程队施工每天需付施工费2.4万元,甲工程队最多要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过127万元?7.某超市准备购进A,B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A每盏售价120元,B每盏售价80元.已知用1040元购进A的数量与用650元购进B的数量相同.(1)求台灯A、B每盏的进价是多少元;(2)超市打算购进A,B台灯共100盏,要求售出A,B的总利润不少于3400元,问至少需购进A台灯多少台?8.某超市预测某品牌饮料有销售前景,用1200元购进一批该饮料,试销售后果然供不应求,又用5400元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价为多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于5400元,那么销售单价至少为多少元?9.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?10.2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多0.5元.(1)第一批花每束的进价是多少元.(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?11.某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.(1)求每个甲种配件、每个乙种配件的价格分别为多少万元;(2)现投入资金80万元,根据维修需要预测,甲种配件要比乙种配件至少要多22件,问乙种配件最多可购买多少件.12.安排甲、乙两队绿化面积为1800m2的区域.已知甲队每天可绿化面积为乙队的一半,且在独立绿化面积为400m2的区域时比乙队多用4天.(1)求甲、乙两队每天可绿化面积;(2)若每天需付甲队0.25万元,乙队0.4万元,要使总费用不超过8万元,至少应安排乙队绿化多少天?13.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?14.为了保护环境,某开发区综合治理指挥部决定购买A ,B 两种型号的污水处理设备共10台.已知用90万元购买A 型号的污水处理设备的台数与用75万元购买B 型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备价格(万元/台)月处理污水量(吨/台)(1)求m 的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过156万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.15.在石家庄地铁3号线的建设中,某路段需要甲乙两个工程队合作完成.已知甲队修600米和乙队修路450米所用的天数相同,且甲队比乙队每天多修50米.(1)求甲队每天修路多少米?(2)地铁3号线全长45千米,若甲队施工的时间不超过120天,则乙队至少需要多少天才能完工?A 型m 220B 型m ﹣318016.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?17.有一项工程,乙队单独完成所需的时间是甲队单独完成所需时间的2倍,若两队合作4天后,剩下的工作甲单独做还需要6天完成.(1)求甲、乙两队单独完成这项工程各需多少天;(2)若甲队每天的报酬是1万元,乙队每天的报酬是0.3万元,要使完成这项工程时的总报酬不超过9.6万元,甲队最多可以工作多少天?18.时代天街某商场经营的某品牌书包,6月份的销售额为20000元,7月份因为厂家提高了出厂价,商场把该品牌书包售价上涨20%,结果销量减少50个,使得销售额减少了2000元.(1)求6月份该品牌书包的销售单价;(2)若6月份销售该品牌书包获利8000元,8月份商场为迎接中小学开学做促销活动,该书包在6月售价的基础上一律打八折销售,若成本上涨5%,则销量至少为多少个,才能保证8月份的利润比6月份的利润至少增长6.25%?19.荔枝上市后,某水果店的老板用500元购进第一批荔枝,销售完后,又用800元购进第二批荔枝,所购件数是第一批购进件数的2倍,但每件进价比第一批进价少5元.(1)求第一批荔枝每件的进价;(2)若第二批荔枝以30元/件的价格销售,在售出所购件数的50%后,为了尽快售完,决定降价销售,要使第二批荔枝的销售利润不少于300元,剩余的荔枝每件售价至少多少元?20.为落实“美丽城区”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造480米的道路比乙队改造同样长的道路少用4天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用3万元,乙队工作一天需付费用2.4万元,如需改造的道路全长1200米,改造总费用不超过66万元,至少安排甲队工作多少天?参考答案1.解:(1)设每台B型净水器的进价为x元,则每台A型净水器的进价为(x+300)元,依题意,得:解得:x=1700,经检验,x=1700是原方程的解,且符合题意,∴x+300=2000.答:每台A型净水器的进价为2000元,每台B型净水器的进价为1700元.(2)∵购进x台A型净水器,∴购进(50﹣x)台B型净水器,依题意,得:W=(2499﹣2000﹣a)x+(2099﹣1700)(50﹣x)=(100﹣a)x+19950.∵购买资金不超过9.85万元,∴2000x+1700(50﹣x)≤98500,解得:x≤45.∵80<a<100,∴100﹣a>0,∴W随x值的增大而增大,∴当x=45时,W取得最大值,最大值为(24450﹣45a)元.2.解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为1.5x米,根据题意得:解得:x=40,经检验,x=40是所列分式方程的解,且符合题意,∴1.5x=60.答:甲工程队每天能改造道路的长度为60米,乙工程队每天能改造道路的长度为40米.(2)设安排甲队工作m天,则安排乙队工作根据题意得:7m+5×解得:m≥10.≤220,天,﹣=2,=,答:至少安排甲队工作10天.3.解:(1)设第二次购进衬衫x件,则第一次购进衬衫2x件,依题意,得:经检验,x=15,经检验,x=15是所列分式方程的解,且符合题意,∴2x=30.答:第一次购进衬衫30件,第二次购进衬衫15件.(2)由(1)可知,第一次购进衬衫的单价为150元/件,第二次购进衬衫的单价为140元/件,设第二批衬衫的售价为y元/件,依题意,得:(200﹣150)×30+(y﹣140)×15≥2100,解得:y≥180.答:第二批衬衫每件至少要售180元.4.解:(1)设甲工程队单独完成这项工程需要2x天,则乙工程队单独完成这项工程需要3x天,依题意,得:解得:x=30,经检验,x=30是原方程的解,且符合题意,∴2x=60,3x=90.答:甲工程队单独完成这项工程需要60天,乙工程队单独完成这项工程需要90天.(2)由题意,得:∴n=90﹣m.设施工总费用为w万元,则w=15m+8n=15m+8×(90﹣m)=3m+720.∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,∴∴20≤m≤40.∵15>0,,+=1,+=1,﹣=10,∴w 值随m 值的增大而增大,∴当m =20时,完成此项工程总费用最少,此时n =90﹣m =60,w =780万元.答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.5.解:(1)设B 种科普书每本的进价为x 元,则A 种科普书每本的进价为(x +25)元,根据题意得:解得:x =75,经检验,x =75是所列分式方程的解,∴x +25=100.答:A 种科普书每本的进价为100元,B 种科普书每本的进价为75元.(2)设购进B 种科普书m 本,则购进A 种科普书(m ﹣4)本,根据题意得:(130﹣100)(m ﹣4)+(95﹣75)m >1240,解得:m >45,∵m 为正整数,且m ﹣4为正整数,∴m 为3的倍数,∴m 的最小值为48.答:至少购进B 种科普书48本.6.解:(1)设乙工程队单独完成此项工程需要x 天,则甲工程队单独完成此项工程需要(x +45)天,依题意,得:+=,=2×,整理,得:x 2﹣15x ﹣1350=0,解得:x 1=45,x 2=﹣30,经检验,x 1=45,x 2=﹣30是原方程的解,x 1=45符合题意,x 2=﹣30不符合题意,舍去,∴x =45,x +45=90.答:甲工程队单独完成此项工程需要90天,乙工程队单独完成此项工程需要45天.(2)设甲工程队单独施工m 天后,则甲、乙两工程队需合作施工天才能完成任务,依题意,得:1.5×(m +)+2.4×≤127,解得:m ≤50.答:甲工程队最多要单独施工50天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过127万元.7.解:(1)设B 台灯每盏的进价为x 元,则A 台灯每盏的进价为(x +30)元,依题意,得:解得:x =50,经检验,x =50是原方程的解,且符合题意,∴x +30=80.答:A 台灯每盏的进价为80元,B 台灯每盏的进价为50元.(2)设购进A 台灯m 台,则购进B 台灯(100﹣m )台,依题意,得:(120﹣80)m +(80﹣50)(100﹣m )≥3400,解得:m ≥40.答:至少需购进A 台灯40台.8.解:(1)设第一批饮料进货单价为x 元,则第一批饮料进货单价为(x +2)元,依题意,得:解得:x =4,经检验,x =4是原方程的解,且符合题意.答:第一批饮料进货单价为4元.(2)第一批饮料进货数量为1200÷4=300(瓶),第二批饮料进货数量为5400÷(4+2)=900(瓶).设销售单价为y 元,依题意,得:(300+900)y ﹣(1200+5400)≥5400,解得:y ≥10.=3×,=,答:销售单价至少为10元.9.解:(1)设B 种原料每千克的价格为x 元,则A 种原料每千克的价格为(x +10)元,依题意,得:1.2(x +10)+x ≤34,解得:x ≤10.答:购入的B 种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a 元,则零售价为(a +30)元,依题意,得:解得:a =50,经检验,a =50是原方程的解,且符合题意.答:这种产品的批发价为50元.10.解:(1)设第一批花每束的进价是x 元,则第二批花每束的进价是(x +0.5)元,根据题意得:解得:x =2,经检验:x =2是原方程的解,且符合题意.答:第一批花每束的进价是2元.(2)由(1)可知第二批菊花的进价为2.5元.设第二批菊花的售价为m 元,根据题意得:解得:m ≥3.5.答:第二批花的售价至少为3.5元.11.解:(1)设每个乙种配件的价格为x 万元,则每个甲种配件的价格为(x ﹣0.4)万元,根据题意得:解得:x =1.2,经检验,x =1.2是原分式方程的解,∴x ﹣0.4=1.2﹣0.4=0.8.答:每个甲种配件的价格为0.8万元、每个乙种配件的价格为1.2万元.(2)设购买甲种配件m 件,购买乙种配件n 件,根据题意得:0.8m +1.2n =80,=,×(3﹣2)+×(m ﹣2.5)≥1500,×2=,=,∴m =100﹣1.5n .∵甲种配件要比乙种配件至少要多22件,∴m ﹣n ≥22,即100﹣1.5n ﹣n ≥22,解得:n ≤31.2,∵m ,n 均为非负整数,∴n 的最大值为30.答:乙种配件最多可购买30件.12.解:(1)设甲队每天可绿化面积为xm 2,则乙队每天可绿化面积为2xm 2,根据题意得:解得:x =50,经检验,x =50是所列分式方程的解,∴2x =100.答:甲队每天可绿化面积为50m 2,乙队每天可绿化面积为100m 2.(2)设应安排乙队绿化m 天,则安排甲队绿化根据题意得:0.25×解得:m ≥10.答:至少应安排乙队绿化10天.13.解:(1)设乙工程队每天完成x 米,则甲工程队每天完成2x 米,依题意,得:解得:x =300,经检验,x =300是原方程的解,且符合题意,∴2x =600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y 天,则甲乙两工程队还需合作依题意,得:7000(y +解得:y ≥1,∴﹣y ≤﹣=6.﹣y )+5000(﹣y )≤79000,=(﹣y )天,﹣=10,+0.4m ≤8,天,﹣=4,答:两工程队最多可以合作施工6天.14.解:(1)依题意,得:解得:m =18,经检验,m =18是原方程的解,且符合题意.∴m =值为18.(2)设购买A 型污水处理设备x 台,则购买B 型污水处理设备(10﹣x )台,依题意得:18x +15(10﹣x )≤156,解得:x ≤2,∵x 是整数,∴有3种方案.当x =0时,y =10,月处理污水量为180×10=1800吨,当x =1时,y =9,月处理污水量为220+180×9=1840吨,当x =2时,y =8,月处理污水量为220×2+180×8=1880吨,答:有3种购买方案,每月最多处理污水量的吨数为1880吨.15.解:(1)设甲队每天修路x 米,则乙队每天修路(x ﹣50)米,依题意,得:解得:x =200,经检验,x =200是原方程的解,且符合题意.答:甲队每天修路200米.(2)设乙队需要y 天才能完工,依题意,得:45000﹣(200﹣50)y ≥200×120,解得:y ≤140.答:乙队至少需要140天才能完工.16.解:(1)设小本作业本每本x 元,则大本作业本每本(x +0.3)元,依题意,得:解得:x =0.5,经检验,x =0.5是原方程的解,且符合题意,∴x +0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元.=,=,=,(2)设大本作业本购买m本,则小本作业本购买2m本,依题意,得:0.8m+0.5×2m≤15,解得:m≤.∵m为正整数,∴m的最大值为8.答:大本作业本最多能购买8本.17.解:(1)设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要2x天,+=1,依题意,得:解得:x=12,经检验,x=12是原方程的解,且符合题意,∴2x=24.答:甲队单独完成这项工程需要12天,乙队单独完成这项工程需要24天.(2)设甲队工作m天,则乙队工作天,依题意,得:m+0.3×≤9.6,整理,得:0.4m≤2.4,解得:m≤6.答:甲队最多可以工作6天.18.解:(1)设6月份该品牌书包的销售单价为x元,则7月份该品牌书包的销售单价为(1+20%)x元,﹣=50,依题意,得:解得:x=100,经检验,x=100是原方程的解,且符合题意.答:6月份该品牌书包的销售单价为100元.(2)6月份该品牌书包的销售数量为20000÷100=200(个),6月份该品牌书包的进价为(20000﹣8000)÷200=60(元).设8月份该品牌书包的销售数量为y个,依题意,得:[100×0.8﹣(1+5%)×60]y≥8000×(1+6.25%),解得:y≥500.答:销量至少为500个时,才能保证8月份的利润比6月份的利润至少增长6.25%.19.解:(1)设第一批荔枝每件的进价为x元,则第二批荔枝每件的进价为(x﹣5)元,依题意,得:2×解得:x=25,经检验,x=25是原分式方程的解,且符合题意.答:第一批荔枝每件的进价为25元.(2)第二批购进荔枝的件数为800÷(25﹣5)=40(件).设剩余的荔枝每件售价为y元,依题意,得:[30﹣(25﹣5)]×40×50%+[y﹣(25﹣5)]×40×50%≥300,解得:y≥25.答:剩余的荔枝每件售价至少为25元.20.解:(1)设乙工程队每天能改造道路x米,则甲工程队每天能改造道路x米,=,依题意,得:解得:x=40,﹣=4,经检验,x=40是分式方程的解,且符合题意,∴x=60.答:甲工程队每天能改造道路60米,乙工程队每天能改造道路40米.(2)设安排甲队工作m天,则安排乙队工作依题意,得:3m+2.4×解得:m≥10.答:至少安排甲队工作10天.≤66,天,。
2020年九年级中考数学应用类一 情境应用型问题课件(共24张ppt)
七巧板拼图 趣题巧解 数学应用
魔方复原
甲
66
89
86
68
乙
66
60
80
68
丙
66
80
90
68
(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四个项
目得分分别按 10%,40%,20%,30%折算记入总分,根据猜测,求出甲的总分;
(2)本次大赛组委会最后决定,总分为 80 分以上(包含 80 分)的学生获一等
探索延伸: 如图②,若在四边形 ABCD 中,AB=AD,∠B+∠D=180°.E,F 分别是 BC,CD 上的点,且∠EAF=12∠BAD,上述结论是否仍然成立,并说明理由; 实际应用: 如图③,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西 30°的 A 处, 舰艇乙在指挥中心南偏东 70°的 B 处,并且两舰艇到指挥中心的距离相等,接 到行动指令后,舰艇甲向正东方向以 60 海里/小时的速度前进,舰艇乙沿北偏东 50°的方向以 80 海里/小时的速度前进.1.5 小时后,指挥中心观测到甲、乙两舰 艇分别到达 E,F 处,且两舰艇之间的夹角为 70°,试求此时两舰艇之间的距离.
(2)当用水量为 30 吨时,水费为:17×3+13×5=116 元,∵9200×2%= 184 元,116<184,∴小王家六月份的用水量可以超过 30 吨.设小王家六月份 用水量为 x 吨,由题意,得 17×3+13×5+6.8(x-30)≤184,6.8(x-30)≤68, 解得 x≤40.答:小王家六月份最多能用水 40 吨.
【点评】本题考查了列二元一次方程组解实际问题的运用、加权平均 数的运用,在解答时建立方程组求出趣题巧解和数学运用的百分比是解答 本题的关键.
中考数学复习考点知识与题型归类解析52---新情景应用型问题
中考数学复习考点知识与题型归类解析52---新情景应用型问题一、选择题16.(2020·北京)下图是某剧场第一排座位分布图甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序.二、填空题14.(2020·长沙)某数学老师在课外活动中做了一个有趣的游戏:首先发给A,B,C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤:第一步,A同学拿出二张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学,请你确定,最终B同学手中剩余的扑克牌的张数为____________.15.(2020•呼和浩特)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,……,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数过120张,则可算得5月1日到5月28日他共用宣纸张数为112,并可推断出5月30日应该是星期几五、六、日.三、解答题26.(2020·盐城)木门常常需要雕刻美丽的图案.()1图①为某矩形木门示意图,其中AB长为200厘米,AD长为100厘米,阴影部分是边长为30厘米的正方形雕刻模具,刻刀的位置在模具的中心点P处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;()2如图②,对于()1中的木门,当模具换成边长为仍在模具的中心点P处,雕刻时也始终保持模具的一边紧贴本门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图②中画出雕刻所得图案的草阁,并求其周长.。
专题复习情景应用题(含答案)
专题复习(4) 情景应用题◆知识讲解1.什么是情景应用题情景应用题,是指有实际背景或实际意义的数学问题,它是寓数学问题、数学思想方法和数学思想于情境中的应用题.趣味性、益智性是情境应用题的显著特点,情境应用题以其生动有趣的情节吸引人们,使人们产生强烈的探索和研究欲望.2.情境应用题的特点由于情境应用题来源于生活和生产实践,所以参考条件较多,思维有一定深度,解答方法灵活多样.解这类题的关键是:在阅读理解的基础上,根据需要取舍信息,从不同的思维角度提出问题、分析问题,恰当地应用和理解数学知识,历经重要的有价值的数学思维活动过程.3.情境应用题的主要形式(1)直接套用公式解决实际问题;(2)解决已给出数学表达式的实际问题;(3)对数学关系比较清楚、简单的实际问题,学生自己建立简单的数学模型,•并加以解决.◆例题解析例1 (2006,哈尔滨市)某汽车销售公司到某汽车制造厂选购A,B•两种型号的轿车,用300万元可购进A型轿车10辆,B型轿车15辆,用300万元也可以购进A型轿车8辆,B型轿车18辆.(1)求A,B两种型号的轿车每辆分别为多少万元?(2)若该汽车销售公司销售1辆A型轿车可获利8000元,销售1•辆B•型轿车可获利5000元,该汽车销售公司准备用不超过400万元购进A,B两种型号轿车共30辆,且这两种轿车全部售出后总获利不低于万元,问有几种购车方案?在这几种购车方案中,该汽车销售公司将这些轿车全部售出后,分别获利多少万元?【分析】可设A,B两种型号的轿车每辆分别为x万元,y万元,通过列方程组解出(1)问.【解答】(1)设A型号的轿车每辆为x万元,B型号的轿车每辆为y万元.根据题意,得1015300, 818300.x yx y+=⎧⎨+=⎩解得15,10 xy=⎧⎨=⎩答:A,B两种型号的轿车每辆分别为10万元,15万元.(2)设购进A种型号轿车a辆,则购进B种型号轿车(30-a)辆.根据题意,得1510(30)400,0.80.5(30)20.4a aa a+-≤⎧⎨+-≥⎩解此不等式组得18≤a≤20.∵a为整数,∴a=18,19,20,∴有三种购车方案.方案1:购进A型号轿车18辆,购进B型号轿车12辆;方案3:购进A型号轿车19辆,•购进B型号轿车11辆;方案3:购进A型号轿车20辆,购进B型号轿车10辆.汽车销售公司将这些轿车全部售出后:方案1获利(万元);方案2获利(万元);方案3获利20×0.8+10×0.5=21(万元).【解答】有三种购车方案,在这三种购车方案中,汽车销售公司将这些轿车全部售出后分别获利为万元,万元,21万元.【点评】此题通过数学建模能培养同学们应用数学知识解决实际问题的能力.例2 某人沿着向上移动的自动扶梯从顶部朝下走到底部用了7min30s,•而他沿着自动扶梯从底部朝上走到顶部只用了1min30s,那么此人不走,•乘着扶梯从底部到顶部需用几分钟?若停电,此人沿扶梯从底部走到顶部需几分钟?(假定此人上,•下扶梯的行走速度相同)【分析】本题由于存在相对运动,理解题意较困难,但联想到我们熟知的航行问题中的顺水、逆水航行的数学模型,将电梯运行的速度类比为水流的速度,人在电梯静止(停电时)的上、下扶梯的速度类比为船在静水中航行的速度,那么问题便迎刃而解. 【解答】设此不走,乘着扶梯从底部到顶部需要xmin ,停电时此人从底部走到顶部需用ymin ,依题意得1111.51117.5x y y x ⎧+=⎪⎪⎨⎪-=⎪⎩解得 3.752.5x y =⎧⎨=⎩故乘着扶梯从底部到顶部需要用3min45s ;•停电时此人从底部走到顶部需要用2min30s .【点评】遇到新问题若能联想到常见题的模型,就可以使很多难以入手的问题找到突破口,这要求同学们具备较强的联想、类比能力.◆强化训练 一、填空题1.(2008,河南省)某商店一套夏装的进价为200元,按标价的80%销售可获利72元,则该服装的标价为________元.2.某顾客第一次在商店买若干件小商品花去5元,第二次再去买该小商品时,•发现每一打(12件)降价0.8元,他比第一次多买了10件,这样,第二次共花去2元,且第二次买的小商品恰好成好,问他第一次买的小商品是______件.3.(2006,山西省)某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调整,结果如下:为获得最大利润,销售商应将该品牌电饭锅定价为_____元.4.(2004,资阳市)我市为鼓励居民节约用水,对自来水用户按分段计费方式收取水费;若每月用水不超过7m3,则按每立方米1元收费;若每月用户超过7m3,•则超过的部分按每立方米2元收费.如果某居民今年5月缴纳了17元水费,那么这户居民今年5•月的用水量为_____m3.5.(2004,潍坊市)一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题得-1分,在这次竞赛中,小明获得优秀(90分或90分以上),•则小明至少答对了____道题.6.(2005,济南市)某商场计划每月销售900台电脑,5月1日至7日黄金周期间,•商场决定开展促销活动,5月的销售计划又增加了30%,已知黄金周这7•天平均每天销售54台,则这个商场本月后24天平均每天至少销售______台才能完成本月计划.二、选择题7.(2004,绵阳市)有一旅客携带30kg行李从某机场乘飞机返回绵阳,按民航规定:旅客最多可免费携带20kg行李,超重部分每千克按飞机票价格的1.5%购行李票,•已知该旅客现已购行李票60元,则它的飞机票价为()A.300元B.400元C.600元D.800元8.足球一般是由许多黑白相间的小皮革缝制而成的(如图),黑块呈正五边形,白块呈正六边形,已知黑块有12块,则白块有()A.32块B.20块C.12块D.10块9.(2006,重庆市)免交农业税大大提高了农民的生产积极性,镇政府引导农民对生产的某种土特产进行加工后,分为甲,乙,丙三种不同包装推向市场进行销售,其相关信息如下表:质量/(g/袋)销售价/(元/袋)包装成本费用/(元/袋)甲400乙300丙200春节期间,这三种不同包装的土特产都销售了12000kg,那么本次销售中,这三种包装的土特产获得利润最大的是( )A .甲B .乙C .丙D .不能确定10.一支部队排成am•长队行军,•在队尾的战士要与在最前面的团长联系,•他用t 1min 时间追上了团长;为了回到队尾,他在追上团长的地方等待了t 2min ,•如果他从最前头跑步回到队尾,那么要( ) A .1212t t t t +min B .12122t tt t +min C .12122t t t t +min D .12122t t t t +min11.(2008,山东省)某书店把一本新书按标价的九折出售,仍可获利20%,•若该书的进价为21元,则标价为( )A .26元B .27元C .28元D .29元12.(2004,山东省)某商店出售某种商品每件可获利m 元,利润率为20%(利润率=-售价进价进价).若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m 元,则提价后的利润为( )A .25%B .20%C .16%D .12.5%13.2008年某市应届初中毕业生人数约万.比去年减少约万,其中报名参加高级中等学校招生考试(简称中考)的人数约万,比去年增加万,下列结论: (1)与2007年相比,2008年该市应届初中毕业生人数下降了0.210.8×100%; (2)•与2007•年相比,•2008•年该市应届初中毕业生报名参加中考人数增加了0.310.5×100%; (3)与2007年相比,2008年该市应届初中毕业生报名参加中考人数占应届初中毕业生人数的百分比提高了(10.510.210.811-)×100%.其中正确的个数是( ) A .0 B .1 C .2 D .3三、解答题14.(2006,淮安市)东方专卖店专销某种品牌的计算器,进价12元/只,售价20•元/只.为了促销,专卖店决定凡是买10只以上的,每多买一只,售价就降价元[例如,某人买20只计算器,于是每只降价0.10×(20-10)=1元,就可以按19元/•只的价格购买],但是最低价为16元/只.(1)求顾客一次至少买多少只,才能以最低价购买?(2)写出当一次购买x只时(x>10),利润y(元)与购买量x(只)之间的函数关系式;(3)有一天,一位顾客买了46只,另一位顾客买了50只,专卖店发现卖了50只反而比卖46只赚的钱少,为了使每次卖的多赚钱也多,在其他促销条件不变的情况下,•最低价16元/只至少要提高到多少?为什么?15.(2006,重庆市)机械加工需要进行润滑以减少摩擦,•某企业加工一台大型机械设备润滑用油90kg,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36kg.为了建设节约型社会,减少油耗,该企业的甲,乙两个车间都组织了人员为减少实际耗油量进行攻关.(1)甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70kg,•用油的重复利用率仍为60%,问甲车间技术更新后,•加工一台大型机械设备的实际耗油是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑用油量,•同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1kg,用油量的重复利用率将增加1.6%,这样乙车间加工一台大型机械设备的实际耗油量下降到12kg.问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?16.(2008,扬州市)某公司生产的某种时令商品每件成本为20元,•经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如表所示:未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=14t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=-12t+40(21≤t≤40且t为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析表中的数据,用所学过的一次函数,二次函数,反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的函数关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,•每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.17.(2004,绍兴市)七年级(2)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一”节期间的销售情况,如图是调查后小敏与其他两位同学交流的情况.根据他们的对话,请你分别求出A,B两个超市今年“五一”节期间的销售额.18.(2008,贵阳市)某宾馆客房部有60个房间供游客居住,•当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.•设每个房间每天的定价增加x元.求:(1)房间每天的入住量y(间)关于x(元)的函数关系式.(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式.(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?19.(2006,苏州市)司机在驾驶汽车时,•发现紧急情况到踩下刹车这段时间之后还会继续行驶一段距离.•我们把司机从发现紧急情况到汽车停止所行驶的这段距离叫“刹车距离”(如图).已知汽车的刹车距离s(单位:m)与车速v(单位:m/s)之间有如下关系:s=tv+kv2.其中t为司机的反应时间(单位:s),k为制动系数.某机构为测试司机饮酒后刹车距离的变化,对某种型号的汽车进行了“醉汉”驾车测试,已知该型号汽车的制动系数,并测得志愿者在未饮酒时的反应时间.(1)若志愿者未饮酒,且车速为11m/s,则该汽车的刹车距离为______m(精确到).(2)当志愿者在喝下一瓶啤酒半小时后,以17m/s的速度驾车行驶,测得刹车距离为46m.假如该志愿者当初是以11m/s的车速行驶,则刹车距离将比未饮酒时增加多少?(精确到)(3)假如你驾驶该型号的汽车以11~17m/s的速度行驶,•且与前方车辆的车距保持在40~50m之间.若发现前方车辆突然停止,为防止“追尾”,则你的反应时间应不超过多少秒?(精确到)20.(2004,泰安市)“五一”期间,我市某商场举行促销活动,活动期间规定:•商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元),•设购买商品的优惠率=购买商品获得的优惠商品的标价.试问:(1)购买一件标价为800元的商品,顾客得到的优惠是多少?(2)若一顾客购买了一套西装,得到的优惠率为12,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?21.(2008,咸宁市)“5·12”四川汶川大地震的灾情牵动全国人民的心,•某市A,B 两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,•现将这些蔬菜全部调运C,D两个灾民安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值:(2)设A,B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,•并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调运方案.22.(2005,哈尔滨市)双蓉服装店老板到厂家选购A,B两种型号的服装,•若购进A种型号服装9件,B种型号服装10件,需要1810元;若购进A种型号服装12件,B型型号服装8件,需要1880元.(1)求A,B两种型号的服装每件分别为多少元?(2)若销售1件A型服装可获利18元,销售1件B型服装可获利30元,根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装数量的2倍还多4件,且A型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元,问有几种进货方案?如何进货?23.(2005,包头市)小明计划将今年春节期间得到的压岁钱的一部分作为自己一年内购买课外书籍的费用,其余的钱计划买这些玩具去看望市福利院的孩子们.某周日小明在商店选中了一种小熊玩具,单价是10元,按原计划买了若干个,•结果他的压岁钱还余30%,于是小明又多买了6个小熊玩具,这样余下的钱仅是压岁钱的10%.(1)问小明原计划买几个小熊玩具,小明的压岁钱共有多少元?(2)为了保证小明购书费用不少于压岁钱的20%,•问小明最多可比原计划多买几个玩具?24.(2005,山西省)某中学库存960套旧桌凳,修理后捐助贫困山区学校.现有甲,乙两个木工小组都想承揽这项业务.经协商后得知:•甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天比甲小组多修8套;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲,乙两个木工小组每天各修桌凳多少套?(2)在修理桌凳过程中,学校要委派一名维修工进行质量监督,•并由学校负担他每天10元的生活补助.现有以下三种修理方案供选择:①由甲单独修理;②由乙单独修理;③由甲、乙共同合作修理.你认为哪种方案既省时又省钱?试比较说明.参考答案1.340 2.50 3.130 4.12 5.24 6.337.B 8.B 9.C 10.C 11.C 12.C 13.B 14.(1)50只;(2)当10<x≤50时,y=-2+9x ; 当x>50时,y=4x .(3)利润y=-2+9x=-(x -45)2,因为卖得越多赚得越多,即y 随x 的增大而增大,由二次函数图像可知,x≤45,最低售价为20-(45-10)元. 15.(1)由题意,得70×(1-60%)=70×40%=28(kg ). (2)设乙车间加工一台大型机械设备润滑用油量为xkg . 由题意,得:x×[1-(90-x )×1.6%-60%]=12, 整理得x 2-65x -750=0, 解得:x 1=75,x 2=-10(舍去). (90-75)×1.6+60%=84%.答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28kg . (2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75kg ,•用油的重复利用率是84%. 16.(1)将194t m =⎧⎨=⎩和390t m =⎧⎨=⎩代入一次函数m=kt+b 中,有94903k b k b =+⎧⎨=+⎩∴296k b =-⎧⎨=⎩∴m=-2t+96. 经检验,其他点的坐标均适合以上解析式,故所求函数解析式为m=-2t+96. (2)设前20天日销售利润为P 1元,后20天日销售利润为P 2元. 由P 1=(-2t+96)(14t+5)=-12t 2+14t+480=-12(t -14)2+578,∵1≤t≤20, ∴当t=14时,P 1有最大值578(元). 由P 2=(-2t+96)(-12t+20)=t 2-88t+1920=(t -44)2-16, ∵21≤t≤40且对称轴为t=44,∴函数P 2在21≤t≤40上随t 的增大而减小,∴当t=21时,P 2有最大值为(21-44)2-16=529-16=513(元). ∵578>513,故第14天时,销售利润最大为578元. (3)P 1=(-2t+96)(14t+5-a )=12t 2+(14+2a )t+480-96a 对称轴为t=(142)12()2a -+⨯-=14+2a . ∵1≤t≤20,∴当14+2a≥20,即a≥3时,P 1随t 的增大而增大. 又∵a<4,∴3≤a<4.17.设去年A 超市销售额为x 万元,则B 超市销售(150-x )万元,由题意,得 (1+15%)x+(1+10%)(150-x )=170 解得x=100,150-x=50. 答:略 18.(1)y=60-10x. (2)z=(200+x )(60-10x )=-110x 2+40x+12 000. (3)w=(200+x )(60-10x )-20(60-10x)=-110x 2+42x+10 800=-110(x -210)2+15 210当x=210时,w 有最大值.此时,x+200=410,就是说,当每个房间的定价为每天410元时,w 有最大值,且最大值是15 210元 19.(1)(2)设志愿者饮酒后的反应时间为t 1,则t 1. 当v=11m/s 时,s=t 1×11+0.08×112=24.53. ∴-(m ).答:刹车距离将比未饮酒时增加.(3)为防止“追尾”,当车速为17m/s 时,刹车距离必须小于40m .∴t×17+0.08×172<40,解得(s).答:反应时间不超过.20.(1)顾客得到的优惠率为32.5% (2)西装标价为750元.21.(1)填表依题意得:20(240-x)+25(x-40)=15x+18(300-x).解得:x=200.(2)w与x之间的函数关系为:w=2x+9200.依题意得:2400,400,0, 3000.xxxx-≥⎧⎪-≥⎪⎨≥⎪⎪-≥⎩∴40≤x≤240.在w=2x+9200中,∵2>0,∴w随x的增大而增大.表一故当x=40时,总运费最小.此时调运方案为如表一所示.(3)由题意知w=(2-m)x+9200∴0<m<2时,(2)中调运方案总运费最小;m=2时,在40≤x≤240的前提下调运.表二方案的总运费不变;2<m<15时,x=240总运费最小,其调运方案如表二所示.22.(1)设A种型号的服装每件为x元,B种型号的服装每件为y元.根据题意,得91018101281800x y x y +=⎧⎨+=⎩解得:90100x y =⎧⎨=⎩答:A ,B 两种型号的服装每件分别为90元,100元. (2)设B 型服装购进m 件,则A 型服装购进(2m+4)件. 根据题意,得18(24)306992428m m m ++≥⎧⎨+≤⎩解不等式组,得912≤m≤12. ∵m 为正整数.∴m=10,11,12. ∴2m+4=24,26,28.答:有三种进货方案:B 型服装购买10件,A 型服装购买24件,或B 型服装购买11件,A 型服装购买26件;或B 型服装购买12件,A 型服装购买28件. 23.(1)由小明原计划买x 个小熊玩具,压岁钱共有y 元 由题意,得1030%,10(6)10%.y x y y x y -=⎧⎨-+=⎩解这个方程组,得21300x y =⎧⎨=⎩答:小明原计划买21个小熊玩具,压岁钱共有300元. (2)设小明比原计划多买z 个小熊玩具, 由题意得300-10(21+z )≥20%×300,解得z≤3.24.(1)解法一:设甲小组每天修理桌凳x 套,则乙小组每天修理(x+8)套,依题意得:960960208x x -=+ 去分母,整理得:x 2+8x -384=0解得:x1=-24,x2=16经检验,x1=-24,x2=16都是原方程的根但x1=-24不合题意,舍去,所以只取x2=16此时x+8=24.答:甲小组每天修桌凳16套,乙小组每天修24套.解法二:乙小组每天比甲小组多修8套,修理费每天多40是40÷8=5(元)∴每套修理费5元80÷5=16(套)120÷5=24(套)答:甲小组每天修桌凳16套,乙小组每天修24套.(2)若甲小组单独修理,则需960÷16=60(天)总费用:60×80+60×10=5400(元)若乙小组单独修理,则需960÷24=40(元)总费用:40×120+40×10=5200(元)若甲,乙两小组合作:则需960÷(24+16)=24(元)总费用:(80+120)×24+24×10=5040(元)通过比较看出:选择第三种方案符合既省时,又省钱的要求.专题复习——诗歌鉴赏教案教学目标:1、了解中考诗歌鉴赏的考试重点;2、学习如何解读诗歌的内容主旨;3、培养品味诗歌语言的能力;4、培养规范答题的习惯。
第04讲 新情景设计问题-2022中考数学巅峰冲刺(解析版)
【难点突破】着眼思路,方法点拨,疑难突破;实物情景中的数学,是指有实际背景或现实意义的数学问题,其特点是:1创设新情境,赋予新内涵;2试题呈现形式活泼新颖;3一般取材于学生熟悉的生活实际,具有时代气息和教育价值.这种问题一般都是先提供一种情景,或者一个解题思路,或介绍一种解题方法,或展示一个数学结论的推导过程等文字或图表材料,然后要求大家自主探索,理解其内容、思想方法,把握本质,解答试题中提出的问题.对于这类题求解步骤是“阅读→分析→理解→创新应用”,其中最关键的是理解材料的作用和用意,一般是启发你如何解决问题或为了解决问题为你提供工具及素材.因此这种试题是考查大家随机应变能力和知识的迁移能力.1涉及到定义知识的新情景问题:它要求学生在新定义的条件下,对提出的说法作出判断,主要考查学生阅读理解能力,分析问题和解决问题的能力.解此类型题的步骤有三:1认真阅读,正确理解新定义的含义;2运用新定义解决问题;3得出结论.2涉及到数学理论应用探究问题:学习此类型题目,要解决后面提出的新问题,必须仔细研究前面的问题解法.即前面解决问题过程中用到的知识在后面问题中很可能还会用到,因此在解决新问题时,认真阅读,理解阅读材料中所告知的相关问题和内容,并注意这些新知识运用的方法步骤.3涉及到日常生活中的实际问题:处理此类问题需要结合生活实际将图形转化为数学图形,利用数学知识进行解答。
【名师原创】原创检测,关注素养,提炼主题;【原创】问题情境:情境A:两条直线相交,有一个交点,三条直线相交,最多有3个交点,四条直线呢?情境A图情境B图情境B:在一条直线上任意作两个端点(不重合的两点),可得到一条线段,作三个端点,最多得到3条线段,四个端点呢情境C:两条有公共端点的射线可组成一个角,从端点出发增加一条射线,可得到3个角,增加两条射线呢?情境C图解决问题:(1)从上面的问题情境中任选一个作答。
(2)如果将上面的数目增加到2022的时候,又会有多少个相应的图形呢你能发现什么样的规律,请你用相应的语言进行描述或者数学符号进行表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题复习1:新情境应用问题Ⅰ、综合问题精讲:以现实生活问题为背景的应用问题,是中考的热点,这类问题取材新颖,立意巧妙,有利于对考生应用能力、阅读理解能力。
问题转化能力的考查,让考生在变化的情境中解题,既没有现成的模式可套用,也不可能靠知识的简单重复来实现,更多的是需要思考和分析,新情境应用问题有以下特点:(1)提供的背景材料新,提出的问题新;(2)注重考查阅读理解能力,许多中考试题中涉及的数学知识并不难,但是读懂和理解背景材料成了一道“关”;(3)注重考查问题的转化能力.解应用题的难点是能否将实际问题转化为数学问题,这也是应用能力的核心.Ⅱ、典型例题剖析【例1】(2005,宜宾)如图(8),在某海滨城市O 附近海面有一股台风,据监测,当前台风中心位于该城市的东偏南70°方向200千米的海面P处,并以20千米/ 时的速度向西偏北25°的PQ的方向移动,台风侵袭范围是一个圆形区域,当前半径为60千米,且圆的半径以10千米/ 时速度不断扩张.(1)当台风中心移动4小时时,受台风侵袭的圆形区域半径增大到千米;又台风中心移动t小时时,受台风侵袭的圆形区域半径增大到千米.(2)当台风中心移动到与城市O距离最近时,这股台风是否侵袭这座海滨城市?请说明理由(参考数据2 1.41≈,≈).3 1.73解:(1)100;(2)(6010)t+;⑶作OH PQOH=(千米),设经⊥于点H,可算得1002141过t小时时,台风中心从P移动到H,则t=(小时),此时,受==52PH t201002台风侵袭地区的圆的半径为:601052130.5+⨯(千米)<141(千米)∴城市O不会受到侵袭。
点拨:对于此类问题常常要构造直角三角形.利用三角函数知识来解决,也可借助于方程.【例2】如图2-1-5所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O 点的正北方向10海里外的A 点有一涉嫌走私船只正以 24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问:⑴需要几小时才能追上(点B 为追上时的位置)⑵确定巡逻艇的追赶方向(精确到0.1°).解:设需要t 小时才能追上,则A B=24 t ,OB=26t .(l )在Rt △AOB 中,OB 2= OA 2+ A B 2,即(26t )2=102 +(24 t )2解得t=±l ,t=-1不合题意,舍去,t=l ,即需要1小时才能追上.(2)在Rt △AOB 中,因为sin ∠AOB=AB OB = 24t 26t =1213≈0.9231 ,所以∠AOB ≈6 7.4°,即巡逻艇的追赶方向为北偏东67.4°.点拨:几何型应用题是近几年中考热点,解此类问题的关键是准确读图.【例3】(2005,河南)(10分)某公司为了扩大经营,决定购进6台机器用于生产某种活塞。
现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示。
经过预算,本次购买机器所耗资金不能超过34万元。
⑴按该公司要求可以有几种购买方案?⑵若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?解:(1)设购买甲种机器x台,则购买乙种机器(6-x)台。
由题意,得75(6)34+-≤,x x解这个不等式,得2x≤,即x可以取0、1、2三个值,所以,该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台;方案二:购买甲种机器1台,购买乙种机器5台;方案三:购买甲种机器2台,购买乙种机器4台;(2)按方案一购买机器,所耗资金为30万元,新购买机器日生产量为360个;按方案二购买机器,所耗资金为1×7+5×5=32万元;,新购买机器日生产量为1×100+5×60=400个;按方案三购买机器,所耗资金为2×7+4×5=34万元;新购买机器日生产量为2×100+4×60=440个。
因此,选择方案二既能达到生产能力不低于380个的要求,又比方案三节约2万元资金,故应选择方案二。
【例4】(2005,临沂)某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商场出售的这种瓷砖有大、小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大、小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?解:根据题意,可有三种购买方案; 方案一:只买大包装,则需买包数为:48048505=;由于不拆包零卖.所以需买10包.所付费用为30×10=300(元) 方案二:只买小包装.则需买包数为:4801630=所以需买1 6包,所付费用为1 6×20=320(元)方案三:既买大包装.又买小包装,并设买大包装x 包.小包装y 包.所需费用为W 元。
则50304803020x y W x +=⎧⎨=+⎩ 103203W x =-+ ∵050480x <<,且x 为正整数,∴x =9时,最小W =290(元).∴购买9包大包装瓷砖和l 包小包装瓷砖时,所付费用最少.为290元。
答:购买9包大包装瓷砖和l 包小包装瓷砖时,所付费用最少为290元。
点拨:数学知识来源于生活,服务于生活,对于实际问题,要富有创新精神和初中能力,借助于方程或不等式来求解。
【例5】如图2-2-4所示,是某次运动会开幕式上点燃火炬时在平面直角坐标系中的示意图,在有O 、A 两个观测点,分别测得目标点火炬C 的仰角分别为α,β,OA=2米,tan α=35 , tan β=23,位于点O 正上方2 米处的点D 的发身装置可以向目标C 同身一个火球点燃火炬,该火球运行地轨迹为一抛物线,当火球运行到距地面最大高度20米时,相应的水平距离为12米(图中E 点)。
⑴求火球运行轨迹的抛物线对应的函数解析式;⑵说明按⑴中轨迹运行的火球能否点燃目标C ?解:⑴由题意可知:抛物线顶点坐标为(12,20),D 点的坐标为(0,2),所以抛物线解析式为2(),y a x h k =-+即2(12)20y x x =-+∵点D 在抛物线上,所以2=21(12)20,8a a -+=-即∴抛物线解析式为:2132(0128y x x x =-++≤≤+⑵过点C 作CF 丄x 轴于F 点,设CF=b ,AF=a ,则 2tan 33tan 25b a b a a β⎧==⎪⎪⎨⎪==⎪+⎩,解得:18.12.a β=⎧⎨=⎩则点C 的坐标为(20,12),当x=20时,函数值y= 2120320212,8-⨯+⨯+=所以能点燃目标C .点拨:本题是三角函数和抛物线的综合应用题,解本题的关键是建立数学模型,即将实际问题转化为数学问题来解决.Ⅲ、综合巩固练习:(100分 90分钟)一、选择题(每题3分,共30分)1.某研究结果显示,由父母的身高预测子女身高的公式为:若父亲的身高为a 米,母亲的身高为b 米,则儿子成年后的身高约为a+b 2×1.08米,女儿成年后身高约为0.923a+b 2米,初一女学生赵楠的父亲身高为1.75米,母亲身高为1.62米,请同学们根据公式预测一下赵楠成年后的身高约为( )A .1.65米B .1.62米C .1.7 5米D .l .6 0米2.小亮同学想在房子附近开辟一块绿化场地,现共有。
米长的篱笆材料,他设计了两种方案,一种是围成正方形的场地,另一种是围成圆形的场地,那么选用哪一种方案围成场地的面积较大( )A 、围成正方形B .围成圆形C 、两者一样大D .不能确定3、将一张矩形白纸对折,再沿着与折痕方向平行的方向反复对折,问经过n (1≤n ≤7)次后,将纸展开共可得到的折痕条数为( )A 、2 n -1B .2 nC 、 2 n-1D .2n 4、在昆明“世博会”期间,为方便游客参观,铁道部门临时加开了南宁至昆明的直达列车.已知南宁至昆明的路程为828km ,普快列车与直快列车由昆明到南宁时,直快列车平均速度是普快 的1.5倍,若直快列车比普快列车晚出发2 h 而先到4h ,求两列车的平均速度分别是多少?设普快列车的速度为xKm/h ,则直快列车的速度为1.5xkm /h .依题意,所列方程正确的是( ) 828828.24 1.5A x x ++= 828828.24 1.5B x x+-=;828828.24 1.5C x x--=;828828.24 1.5D x x -+= 5、某公司市场营销部的个人月收入与其每月的销售量成一次函数数关系,其图象如图2-2-5所示,由图给出息可知,营销人员没有销售时的收入是( )A .310元B .300元C .290元D .280元6.小美开了一家服装店,有一次去批发市场进货,发现一款牛仔裤,预想能畅销,就用4000元购买了一个批发商的所有这种裤子,还想买二倍数量的这种牛仔裤,又到另一个批发商处用88 00元购进,只是单价比前面购进的贵5元.回来后小美按每件89元销售,销路很好,最后剩下10件,按七五折销售,很快售完,则小美这笔生意盈利( )A .8335元;B .8337.5元;C .8340元;D .8342.5元7.某产品的生产流水线每小时可生产100件产品,生产前无产品积压,生产3小时后安排工人装箱,若每小时装产品150件.未装箱的产品数量y 是时间t 的函数,那么这个函数的大致图象(如图2-2-6所示)只能是( )8.60名初三学生在毕业典礼晚会上,男女生各自相互握手道别已知男生比女生多2人,班长是一名女生,她与所有男生握过手.那么在这次晚会上,全班学生共握手的次数为( )A .1770B .902C .899D .8869.随着通讯市场竞争日异激烈,某通讯公司的手机市话收费标拍每分钟降低了a 元后,再次下调了25%,现在的收费标准是每分钟b 元,则原收费标准每分钟为( )A .5()4b a -;B .5()4b a +;C .3()4b a +;D .4(+)3b a 10 某公司员工分别住在 A 、B 、C三个住宅区,A 区有 30人,B区有 15人,C 区有10人,三个区在同一条直线上,位置如2-2-7所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在( )A.A区 B.B区 C.C区 D.A、B两区之间二、填空题(每题 3分,共 15分)11 经测算,某林场现有生长着的木材存量为a立方米,已知木材生长的年增长率为25%,为满足生产、生活的需要,该林场每年需采伐加工x立方米木材.⑴用含a与x的代数式表示一年后该林场的木材存量为_______立方米;⑵用含a与x的代数式表示二年后该林场的木材存量为_______立方米;⑶若条件中的a=122万,要保证三年后该林场的木材存量至少达到1.5 a立方米,则该林场每年采伐加工的木材最多是__________立方米.12 有一群猴子,在小树林中玩耍,总数的8的平方只猴子在欢乐地蹦跳,还有12只猴子愉快地啼叫,则小树林中的猴子总数为_______只.13 1平方千米的土地,一年内从太阳得到的能量相当于燃烧1.3 ×105吨煤所产生的能量.已知,我国西部的广大地区约有 6.4×106平方千米的广阔面积,那么,我国西部地区一年内从太阳得到的能量相当于燃烧__________吨煤所产生的能量.14 某小区规划在一个长40米,宽26米的矩形场地上修建三条同样宽的两路,使其中两条与短边平行,另一条与长边平行,其余部分种草.若使每块草坪的面积都是144平方米,则两路宽_________米.15 某居民小区按照分期付款形式福利分房,小明家购得一套现价为120000元的住房,购房时首期(第一年)付款30000元,从第二年起,以后每年应付的房款为5000元与上一年剩余欠款的利息之和,设剩余欠款的年利率为0.4%,若第x年小明家交房款y元,则y与x的函数解析式为__________.三、解答题(16~20题各9分,21题10分,共55分)16 .某公司欲招聘甲、乙、丙三个工种的工人,这三个工种每人的月工资分别为800元、1000元、1500元.已知甲、乙两工种合计需聘30人,乙、丙两种工种合计需聘20人,且甲工种的人数不少于乙工种人数的2倍,丙工种人数不少于12人.问甲、乙、两三个工种各招聘多少人,可使每月所付的工资总额最少?17. 如图2-2-8所示,大江的一侧有甲、乙两个工厂,它们都有垂直于江边的小路,长度分别为m千米及n千米,设两条小路相距l千米,现在要在江边建立一个抽水站,把水送到甲、乙两厂去,欲使供水管路最短.抽水站应建在哪里?18 .某商场有一座自下向上运动着的电动扶梯,李明到商场买东西,他从电动扶梯底部走到顶,共走了75级,而当他买完东西向下走时,他的行走速度(以单位时间走多少级计算)是上行时速度的3倍.结果他走了150级到达底部,那么这个电动扶梯露在外面能够看到的有多少级?19.如图2-2-9所示:这是某防空部队进行射击训练时在平面直角坐标系中的示意图,在地面O、A两个观测点测得空中固定目标的仰角分别为α和β,OA=1千米,tanα=928,tanβ=38,于O点正上方53km的 D点处的直升飞机向目标 C发射防空导弹,该导弹运行达到距地面最大高度3km时,相应的水平距离为4km (即图中E点).⑴若导弹运行轨道为一抛物线,求该抛物线的解析式;⑵说明问)中轨道运行的导弹能否击中目标 C的理由.21.某园林门票每张10元,只供一次使用,考虑到人们的不同需求,也为了吸引更多游客,该园林除保留原有的售票方法外,还推出一种“购个人年票”的售票方法(个人年票从购买之日起,可供持票者使用一年八年票分A、B、C三类;A类年票每张120元,持票者进人园林时无需再购买门票出类年票每张60元,持票者进入园林时,需再购买门票,每次2元几类年票每张440元,持票者进入该园林时,需再购买门票,每次3元.⑴如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进人该园林的次数最多的购票方式;⑵ 求一年中进人该园林至少超过多少次时,购买A 类票比较合算.21.阅读下列材料:十六大提出全面建设小康社会,国际上常用恩格尔系数(记作n ) 来衡量一个国家和地区人民生活水平的状况,它的计算公式为: n=100% 食品消费支出总额消费支出总额各类家庭的恩格尔系数如下表所示:根据以上材料,解答下列问题:小明对我市一个乡的农民家庭进行抽样调查,从1998年至2003年间,该乡每户家庭消费支出总额每年平均增加 500元;其中食品消费支出总额平均每年增加200元.1998年该乡农民家庭平均刚达到温饱水平,已知该年每户家庭消费支出总额平均为8000元.⑴ 1998年该乡平均每户家庭食品消费支出总额为多少元?⑵设从1998年起m年后该乡平均每户的恩格尔系数n m(m为正整数),请用m的代数式表示该乡平均每户当年恩格尔系数n m,则并利用这个公式计算2004年该乡平均每户以恩格尔系数(百分号前保留整数)⑶按这样的发展,该乡农民能否实现十六大提出的 2020年我国全面进人小康社会的目标?。