人教版初一数学数轴5
人教版七年级上册数学数轴上的加减运算
人教版七年级上册数学数轴上的加减运算数轴是一种用来表示数值大小和相对位置的图形工具。
在数轴上进行加减运算可以帮助我们更好地理解数值之间的关系和运算规律。
本文将介绍在人教版七年级上册数学课程中涉及的数轴加减运算知识点。
数轴的基本概念数轴由一条直线和上面的标记组成。
标记通常是一些等距离的点,通常用整数表示。
数轴的中心位置是零,正数在右侧,负数在左侧。
加法运算在数轴上进行加法运算时,我们需要按照以下步骤进行:1. 找到第一个加数在数轴上的位置,并在该位置上做出标记。
2. 根据第二个加数的正负,向右或向左移动相应的距离。
3. 在移动后的位置上做出新的标记,表示和的位置。
例如,如果我们要计算6 + 3,我们首先找到6在数轴上的位置,并标记为起点。
然后,根据3是正数,我们向右移动3个单位距离,最后在移动后的位置上标记结果9。
减法运算在数轴上进行减法运算时,我们也需要按照以下步骤进行:1. 找到被减数在数轴上的位置,并在该位置上做出标记。
2. 根据减数的正负,向右或向左移动相应的距离。
3. 在移动后的位置上做出新的标记,表示差的位置。
例如,如果我们要计算9 - 3,我们首先找到9在数轴上的位置,并标记为起点。
然后,根据3是正数,我们向右移动3个单位距离,最后在移动后的位置上标记结果6。
实例演练下面是一些具体的例子来帮助我们更好地理解数轴上的加减运算:1. 计算7 + 5:![Addition Example](addition_example.png)我们首先在数轴上找到7,并标记为起点。
然后,根据5是正数,我们向右移动5个单位距离,最后在移动后的位置上标记结果12。
2. 计算4 - 2:![Subtraction Example](subtraction_example.png)我们首先在数轴上找到4,并标记为起点。
然后,根据2是正数,我们向右移动2个单位距离,最后在移动后的位置上标记结果2。
总结数轴上的加减运算可以帮助我们直观地理解数值之间的关系和运算规律。
人教版数学七年级上册期末提高专练:数轴类应用题综合(五)
2020年秋人教版数学七年级上册期末提高专练:数轴类应用题综合(五)1.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:若数轴上数﹣3表示的点与数1表示的点重合.(根据此情境解决下列问题)(1)则数轴上数3表示的点与数表示的点重合.(2)若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是.(3)若数轴上M,N两点之间的距离为2018,并且M,N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是;则N点表示的数是.2.阅读材料:如图①,若点B把线段AC分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.回答问题:(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.①若A是线段DB的中点,则点D表示的数是;②若E是线段AC的中点,求点E表示的数.(2)在数轴上,若点M表示的数是m,点N表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是(填写符合要求的序号);i)m=0,n=2;ii)m=﹣5,n=7;iii)m=0.5,n=1.5;iv)m=﹣1,n=2.②若点P表示的数是1,m、n之间满足的数量关系是.3.同学们知道,|8﹣3|表示8与3的差的绝对值,也可理解为数轴上表示数8与3两点间的距离.试探索:(1)填空:|8+3|表示数轴上数8与数两点间的距离;(2)|x+5|+|x﹣2|表示数轴上数x与数的距离和数x与数的距离的和.(3)满足|x+5|+|x﹣2|=7的所有整数x的值是.(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有写出最小值;如果没有,说明理由.4.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题若数轴上数﹣7表示的点与数1表示的点重合.(根据此情境解决下列问题)①则数轴上数3表示的点与数表示的点重合;②若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是;③若数轴上M、N两点之间的距离为2020,并且M、N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是,则N点表示的数是;5.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣2.5,﹣3观察数轴,B,C两点之间的距离为;与点A的距离为3的点表示的数是;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;若此数轴上M,N两点之间的距离为2020(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M、N两点表示的数分别是:M:,N:.(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P,Q.(用含m,n的式子表示这两个数)6.阅读下面材料:点A,B在数轴上分别表示有理数a、b,|AB|表示A,B两点之间的距离.当A、B两点中有一点在原点时(假设A在原点),如图①,|AB|=|OB|=|b|=b=|a﹣b|;当A、B两点都在原点右侧时,如图②,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;当A、B两点都在原点左侧时,如图③,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;当AB两点在原点两侧时,如图④,|AB|=|OA|+|OB|=|a|+|b|=﹣a+(﹣b)=|a﹣b|;请根据上述结论,回答下列问题:(1)数轴上表示2和5的两点间距离是,数轴上表示﹣2和﹣5的两点间距离是,数轴上表示﹣1和3的两点间距离.(2)数轴上表示x和﹣1的两点A和B之间的距离可表示为,若|AB|=2,则x 的值为.(3)当|x+2|+|x﹣1|取最小值时,请写出所有符合条件的x的整数值.7.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.(1)①若以B为原点.写出点A,D,C所对应的数,并计算p的值;②若以D为原点,p的值是若以C为原点,p的值是.(2)若原点O在图中数轴上点C的右边,且CO=15,p的值是.8.已知数轴上A,B,C三点对应的数分别为﹣1、3、5,点P为数轴上任意一点,其对应的数为x.点A与点P之间的距离表示为AP,点B与点P之间的距离表示为BP.(1)若AP=BP,则x=;(2)若AP+BP=8,求x的值;(3)若点P从点C出发,以每秒3个单位的速度向右运动,点A以每秒1个单位的速度向左运动,点B以每秒2个单位的速度向右运动,三点同时出发.设运动时间为t秒,试判断:4BP﹣AP的值是否会随着t的变化而变化?请说明理由.9.操作探究:已知在纸面上有一数轴(如图3所示),操作一:(1)折叠纸面,使表示的点1与﹣1表示的点重合,则﹣2表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,那么5表示的点与表示的点重合,此时若数轴上A、B两点之间距离为9,(A在B的左侧),且A、B两点经折叠后重合,那么A、B两点表示的数分别是、.操作三:(3)已知在数轴上点A表示的数是a,点A移动4个单位,此时点A表示的数和a是互为相反数,那么a的值是.10.已知a>b,a与b两个数在数轴上对应的点分别为点A、点B,求A、B两点之间的距离.【探索】小明利用绝对值的概念,结合数轴,进行探索:因为a>b,则有以下情况:情况一、若a>0,b≥0,如图,A、B两点之间的距离:AB=|a|﹣|b|=a﹣b;……(1)补全小明的探索【应用】(2)若点C对应的数c,数轴上点C到A、B两点的距离相等,求c.(用含a、b的代数式表示)(3)若点D对应的数d,数轴上点D到A的距离是点D到B的距离的n(n>0)倍,请探索n的取值范围与点D个数的关系,并直接写出a、b、d、n的关系.参考答案1.解:(1)∵数轴上数﹣3表示的点与数1表示的点关于点﹣1对称,1﹣(﹣3)=4,而﹣1﹣4=﹣5,所以数轴上数3表示的点与数﹣5表示的点重合;故答案为:﹣5;(2)点A到原点的距离是5个单位长度,则点A表示的数为5或﹣5,∵A、B两点经折叠后重合,∴当点A表示﹣5时,﹣1﹣(﹣5)=4,﹣1+4=3,当点A表示5时,5﹣(﹣1)=6,﹣1﹣6=﹣7,∴B点表示的数是﹣7或3;故答案为:﹣7或3;(3)M、N两点之间的距离为2018,并且M、N两点经折叠后重合,∴﹣1+×2018=1008,﹣1﹣×2018=﹣1010,又∵M点表示的数比N点表示的数大,∴M点表示的数是1008,N点表示的数是﹣1010.故答案为:1008,﹣1010.2.解:(1)①点A所表示的数是﹣2,点B所表示的数是0,A是线段DB的中点,∴点D表示的数是﹣4,故答案为:﹣4;②点A所表示的数是﹣2,点C所表示的数是3,E是线段AC的中点,∴点E表示的数为=.(2)①点M表示的数是m,点N所表示的数是n,点P是线段MN的中点,点P表示的数是1,∴1=,即m+n=2,∴m、n可能的值是:(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5.故答案为:(i)(ii)(iii);②若点P表示的数是1,m、n之间满足的数量关系是1=,即m+n=2.故答案为:m+n=2.3.解:(1)∵|8﹣3|表示数8与3两点间的距离,∴|8+3|表示数轴上数8与数﹣3两点间的距离,故答案为﹣3;(2)同理可得:|x+5|+|x﹣2|表示数轴上数x与数﹣5的距离和数x与数2的距离的和,故答案为﹣5,2;(3)点P对应的数为x,如图1所示:∴线段AB上所有整数点对应x的取值﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2是都满足AP+BP=7,故答案为﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2;(4)有最小值,最小值为3.其理由如下:①若点P在线段AB上时,∴|x﹣3|+|x﹣6|=AP+BP=3,②若点P在线段AB的延长线上时,∴|x﹣3|+|x﹣6|=AP+BP>3,③若点P在线段AB的反向延长线上时,∴|x﹣3|+|x﹣6|=AP+BP>3,综合所述:|x﹣3|+|x﹣6|≥3.4.解:①∵数轴上数﹣7表示的点与数1表示的点关于点﹣3对称,﹣3﹣3=﹣6,而﹣3﹣6=﹣9,∴数轴上数3表示的点与数﹣9表示的点重合;故答案为:﹣9;②点A到原点的距离是5个单位长度,则点A表示的数为5或﹣5,∵A、B两点经折叠后重合,∴当点A表示﹣5时,﹣3﹣(﹣5)=2,﹣3+2=﹣1,当点A表示5时,5﹣(﹣3)=8,﹣3﹣8=﹣11,∴B点表示的数是﹣11或﹣1;故答案为:﹣11或﹣1;③M、N两点之间的距离为2020,并且M、N两点经折叠后重合,∴﹣3+×2020=1007,﹣3﹣×2020=﹣1013,又∵M点表示的数比N点表示的数大,∴M点表示的数是1007,N点表示的数是﹣1013,故答案为:1007,﹣1013.5.解:(1)观察数轴可知:B、C两点之间的距离为﹣2.5﹣(﹣3)=0.5,与点A的距离为3的点表示的数是1+3=4或1﹣3=﹣2.故答案为0.5,4或﹣2.(2)与点B重合的点表示的数是:﹣1+[﹣1﹣(﹣2.5)]=0.5;M=﹣1﹣=﹣1011,N=﹣1+=1009;故答案为﹣1011,1009.(3)根据题意,得P=n﹣,Q=n+.故答案为n﹣,n+.6.解:(1)数轴上表示2和5的两点间距离是3,数轴上表示﹣2和﹣5的两点间距离是3,数轴上表示﹣1和3的两点间距离4.故答案为:3;3;4;(2)数轴上表示x和﹣1的两点之间的距离是|x+1|,|AB|=2,则|x+1|=2,故x=1或﹣3;故答案为:|x+1|,1或﹣3;(3)若|x+2|+|x﹣1||取最小值,那么表示x的点在﹣2和1之间的线段上,所以﹣2≤x≤1;所以所有符合条件的x的整数值﹣2,﹣1,0,1.故答案为:﹣2,﹣1,0,17.解:(1)①若以B为原点,∵AB=2,BD=3,DC=1∴点A,D,C所对应的数分别为:﹣2,3,4;p=﹣2+3+4=5;②若以D为原点,p=﹣3﹣5+1=﹣7;若以C为原点,p=﹣6﹣4﹣1=﹣11;故答案为:﹣7;﹣11;(2)若原点O在图中数轴上点C的右边,且CO=15则p=﹣21﹣19﹣16﹣15=﹣71.故答案为:﹣71.8.解:(1)由数轴可得:若AP=BP,则x=1;故答案为:1;(2)∵AP+BP=8∴若点P在点A左侧,则﹣1﹣x+3﹣x=8∴x=﹣3若点P在点A右侧,则x+1+x﹣3=8∴x=5∴x的值为﹣3或5.(3)BP=5+3t﹣(3+2t)=t+2AP=t+6+3t=4t+6∴4BP﹣AP=4(t+2)﹣(4t+6)=2∴4BP﹣AP的值不会随着t的变化而变化.9.解:(1)折叠纸面,使表示的点1与﹣1表示的点重合,则﹣2表示的点与 2表示的点重合;故答案为:2(2)由表示﹣1的点与表示3的点重合,可确定对称点是表示1的点,则表示5的点与对称点距离为4,则重合点应该是左侧与对称点距离为4的点,即﹣3;由题意可得,A、B两点距离对称点的距离为9÷2=4.5,∵对称点是表示1的点,∴A、B两点表示的数分别是﹣3.5,5.5.故答案为:﹣3;﹣3.5,5.5(3)当A向左移动时,有a﹣4=﹣a,a=2当A向右移动时,有a+4=﹣a,a=﹣2综上所诉,a=2或﹣2.故答案为:2或﹣2.10.解:(1)情况二:若a≥0,b<0 时,A、B两点之间的距离:AB=a+|b|=a﹣b;情况三:若a<0,b<0 时,A、B两点之间的距离:AB=|b|﹣|a|=a﹣b;(2)∵点C对应的数c,点C到A、B两点的距离相等,∴a﹣c=c﹣b,∴2c=a+b,即c=(a+b);(3)①当0<n<1时,点D的个数为2,此时a﹣d=n(d﹣b),d﹣a+n(d﹣b).②当n=1时,点D的个数为1,此时点D到A,B两点距离相等,d=.③当n>1时,点D的个数为2,此时a﹣d=n(d﹣b),a﹣d=n(b﹣d).。
七年级上册数学人教版 1.2.2 数轴 课时练05 试卷含答案
1.2.2数轴1.关于数轴,下列说法中,最准确的是()A.一条直线B.有原点、正方向的一条直线C.有单位长度的一条直线D.规定了原点、正方向、单位长度的直线2.下面给出的四条数轴中,画法正确的是()A. B.C. D.3.(2021西安碑林区模拟)如图,在数轴上,若点B表示一个负数,则原点可以()A.点EB.点DC.点CD.点A4.如图,数轴上点A表示的数是()A.-1B.0C.1D.25.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A.0B.1C.2D.36.如图,在数轴上有A,B,C,D,E,F六个点,且AB=BC=CD=DE=EF,则点C表示的数是()A.-2B.0C.2D.47.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O′点,点O′对应的数是______.拓点2数轴上两点之间的距离8.如图,数轴上A,B两点所表示的数分别是-4和2,点C是线段AB 的中点,则点C所表示的数是______.9.如图,数轴上表示-2的点A到原点的距离是()A.-2B.2C.-12D.1 210.数轴上点A表示的数是-3,将点A在数轴上平移7个单位长度得到点B,则点B表示的数是()A.4B.-4或10C.-10D.4或-1011.如图,数轴上点A对应的数是32,将点A沿数轴向左移动2个单位长度至点B,则点B对应的数是()A.12-B.-2 C.72D.1212.下列说法:①数轴上的点只能表示整数;②数轴是一条线段;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.其中正确的有()A.1个B.2个C.3个D.4个13.下面所画数轴,画法正确的是___________.(填序号)14.如图,已知点A,B,C在数轴上表示的数分别是-1,-5,2.回答下列问题:(1)将B点向右移动6个单位长度,此时B点表示的数是多少?(2)将C点向左移动6个单位长度,此时C点表示的数是多少?(3)移动A,B,C三个点中的任意两个,能使三个点表示的数相等吗?你有几种移动方法?15.如图,数轴的单位长度为1,点A表示的数是-4.(1)在数轴上用0标出原点;(2)写出点B表示的数;(3)在数轴上找一点C,使它与点B的距离为2个单位长度,那么点C表示什么数?16.找规律.(1)借助数轴,回答下列问题:①从-1到1有3个整数,分别是__________;②从-2到2有5个整数,分别是__________;③从-3到3有7个整数,分别是__________;④从-100到100有_______________个整数;⑤从-n到n有_______个整数;(n为正整数)(2)根据以上规律,知从-3.9到3.9有___________个整数,从-10.1到10.1有__________个整数;(3)在单位长度是1cm的数轴上任意画一条长度为1000cm的线段AB,线段AB盖住的整数点最多有多少个?17.如图,已知在纸面上有一个数轴.操作一(1)折叠纸面,使表示1的点与表示-1的点重合,则表示-2的点与表示______的点重合.操作二(2)折叠纸面,使表示-1的点与表示3的点重合,回答以下问题:①表示5的点与表示______的点重合;②若数轴上A,B两点之间的距离为9(A在B的左侧),且折叠后A,B两点重合,求A,B两点表示的数.参考答案1.D2.B3.D4.C5.D6.C7.p8.-19.B10.D11.A12.A13.①④14.(1)将B点向右移动6个单位长度,此时B点表示的数是1.(2)将C点向左移动6个单位长度,此时C点表示的数是-4.(3)能.有三种移动方法:①A点不动,将B点向右移动4个单位长度,并将C点向左移动3个单位长度;②B点不动,将A点向左移动4个单位长度,并将C点向左移动7个单位长度;③C点不动,将A点向右移动3个单位长度,并将B点向右移动7个单位长度.15.(1)原点在点A的右侧4个单位长度处,如图.(2)点B表示3.(3)点C表示1或5.16.(1)①-1,0,1②-2,-1,0,1,2③-3,-2,-1,0,1,2,3④201⑤(2n+1)(2)7;21(3)1000+1=1001(个).17.(1)2(2)①-3②A点表示的数是-3.5,B点表示的数是5.5.。
人教版七年级数学上册《数轴》有理数PPT精品课件
1.下列说法不正确的是( D ) A. 数轴是一条直线 B. 数轴上所有的点并不都表示有理数 C. 在数轴上表示2和-2的点到原点的距离相等 D. 数轴上一定取向右为正方向
2.在数轴上原点及原点右边的点所表示的数是( C )
A. 正数
B. 负数
C. 非负数 D. 非正数
3.大于–3.5,小于2.5的整数共有( A )个.
典例精析
例3.在数轴上表示下列各数: -2, +2,0,-3.5, +3.5
-3.5
-2
0
+2 +3.5
-6 -5 -4 -3 -2 -1 0 1 2 3 4
想一想:表示-2和+2的点到原点的距离如何? 表示-3.5和+3.5的点到原点的距离如何?
总结:每一组的两个点到原点的距离相等.
新知小结
1.在数轴上可以表示所有的数吗? 2.所有的有理数都可以在数轴上表示出来吗? 3.数轴上表示的数一定是有理数吗? 4.直径是1的圆的周长是( π ), π不是有理数,
π能不能在数轴上表示出来?
结论:任何一个有理数都能用数轴上一个点表示, 但是数轴上的一个点不一定表示一个有理数.
新知小结
一般地,设a是一个正数,则数轴上表示数a的点在原点的( 右 )边,与原点 的距离是( a)个长度单位;表示数-a的点在原点的( 左)边,与原点的距 离是( a )个长度单位。
随堂练习
例1 写出数轴上点A,B,C,D分别表示的数.
.A
.B
.C
.D
-1 012 3 4 5
解:点A表示-3, 点C表示2.5,
点B表示-1, 点D表示5.
典例精析
例2 在数轴上表示下列各数:
人教版初一数学数轴5
[单选]不属于矿业工程项目工程量变更的条件的是()。A.因设计局部修改B.因工程施工中客观条件变化而修改施工图设计C.超过本单位工程预备费率部分的"三材"D.因材料代用所增加的费用 [单选]下列有关国务院行政机构的说法哪一项是错误的?()A.国务院办事机构协助国务院总理办理专门事项B.国务院直属机构主管国务院的某项专门业务C.在特殊情况下,国务院议事协调机构有权自行规定采取临时性行政管理措施D.国务院组成部门管理的国家行政机构主管特定业务 [单选]以下关于斑点状掌跖角化病临床表现的描述,错误的是()A.常染色体显性遗传病B.可发生于任何年龄C.典型皮损为掌跖部直径2~1Omm角化性丘疹D.多伴手足多汗表现 [单选]精装可采用的订书方式不包括()。A.锁线订B.胶粘订C.锁线胶粘订D.骑马订 [单选,A2型题,A1/A2型题]诊断缺铁最肯定的依据是()A.骨髓小粒可染铁消失B.血涂片见典型小细胞低色素性红细胞C.转铁蛋白饱和度降低D.血清铁降低E.有慢性失血史 [单选]下列各项属于集体资产的是()。A.农户承包经营的土地B.家庭生产资料C.农户家庭生活资料D.农户承包经营中除土地以外的其它生产资料 [单选]某运输企业新购入了一款新车,该车型的投资额为25万元,残值为0.95万元,预计年净收益为1.75万元,年折旧费为2.13万元,试计算该车的投资回收期为()。A.6.2年B.5.8年C.5.5年D.4.7年 [单选]()是植物细胞特有的。A、叶绿体B、细胞膜C、细胞质D、细胞核 [填空题]氨合成反应的单程合成率与()()()有关。 [单选,A1型题]大部分新生婴儿屈光不正的大小一般为()。A.+2.00~+3.00DB.+3.00~+4.00DC.+4.00~+5.00DD.+1.00~+2.00DE.0~+1.00D [单选]对论文中公式的符号进行说明时,应该用:()A、其中B、式中C、这里D、此处 [单选]精馏塔操作时,回流比与理论塔板数的关系是()。A、回流比增大时,理论塔板数也增多B、回流比增大时,理论塔板数减少C、全回流时,理论塔板数最多,但此时无产品D、回流比为最小回流比时,理论塔板数最小 [单选,A1型题]下列各项,不属于风淫证临床表现的是()。A.皮肤瘙痒B.肢体麻木C.关节游走痛D.突发丘疹E.头昏沉如裹 [单选]抗癫痫药物治疗癫痫的原则是()。A.大量、突击、静脉用药B.按发作类型短期用药,随时改变品种C.按发作类型长期、规则用药D.长期、规则用药,禁酒E.大剂量、短期、合并用药 [单选,A1型题]下列脏腑中与厌食最为相关的是()。A.心与小肠B.脾胃C.肝胆D.肾与膀胱E.肺与大肠 [单选]关于证据采信规则表述正确的是()。A.其他书证优于国家机关以及其他职能部门依职权制作的公文文书B.原始证据优于传来证据C.复制件、复制品优于原件、原物D.未出庭作证的证人证言优于出庭作证的证人证言 [单选,A1型题]禁食24小时后,体内葡萄糖来源于体内蛋白质的糖异生,每日约耗损蛋白质()A.50gB.60gC.70gD.75gE.85g [判断题]气密试验是清除一些重大的隐患及质量问题,确保一次化工操作开车成功。A.正确B.错误 [填空题]用兆欧表测量电器设备的绝缘电阻,必须先()。 [单选,A1型题]关于初乳与成熟乳比较,正确的是()A.初乳中含有较多蛋白质,主要是清蛋白B.初乳及成熟乳中,均含有大量免疫球蛋白C.初乳中脂肪及糖类含量较高D.初乳持续约3天,逐渐变为成熟乳汁E.药物不经母血渗入乳汁 [单选]根据《信访条例》规定,()级以上人民政府应当设立信访工作机构。A.市B.县C.乡D.省 [单选,A1型题]26岁初产妇,因宫缩乏力致第二产程延长行产钳助娩,产后阴道流血量约800ml,诊为宫缩乏力所致,其主要临床表现应为()A.胎盘娩出后阵发性出血量多B.胎盘未娩出时出血不止C.胎儿娩出后立即出血不止D.胎盘剥离延缓而出血E.胎盘娩出后出血无血块 [填空题]蒙古人种主要分布在:包括辽阔的蒙古高原在内的整个亚洲地域和()、拉丁美洲三大洲。 [填空题]A级高度钢筋混凝土高层建筑结构平面布置时,平面宜()、()、()、()。 [单选]下列有关脊柱的描述哪项错误()A.由椎骨以及椎间盘、椎间关节、韧带等连接装置组成B.有四个生理弯曲C.仰卧位时T最高D.仰卧位时T最低E.椎管内有三个潜在的腔隙 [单选]¥15409.02,写成中文人民币大写应为()。A.人民币壹万伍仟肆佰零玖元贰分B.人民币壹万伍仟肆佰零玖元零贰分C.人民币壹万伍仟肆佰零玖元零角贰分D.人民币壹万伍仟肆佰零玖元零贰分整 [填空题]邮资票品必须按规定的()和售价出售。 [单选]下列哪一项符合高血压的治疗原则().A.联合用药,达到降压目标后停药B.症状不重者不宜使用降压药C.联合用药,达到降压目标后短期服用维持量D.联合用药,达到降压目标后长期服用维持量E.间断用药,避免产生抗药性 [问答题,简答题]矿井提升机制动装置有何作用? [单选]基础施工图一般由()、基础详图与文字说明三部分组成。主要作为测量放线、挖槽、抄平、确定井点排水部位、打垫层、做基础和管沟用。A.总平面图B.建筑平面图C.基础平面图D.结构施工图 [单选]下列哪一项不是Babinski征的等位征()A.Chaddock征B.Oppenheim征C.Gordon征D.Gonda征E.Romberg征 [填空题]客运经营者、货运经营者不按照规定携带车辆营运证的,由县级以上道路运输管理机构责令改正,处()或者20元以上200元以下的罚款。 [问答题,简答题]激发学习动机的技术。 [单选]下列哪一个不是卤代羟基类药物A.氟烷B.氟烯烷C.恩氟烷D.异氟烷E.甲氧氟烷 [问答题,简答题]现场钢丝绳采用绳卡固定法连接时的要求是什么? [单选]光面爆破时,周边光爆眼应用炮泥封实,且封泥长度不得小于()。A.0.2mB.0.25mC.0.3m [问答题,简答题]胸外心脏按压术 [单选,A1型题]脑出血最好发的部位是()。A.脑叶B.小脑C.脑室D.脑桥E.基底节区出血 [单选,A型题]十二指肠壶腹部溃疡的说法不正确的是()A.位于十二指肠腔外B.边缘清晰C.壶腹部形态不正常变形D.周围黏膜显示中断紊乱E.壶腹部管腔钡剂量较正常人少 [单选]()是消费者为了某种目的选择餐厅作为见面和会谈的场所而外出就餐的动机。A.寻求便利动机B.寻求满足特殊需要的场合的动机C.会面机会动机D.俱乐部动机
人教版七年级数学上册热点:第1章:数轴、相反数、绝对值
学生做题前请先回答以下问题问题1:有理数有几种分类,分别是什么?问题2:数轴的定义是什么?数轴的作用有哪些?问题3:什么是相反数,怎么找一个数或一个式子的相反数?问题4:什么是绝对值,绝对值法则是什么?问题5:(1)如果数a的绝对值等于a,那么a可能是正数吗?可能是0吗?可能是负数吗?(2)如果数a的绝对值大于a,那么a可能是正数吗?可能是0吗?可能是负数吗?(3)一个数的绝对值可能小于它本身吗?数轴、相反数、绝对值(人教版)一、单选题(共18道,每道5分)1.如果收入50元记作+50元,那么支出30元记作( )A.+30元B.-30元C.+80元D.-80元答案:B解题思路:正数和负数表示相反意义的量,收入和支出是相反意义的量,所以如果收入50元记作+50元,那么支出30元记作-30元.故选B.试题难度:三颗星知识点:正数和负数的意义2.有如下一些数:-3,-3.14,-(-20),0,+6.8,,,其中负数有( )A.2个B.3个C.4个D.5个答案:B解题思路:试题难度:三颗星知识点:负数3.下列说法正确的是( )A.正有理数和负有理数统称为有理数B.正分数、0、负分数统称为分数C.小数3.14不是分数D.整数和分数统称为有理数答案:D解题思路:选项A:正有理数、负有理数和0统称为有理数,0既不是正有理数也不是负有理数,错误;选项B:正分数、负分数统称为分数,0是整数不是分数,错误;选项C:3.14是有限小数,可以写成分数的形式,错误;选项D:整数和分数统称为有理数,正确.故选D.试题难度:三颗星知识点:有理数及其分类4.下列说法正确的是( )A.正整数和负整数统称整数B.0既不是正数,也不是负数C.0是最小的有理数D.有理数就是正有理数和负有理数答案:B解题思路:选项A:正整数、0和负整数统称为整数,A选项错误;选项B:0既不是正数,也不是负数,正确选项C:所有的负有理数都比0小,所以0不是最小的有理数,错误;选项D:有理数包括正有理数、0和负有理数,错误.故选B.试题难度:三颗星知识点:有理数及其分类5.5的相反数是( )A. B.C.+5D.-5答案:D解题思路:只有符号不同的两个数互为相反数,因此5的相反数是-5.故选D.试题难度:三颗星知识点:相反数6.下列各数中,是正数的是( )A. B.-3的相反数C. D.-3的相反数的相反数答案:B解题思路:试题难度:三颗星知识点:相反数7.如图,在数轴上点A表示的数可能是( )A.1.5B.-1.5C.-2.4D.2.4答案:C解题思路:试题难度:三颗星知识点:数轴的作用——表示数8.已知有理数a,b在数轴上的位置如图所示,则下列选项错误的是( )A.a<0<bB.b>-aC.-a>0D.-b>a答案:D解题思路:试题难度:三颗星知识点:利用数轴比较大小9.已知有理数a,b在数轴上的位置如图所示,则a,-b,,从大到小的顺序为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:利用数轴比较大小10.如图,如果数轴上A,B两点之间的距离是8,那么点B表示的数是( )A.5B.-5C.3D.-3答案:D解题思路:试题难度:三颗星知识点:数轴的作用——表示距离11.下列各对数中,互为相反数的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:绝对值法则12.若,则( )A.2mB.0C.-2mD.m答案:B解题思路:试题难度:三颗星知识点:绝对值法则13.数轴上的点A到原点的距离是6,则点A表示的数为( )A.6或-6B.6C.-6D.3或-3答案:A解题思路:试题难度:三颗星知识点:数轴的作用——表示距离14.若,则a=( )A.4B.-4C.±4D.±2答案:C解题思路:试题难度:三颗星知识点:绝对值的定义15.若,则( )A.0B.xC.-xD.以上答案都不对答案:C解题思路:试题难度:三颗星知识点:绝对值法则16.是一个( )A.正数B.非正数C.非负数D.负数答案:B解题思路:试题难度:三颗星知识点:绝对值法则17.若,则a的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:绝对值法则18.已知学校、图书馆和小明家依次坐落在一条东西走向的大街上,学校在图书馆西边20米处,小明家位于图书馆东边70米处,小明从图书馆沿街向东走了30米,接着又向东走了-40米,此时小明的位置在( )A.图书馆B.小明家C.学校西10米处D.学校东10米处答案:D解题思路:试题难度:三颗星知识点:数轴的作用——表示数2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图所示的四条射线中,表示南偏西60°的是( )A.射线OAB.射线OBC.射线OCD.射线OD2.下列各图中,∠1与∠2互为余角的是( )A. B. C. D.3.若科技馆在学校的南偏东方向,则学校在科技馆的( ) A.北偏西方向B.北偏东方向C.南偏东方向D.南偏西方向4.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了( )天. A.10B.20C.30D.255.在有理数范围内定义运算“*”,其规则为a*b=﹣23a b+,则方程(2*3)(4*x )=49的解为( ) A.﹣3B.﹣55C.﹣56D.556.下列各题中,合并同类项结果正确的是( ) A.2a 2+3a 2=5a 2 B.2a 2+3a 2=6a 2C.4xy-3xy=1D.2m 2n-2mn 2=0 7.已知322x y 与32mxy -的和是单项式,则式子4m-24的值是()A.20B.-20C.28D.-28.下列等式变形正确的是( ) A.如果s =12ab ,那么b =2s aB.如果12x =6,那么x =3 C.如果x -3=y -3,那么x -y =0 D.如果mx =my ,那么x =y9.若-2a m b 4与5a n+2b 2m+n 可以合并成一项,则m n 的值是( ) A.0B.1-C.1D.210.若正整数x 、y 满足(25)(25)25x y --=,则x y +等于A.18或10B.18C.10D.2611.如果a 与-3的和是0,那么a 是( ) A.13-B.13C.-3D.312.﹣2018的相反数是( ) A.﹣2018 B.2018C.±2018D.﹣12018二、填空题13.如图,B 处在A 处南偏西50°方向,C 处在A 处的南偏东20°方向,C 处在B 处的北偏东80°方向,则∠ACB=_____.14.在直角三角形中,一个锐角比另一个锐角的3倍还多10,则较小的锐角度数是_______.15.下列各式中,3a+4b ,0,﹣a ,am+1,﹣xy , 1x ,x a ﹣1, 2x y +单项式有______个,多项式有_______个16.将多项式xy 3-x 2y+2x 3-5y 2按字母x 降幂排列是:______.17.2005年11月1日零时,全国总人口为130628万人,60岁及以上的人口占总人口的11.03%,则全国60岁及以上的人口用科学记数法表示约为_______万人(用计算器计算,保留3个有效数字)。
第5讲 初识数轴上动点问题 培优训练 2024-2025学年人教版七年级数学上册
第5讲初识数轴上动点问题专题1 动点问题(1)——画图分类讨论法题型一距离倍分问题——画图→分类→设未知数列方程如图,三点A,B,C在数轴上,点A,B在数轴上表示的数分别为—12,16.(规定:数轴上两点A,B之间的距离记为AB)【典例】若点C在数轴上,满足AC: BC=1:3,求点C对应的数.方法小结:结合数轴画图分类讨论,注意设未知数,列方程.题型二距离和差问题——画图→分类→设未知数列方程变式1.若点C 在数轴上,满足AC+BC=32..求点C 对应的数.变式2.若点C 在数轴上,满足AC--BC=12.求点C 对应的数.专题2 动点问题(2)——距离绝对值法模型绝对值距离法在数轴上点P 到—1的距离是到3的距离的3倍.求P点对应的数.题型一距离和差问题【典例】如图,数轴上点C 表示的数为x,点A 和点B 表示的数分别为a,b,且a=—7,b=2,回答下列问题:(1)A,B两点间的距离AB= ;(2)①若AC=1,求x的值;②若点C在点B 的右边,且AC+BC=12,求x的值;(3)点C到A,B两点间所有表示整数的点(不含A,B两点)的距离之和为40.则x的值为.题型二距离倍分问题变式1.如图,A,B 在数轴上分别对应的数为10和—10,点P 对应的数为x,且PB=4PA,求x 的值.变式2.(1)如图1,在数轴上动点P 到A,B 的距离之和为6,即PA+PB=6,求点P 对应的数;(2)如图2,在数轴上点O为原点,点A 对应的数为24,点P 在数轴上,且PA=3PO求点P 对应的数.专题3 动点问题(3)——单动点问题题型一用坐标表示动点位置,距离注意带绝对值【典例】如图,动点P 从点A 出发,以2个单位长度/秒的速度沿数轴向右运动到点B,然后以原速返回A 点,点P 运动的时间为t秒.(1)当t≤5时,P点表示的数为;(2)当5<t≤10时,P 点表示的数为;(3)若OP=2,求t的值.方法:①在数轴上表示P₁,P₂的坐标,. x P1=x A+2t,x P2=x B−2(t−5);circle2OP=|x P−x0|;;③分情况,列方程求解.题型二用坐标表示数轴上两点间距离变式.如图,已知a,b分别对应数轴上A,B两点,并且满足|a−2|+(3a+2b)²=0,点P 为数轴上一个动点,它对应的数是x.(1)填空: a=,b=,AB=;(2)若P 为线段AB 上一点,并且. PA=3PB,,求x的值;(3)若P 点从A 点出发以每秒2个单位长度的速度运动,那么出发几秒钟后,使得. PA=4PB?* 注意|a|=|b|分两种情形:( a=b或a=−b.方法小结:( (1)PA=|x−2|,PB=|x+3|;(2)结合距离关系列方程.专题4 动点问题(4)----双动点问题b|;模型二已知数轴上两点A,B对应的数为-1,3,点P 为数轴上一动点,其对应的数为x.(1)PA=|x+1|,PB=|x-3|;(2)若PA+PB=5,则|x+1|+|x-3|=5,结合图形知.x=-32或x= 72题型一点的位置未定,距离带绝对值【典例】如图,数轴上点A,B分别表示-7,1,点P,Q分别从点A,B同时沿数轴的正方向运动,点P 的速度是每秒2个单位长度,点Q 的速度是每秒1个单位长度,设运动的时间为t秒.(1)在运动过程中,请用含t 的代数式表示点P,Q在数轴上表示的数;(2)当t为何值时,P,Q两点的距离等于2个单位长度?题型二方程法(画图讨论),绝对值法(列绝对值方程)变式.如图,在数轴上点A 表示的数为-4,B表示的数为10,点P,Q分别从点B,A同时出发,相向运动,且在原点相遇.设它们运动的时间为t秒,点P 运动的速度为每秒2.5个单位长度.(1)直接写出点P 对应的数是,点Q对应的数是(用含t 的式子表示);(2)当P,Q两点间的距离恰好等于A,B两点间距离的一半时,求t的值.。
人教版初一数学数轴5
人教版七年级上数学上册数轴课件
学以致用
1. 数轴的三要素( C )
A、数轴 原点 正方向 B、正方向 原点 箭头 C、正方形 原点 单位长度 D、负方向 原点 单位长度
学以致用
• 下列说法不正确( D)
A. 数轴是一条直线 B. 数轴上所有的点并不都表示有理数 C. 在数轴上表示2和-2的点到原点的距
离相等 D. 数轴上一定取向右为正方向
人教版七级数学上册数轴课件
学以致用
2.若点A在数轴上原点的左边,
则A点表示的数是( B )
A. 正数 B. 负数 C. 整数
人教版七级数学上册数轴课件
人教版七级数学上册数轴课件
学以致用
3.数轴上到原点距离5个单位
长度的点表示的数是(C )
A +5 B -5 C 5
4.上述方法表示了这些树、电线杆与汽车 站的相对位置关系。例如,-4.8表示位于 汽车站西侧4.8米处的电线杆。你能再举个 例子吗?
-4.8 -3
01 3
7.5
操作与归纳
怎么画?
一般地,在数学中人们用画图的方式把数“直观化” 通常用一条直线上的点表示数,这条直线就叫做“数轴”。
-3 -2 -1 0 1 2 3
义务教育课程标准实验教科书 数学 七年级 上册
1.2.2 数 轴
复习旧知: 有理数
有理数
1、整数和分数统称有理数
整数
正整数 零 负整数
分数
正分数 负分数
正有理数 零 负有理数
正整数 正分数 负整数 负分数
复习旧知:
把下列各数填在相应的集合中:
3 , 1 ,0 ,4 , , 2 .1, 2 0 .6, 5 3% 0 0 0 .6 .,,2
人教版初中七年级数学上册《数轴》练习题
人教版初中七年级数学上册《数轴》例题数轴的概念虽简单,但初学者也会因疏忽犯下一些小错误,而数轴作为中学数学的基本工具又是非常重要的,这里通过一些例题来纠正一些容易出现的典型错误一、数轴概念例1 回答问题:下图中哪一个表示数轴?不是数轴的请说出原因.分析:数轴的三要素原点、正方向和单位长度,这三者对于数轴来说是缺一不可.解:根据数轴的三要素:图(1)是数轴,它是具备了原点、正方向和单位长度的直线.图(2)不是数轴,因为单位长度不一致.图(3)不是数轴,因为没有原点和单位长度.图(4)不是数轴,因为它是射线,不是直线.图(5)不是数轴,有两处错误,一是没有标明正方向;二是负数的排序错误,从原点向左依次应是-1,-2,-3,….说明:识别一个图形是否是数轴,方法是第一,这个图形是一条直线;第二,这条直线要满足三要素.即原点、正方向和单位长度,缺一不可.二、数轴及数轴上的点例2在所给的数轴上画出表示下列各数的点:分析:第一步画数轴,第二步在数轴上找出相对应的点,每个正有理数都可用数轴上原点右边的一个点来表示,例如2、3.5,可用数轴上分别位于原点右边2个单位,3.5个单位的点表示.每一个负有理数都可用数轴上原点左边的一个点来表示,解:说明:数轴上表示数的点可用大写字母标出,写在数轴上方所对应数的上面,原点用O 标出,它表示数0.数轴上原点的位置要根据需要来确定,不一定要居中.单位长度应根据需要来确定,1 cm 的长度可以表示1个单位长度,也可以表示2个,5个,10个…单位长度,但在同一数轴上,单位长度必须一致,不可随意改变.变式练习:指出数轴上A 、B 、C 、D 、E 各点分别表示什么数.参考答案:O 表示0,A 表示322-,B 表示1,C 表示413,D 表示-4,E 表示-0.5. 三、数轴上的点与原点的关系例3 填空(1)数轴上表示2的点在原点的_____边,与原点的距离是____个单位长度.(2)数轴上表示-2的点在原点的____边,与原点的距离是___个单位长度.(3)数轴上在原点右边距原点3.7个单位长度的点表示数_______.(4)数轴上在原点左边距原点85个单位长度的点表示数______. (5)数轴上距原点2个单位长度的点有_____个,它们分别表示数______. 分析:数轴上,表示正数的点都在原点的右边,表示负数的点都在原点的左边.距离不会是负数.答案:(1)右,2 (2)左,2 (3)3.7 (4)85- (5)2,+2和-2 说明:①可以画数轴来加深认识.②数轴上表示3的点在原点的右边,表示-3的点在原点的左边,它们与原点的距离都是3个单位长度;同样,数轴上表示2 018的点在原点的右边,表示-2 018的点在原点的左边,它们与原点的距离都是2 018个单位长度.即如果a表示一个正数,则数轴上表示数a的点在原点的右边,它与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度.③如果a表示一个正数,数轴上距原点a个单位长度的点有2个,它们分别是数a和-a.。
人教版数学七年级上册同步多媒体教学 第一章-数轴
(方向、距
离)?
现在,你能说出图
中数字表示的实际意义吗?
-4.8表示汽
车西方的
电线杆
-3表示汽
车西方的
槐树
3表示汽
车东方的
柳树
0表示
分界
7.5表示汽
车东方的
杨树
向东为正
-4.8 -3
0 1
3
7.5
思考:右图中的温度计可以看作表示正数、
0、负数的直线. 它和下图有什么共同点,有什么
不同点?
数轴上点的移动
原点右边的数是正数,原点左边的数是负数
0是正负数的分界限.
2
2
2
7.画出数轴并在数轴上表示下列各数:-2.5,0,+1,大的顺序用“<”连接起来。
-2.5
-3
-2
-
-1
0
1
0
1
根据从小到大排列为:-2.5<-
2
<0<1.
,按从小到
课堂总结
认识数轴
数轴
规定了原点、正方向和
单位长度的直线叫数轴.
所有的有理数都可以用数轴上的点来表示
数轴上的点与
有理数的关系
单位长度
点叫_______),选取某一长度作为___________,
原点
正方向
规定直线上向右的方向为 _________,这样的直线
叫做数轴.
-5
-4
-3
-2
-1
.
0
1
2
3
4
5
6
分数或小数也可以用数轴上的点表示,例如从原点向右6.5个
人教版七年级数学上册《数轴》教案
1.2.2 数轴【教学目标】知识技能1.通过与温度计的类比,了解数轴的概念,会画数轴。
2.知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。
过程方法1.从直观认识到理性认识,从而建立数轴概念。
2.通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。
3.会利用数轴解决有关问题。
情感态度通过对数轴的学习,体会到数形结合的思想方法,进而初步认识事物之间的联系性。
【教学重点】1.数轴的概念。
2.能将已知数在数轴上表示出来,说出数轴上已知点所表示的数。
【教学难点】从直观认识到理性认识,从而建立数轴的概念。
【情景引入】1.小明感冒了,医生用体温计测量了他的体温,并说:“37.8度。
”提疑:医生为什么通过体温计就可以读出任意一个人的体温?(体温计上的刻度)2.我们再一起去看看12月时祖国各地的自然风光和温度情况(电脑分别显示黑龙江、焦作、海南三个城市美丽的自然风光,温度分别为-10°c,0°c,20°c)提疑:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?(正数、零、负数)3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解。
然后提问:请找出一支温度计从外观上具有哪些不可缺少的特征?(组织学生讨论交流)学生可能会从不同的角度回答,教师给予必要的引导,总结出与数轴相对应的特点,如形状是直的、0刻度、单位刻度。
(电脑动态演示,将温度计水平放置,抽象得出数轴图形表示有理数-10,0,20的过程)从而引出课题------数轴。
【教学过程】一.数轴的画法与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右(或上)为正方向(箭头所指的方向),那么从原点向左(或下)为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…根据画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.二.数轴的相关概念1.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.(说明:数轴像一支平放的温度计。
人教版初一数学数轴5
对于肺功能障碍患者应采用A.高脂肪膳食B.高蛋白膳食C.高碳水化合物膳食D.高钙膳食E.高维生素膳食 下列哪一项不属于综合理财规划建议书的特点。A.操作的专业化B.分析的量化性C.目标的指向性D.分析的全面性 什么是土壤?什么是土壤肥力? 不同的病变需要优选最适宜的检查方法。诊断眼眶爆裂骨折,最好的检查方法是A.X线平片B.CT冠状位扫描CT横断位扫描D.矢状面重建E.MRI 1997年3月刑法修订后,全国人民代表大会常务委员会颁布了几个单行刑法和几个刑法修正案?A.一个单行刑法和五个修正案B.一个单行刑法和六个修正案C.两个单行刑法和五个修正案D.两个单行刑法和六个修正案 以下关于调配工序质量指标描述错误的是A.供药及时率≥99%B.配方成方率≥97%C.药品养护率≥95%D.处方合格率≥99%E.划价准确率≥99% 与独资企业和合伙企业相比,公司制企业的特点有。A.以出资额为限,承担有限责任B.权益资金的转让比较困难C.存在着对公司收益重复纳税的缺点D.更容易筹集资金 可以作为一碳单位原料的氨基酸是A.酪氨酸B.赖氨酸C.谷氨酸D.组氨酸E.瓜氨酸 对民族发展起到精神纽带作用的因素是。A、共同语言B、共同文化C、共同族源D、共同心理认同 上颌第一前磨牙的萌出时间是A.7岁左右B.8岁左右C.9岁左右D.10岁左右E.13岁左右 有Q波的ST段上抬见于A.严重的穿壁性心肌缺血B.室壁运动障碍C.心律失常D.房室传导阻滞E.心动过速 商业银行应妥善保管与客户签订的个人理财业务相关合同和各类授权文件,并至少()重新确认一次。A.每季度B.每半年C.每年D.2年 关于划拨国有土地使用权的抵押的说法,不正确的是。A.必须领有国有土地使用证B.具有合法的地上建筑物、其他附着物产权证明C.原土地使用者不受限制D.原土地使用者为公司、企业、其他经济组织和个人 下列说法错误的是。A.水土保持设施经验收不合格的,建设工程不得投产使用B.水土保持监督人员依法执行公务时,应当持有省级以上人民政府颁发的水土保持监督检查证件C.水土保持生态环境监测工作,应由具有水土保持生态环境监测资格证书的单位承担D.在水力侵蚀地区实施小流域综合治理 薄层固定床反应器主要用于。A、快速反应B、强放热反应C、可逆平衡反应D、可逆放热反应 科学管理是对所有公司或企业员工的一种彻底性的。A.行为革命B.思想革命C.科学管理革命D.精神革命 表示间断变量的统计图有和。 对结膜乳头状瘤的描述正确的是A.由巨细胞病毒引起B.病理特点是表层为复层鳞状上皮,结缔组织中有毛囊、皮脂腺C.好发于上睑结膜D.手术切除后不易复发E.博莱霉素局部注射可降低复发率 以下现象与生长发育的一般规律不符的是A.生长发育呈连续性与阶段性B.生长发育的速度呈波浪式进展C.生长发育涉及生理和心理两个密切联系的方面D.脑、脊髓、视觉器官的发育具有两个生长突增期E.在疾病的恢复期往往伴随有赶上生长现象 A厂委托B厂加工一批应税消费品(高档化妆品),A厂提供的原材料成本为54000元,B厂收取(不含税)加工费9000元,该应税消费品适用税率为30%,受托的B厂没有同类消费品的销售价格。A厂将委托加工的已税消费品收回后,领用一半用于继续生产最终应税消费品(高档化妆品)后销售,取得 下列机器中不属于动力机的是。A.柴油机B.电动机C.发电机D.天然气机 在间日疟患者外周涂片中没有A.早期滋养体B.环状体C.大滋养体D.裂殖体E.孢子体 诊断试验主要用于,除了A.疾病诊断B.疾病随访C.防残延寿D.疗效考核E.药物毒副作用监测 下列哪项是MODS最主要的发病机制:A.炎症反应失控,导致组织细胞损害B.炎症细胞激活,炎性物质释放C.氧自由基大量释放D.内皮细胞损伤E.肠道菌群异体 患者,女,25岁。身体状况良好,主诉近期计划怀孕,到妇幼保健医院口腔科进行口腔检查,并咨询相关口腔保健问题。妊娠期服用可能引起胎儿唇裂或腭裂的药物有A.四环素B.链霉素C.庆大霉素D.卡拉霉素E.苯妥英钠 挖掘机具有行走速度快、机动性好等优点,可在城市道路顺畅通行。A.履带式B.轮胎式C.轨道式D.拖式 《儿童的思想与起源》的作者为。A.皮亚杰B.布鲁纳C.弗洛伊德D.埃里克森E.瓦隆 构成机体重量的主要成分是A.骨骼B.肌肉C.内脏D.体液E.细胞 土地使用者的单位全称应为该单位的全称。A.营业执照所记载B.在工商局注册时C.公章D.对外使用 突发公共卫生事件是指突然发生,造成或者可能造成社会公众健康严重损害的重大。A.传染病疫情事件B.社会治安事件C.公众安全事件D.领导责任事件E.医疗机构事故 关于临产后胎头呈前不均倾位的处理,下列哪项是恰当的A.发现前不均倾位首先加强宫缩B.人工破膜C.等待产程自然进展,第二产程助产D.不论胎儿大小均可试产E.剖宫产 工程承包合同属于工程资料验收的。A.工程技术资料B.工程综合资料C.工程财务资料D.工程评估资料 人文地理学 根据《安全生产许可证条例》,要取得安全生产许可证应具备的条件有。A.建立、健全安全生产责任制,制定完备的安全生产规章制度和操作规程B.资金投入符合安全生产要求C.依法参加工伤保险,为从业人员缴纳保险费D.企业生产过程未发生过安全事故E.按规定配备专职安全生产管理人员 治疗肺炎链球菌肺炎首选A.青霉素B.红霉素C.氯霉素D.卡那霉素E.庆大霉素 对于活化能越大的反应,速率常数随温度变化越。A、大B、小C、无关D、不确定 细骨料的检验要求中规定:对于连续进场的同料源、同品种、同规格的细骨料(河砂)常规的检测项目有其中每三个月检验一次。 是在经济、技术、科学及管理等社会实践中,以改进产品、过程和服务的适用性,防止贸易壁垒,促进技术合作,促进最大社会效益为目的,对重复性事物和概念通过制定、发布和实施标准,达到统一,获得最佳秩序和社会效益的过程。A.标准B.规范C.规程D.标准化 “两帮一促”是指什么?
人教版数学七年级上册第三章《一元一次方程》应用题分类:数轴类专项练(五)
第三章《一元一次方程》应用题分类:数轴类专项练(五)1.如图,数轴上有A,B两点,A在B的左侧,表示的有理数分别为a,b,已知AB=12,原点O是线段AB上的一点,且OA=2OB.(1)a=,b=;(2)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,设运动时间为t秒,当点P与点Q重合时,P,Q两点停止运动,当t为何值时,2OP﹣OQ=4.(3)在(2)的条件下,若当点P开始运动时,动点M从点A出发,以每秒3个单位长度的速度也向右运动,当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P 后再立即返回,以同样的速度向点Q运动,如此往返,直到点P,Q停止时,点M也停止运动,求在此过程中点M行驶的总路程和点M停止运动时在数轴上所对应的有理数.2.已知,如图A,B分别为数轴上的两点,A点对应的数为﹣10,B点对应的数为90.(1)A,B两点间的距离为.(2)现在有一只电子蚂蚁P从A点出发,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3个单位/秒的速度向左运动.运动时间为t秒,用含t 的代数式表示:①点P在数轴上表示的数为.②若两只电子蚂蚁在数轴上的C点相遇,则C点对应的数是多少.(3)若当电子蚂蚁P从A点出发时,以4个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从B点出发,以6个单位/秒的速度向左运动,经过多长的时间两只电子蚂蚁在数轴上相距20个单位长度.3.如图,A、B两点在数轴上,这两点在数轴对应的数分别为﹣12、16,点P、Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位/秒、4个单位/秒,它们运动的时间为t秒,0点对应的数是0.(规定:数轴上两点A,B之间的距离记为AB)(1)如果点P、Q在A、B之间相向运动,当它们相遇时,t=,此时点P所走的路程为,点Q所走的路程为,则点P对应的数是.(2)如果点P、Q都向左运动,当点Q追上点P时,求点P对应的数;(3)如果点P、Q在点A、B之间相向运动,当PQ=8时,求P点对应的数.4.如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为40个单位长度?5.如图,数轴上点A在原点O的左侧,点B在原点的右侧,AO=5,BO=7.(1)请写出点A表示的数为,点B表示的数为,A、B两点的距离为;(2)若一动点P从点A出发,以3个单位长度/秒的速度向右运动;同一时刻,另一动点Q从点B出发,以1个单位长度/秒的速度向右运动.①点P刚好在点C追上点Q,请你求出点C对应的数;②经过多长时间PQ=5?6.【阅读理解】:A,B,C为数轴上三点,若点C到A的距离CA是点C到B的距离CB的2倍,我们就称点C是(A,B)的好点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离CA 是2,到点B的距离CB是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离DA是1,到点B的距离DB是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.【知识运用】:(1)如图1,表示数和的点是(A,B)的好点;(2)如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.①表示数的点是(M,N)的好点;②表示数的点是(N,M)的好点;(3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动.当t为何值时,P、A和B中恰有一个点为其余两点的好点?7.如图,已知A,B,C是数轴上的三点,点C表示的数是6,BC=4,AB=12.(1)写出数轴上点A,点B表示的数;(2)点M为线段AB的中点,CN=3,求MN的长;(3)动点P,Q分别从A,C同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动,求t为何值时,原点O恰好为线段PQ的中点.8.已知A,B为数轴上的两个点,点A表示的数为﹣20,点B表示的数为100.(1)现有一只电子蚂蚁P从点B出发,以每秒6个单位长度的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以每秒4个单位长度的速度向右运动,设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数;(2)若电子蚂蚁P从点B出发,以每秒6个单位长度的速度向左运动,同时另一电子蚂蚁Q恰好从点A出发,以每秒4个单位长度的速度向左运动,设两只电子蚂蚁在数轴上的点D处相遇,求点D表示的数.9.阅读思考:小明在学习过程中,发现“数轴上两点间的距离”可以用“表示这两点数的差”来表示,如图1所示,线段AB,BC,CD的长度可表示为:AB=3=4﹣1;BC=5=4﹣(﹣1);CD=3=(﹣1)﹣(﹣4);于是他归纳出这样的结论:如果点A表示的数为a,点B表示的数为b,当b>a时,AB =b﹣a(较大数﹣较小数).(1)尝试应用:①如图2所示,计算:OE=,EF=;②把一条数轴在数m处对折,使表示﹣20和2020两数的点恰好互相重合,则m=;(2)问题解决:①如图3所示,点P表示数x,点M表示数﹣2,点N表示数2x+8,且MN=4PM,求出点P和点N分别表示的数;②在上述①的条件下,是否存在点Q,使PQ+QN=3QM?若存在,求出点Q所表示的数;若不存在,请说明理由.10.[新定义]:A、B、C为数轴上三点,若点C到点A的距离是点C到点B的距离的3倍,我们就称点C是[A,B]的幸运点.[特例感知](1)如图1,点A表示的数为﹣1,点B表示的数为3.表示2的点C到点A的距离是3,到点B的距离是1,那么点C是[A,B]的幸运点,①[B,A]的幸运点表示的数是;A.﹣1 B.0 C.1 D.2②试说明A是[C,E]的幸运点.(2)如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4,则[M,N]的幸运点表示的数为.[拓展应用](3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.有一只电子蚂蚁P从点B出发,以5个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B三个点中恰好有一个点为其余两点的幸运点?参考答案1.解:(1)∵AB=12,AO=2OB,∴AO=8,OB=4,∴A点所表示的实数为﹣8,B点所表示的实数为4,∴a=﹣8,b=4.故答案是:﹣8;4;(2)当0<t<4时,如图1,AP=2t,OP=8﹣2t,BQ=t,OQ=4+t,∵2OP﹣OQ=4,∴2(8﹣2t)﹣(4+t)=4,t==1.6,当点P与点Q重合时,如图2,2t=12+t,t=12,当4<t<12时,如图3,OP=2t﹣8,OQ=4+t,则2(2t﹣8)﹣(4+t)=4,t=8,综上所述,当t为1.6秒或8秒时,2OP﹣OQ=4;(3)当点P到达点O时,8÷2=4,此时,OQ=4+t=8,即点Q所表示的实数为8,如图4,设点M运动的时间为t秒,由题意得:2t﹣t=12,t=12,此时,点P表示的实数为﹣8+12×2=16,所以点M表示的实数是16,∴点M行驶的总路程为:3×12=36,答:点M行驶的总路程为36和点M最后位置在数轴上对应的实数为16.2.解:(1)由题意,得:90﹣(﹣10)=100故答案是:100;(2)①点P表示的数是:2t﹣10.故答案是:2t﹣10;②设t秒后P、Q相遇,∴3t+2t=100,解得t=20;∴此时点P走过的路程=2×20=40,∴此时C点表示的数为﹣10+40=30.答:C点对应的数是30;(3)设经过x秒两只电子蚂蚁在数轴上相距20个单位长度,相遇前:4x﹣6x+100=20解得x=40.相遇后:6x﹣4x﹣100=20解得x=60综上所述,经过40或60秒,两只电子蚂蚁在数轴上相距20个单位长度.3.解:(1)由题意可得:2t+4t=16+12,∴t=,∴点P所走的路程=2×=,点Q所走的路程=4×=,∵﹣12+=﹣,∴点P对应的数是﹣,故答案为:,,,﹣;(2)设经过x秒点Q追上点P,由题意可得:4x﹣2x=16+12,∴x=14,∴﹣12﹣2×14=﹣40,∴点P对应的数为﹣40;(3)设经过y秒后,PQ=8,|16﹣4y﹣(﹣12+2y)|=8,∴y1=,y2=6,∴当y=时,点P对应的数为﹣12+2×=﹣,当y=6时,点P对应的数为﹣12+2×6=0,综上所述:点P对应的数为﹣或0.4.解:(1)M点对应的数是(100﹣20)÷2=40,答:点M所对应的数是40;(2)设t秒后相遇,由题意得:5t+3t=120,解得:t=15,所以点C对应的数为﹣20+3×15=25,答:C点对应的数是25;(3)设当它们运动x秒两只蚂蚁间的距离为40个单位长度,相遇前:5x﹣3x=120﹣40,解得:x=40,相遇后:5x﹣3x=120+40,解得:x=80,答:当它们运动40秒或80秒两只蚂蚁间的距离为40个单位长度.5.解:(1)∵点A在原点O的左侧,点B在原点的右侧,AO=5,BO=7,∴点A表示的数为﹣5,点B表示的数为7,AB=AO+BO=12.故答案为:﹣5;7;12.(2)当运动时间为t秒时,点P表示的数为3t﹣5,点Q表示的数为t+7.①依题意,得:3t﹣5=t+7,解得:t=6,∴3t﹣5=13.答:点C对应的数为13.②当点P在点Q的左侧时,t+7﹣(3t﹣5)=5,解得:t=;当点P在点Q的右侧时,3t﹣5﹣(t+7)=5,解得:t=.答:经过秒或秒时,PQ=5.6.解:(1)设所求数为a,由题意得a﹣(﹣1)=2(a﹣2),或a﹣(﹣1)=2(2﹣a)解得:a=5或1,故答案为:5,1;(1)①设所求数为x,由题意得x﹣(﹣2)=2(4﹣x),或x﹣(﹣2)=2(x﹣4),解得:x=2或10;故答案为:2,10;②设所求数为x,由题意得2[(﹣2)﹣x]=4﹣x或2[x﹣(﹣2)]=4﹣x,解得:x=﹣8或0,故答案为:﹣8或0;(2)设点P表示的数为y,分四种情况:①P为(A,B)的好点.由题意,得(40﹣2t)﹣(﹣20)=2×2t,解得;t=10s②P为(B,A)的好点.由题意,得2[(40﹣2t)﹣(﹣20)]=2t,或2t=2[﹣20﹣(40﹣2t)]解得t=20s或60st=20÷10=2(秒);③B为(A,P)的好点,由题意得:40﹣(﹣20)=2×2t,解得t=15s,④B为(P,A)的好点,由题意得:2t=2[40﹣(﹣20)]t=60s,⑤A为(P,B)的好点,根据题意可得:2t﹣60=2×60,∴t=90⑥A为(B,P)的好点,60=2(60﹣2t)或60=2(2t﹣60),∴t=15或45综上可知,当t为10秒或20秒或60秒或15秒或90秒或45秒时,P、A和B中恰有一个点为其余两点的好点.7.解:(1)如图,∵点C表示的数是6,BC=4,AB=12.∴A表示的数是﹣10,B表示的数是2.(2)∵AB=12,M是AB的中点.∵AM=BM=6,因为CN=3,当点N在点C的左侧时,BN=1,此时MN=BM+BN=6+1=7;当点N在点C的右侧时,BN=7,此时MN=BM+BN=6+7=13;(3)∵A表示的数是﹣10,∴OA=10∵C表示的数是6,∴OC=6∵点P、点Q同时出发,且运动的时间为t∴AP=6t,CQ=3t,∴OP=OA﹣AP=10﹣6t,CQ=OC﹣CQ=6﹣3t,当原点O为PQ的中点时,OP=OQ,∴10﹣6t=6﹣3t.解得t=,故当t=时,原点O为PQ的中点.8.解:(1)AB=100﹣(﹣20)=120设运动x秒在C处相遇,则4x+6x=120,解得x=12,﹣20+4×12=28.故点C表示的数为28;(2)设运动y秒在D处相遇,则6y﹣4y=120,解得y=60,﹣20﹣4×60=﹣260.故点D表示的数为﹣260.9.解:(1)①OE=0﹣(﹣5)=5,EF=3﹣(﹣5)=8.故答案为:5;8.②依题意,得:2020﹣m=m﹣(﹣20),解得:m=1000.故答案为:1000.(2)①依题意,得:2x+8﹣(﹣2)=4×(﹣2﹣x),解得:x=﹣3,∴2x+8=2.答:点P表示的数为﹣3,点N表示的数为2.②设点Q表示的数为y.当y<﹣3时,﹣3﹣y+2﹣y=3×(﹣2﹣y),解得:y=﹣5;当﹣3≤y<﹣2时,y﹣(﹣3)+2﹣y=3×(﹣2﹣y),解得:y=﹣(不合题意,舍去);当﹣2≤y<2时,y﹣(﹣3)+2﹣y=3×[y﹣(﹣2)],解得:y=﹣;当y≥2时,y﹣(﹣3)+y﹣2=3×[y﹣(﹣2)],解得:y=﹣5(不合题意,舍去).答:在上述①的条件下,存在点Q,使PQ+QN=3QM,点Q表示的数为﹣5或﹣.10.解:(1)①由题意可知,点0到B是到A点距离的3倍,即EA=1,EB=3,故选B.②由数轴可知,AC=3,AE=1,∴AC=3AE,∴A是【C,E】的幸运点.(2)设【M,N】的幸运点为P,T表示的数为p,∴PM=3PN,∴|p+2|=3|p﹣4|,∴p+2=3(p﹣4)或p+2=﹣3(p﹣4),∴p=7或p=2.5;故答案为7或2.5;(3)由题意可得,BP=5t,AP=60﹣5t,①当P是[A,B]的幸运点时,PA=3PB,∴60﹣5t=3×5t,∴t=3;②当P是[B,A]的幸运点时,PB=3PA,∴5t=3×(60﹣5t),∴t=9;③当A是[B,P]的幸运点时,AB=3PA,∴60=3×(60﹣5t),∴t=8;④当B是[A,P]的幸运点时,AB=3PB,∴60=3×5t,∴t=4;.∴t为3秒,9秒,8秒,4秒时,P、A、B中恰好有一个点为其余两点的幸运点..。
人教版七年级上册数学期末复习提分专练:数轴综合(五)
人教版七年级上册数学期末复习提分专练:数轴综合(五)1.【探索新知】如图1,点C在线段AB上,图中共有3条线段:AB、AC和BC,若其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的“二倍点”.(1)①一条线段的中点这条线段的“二倍点”;(填“是”或“不是”)②若线段AB=20,C是线段AB的“二倍点”,则BC=(写出所有结果)【深入研究】如图2,若线段AB=20cm,点M从点B的位置开始,以每秒2cm的速度向点A运动,当点M到达点A时停止运动,运动的时间为t秒.(2)问t为何值时,点M是线段AB的“二倍点”;(3)同时点N从点A的位置开始,以每秒1cm的速度向点B运动,并与点M同时停止.请直接写出点M是线段AN的“二倍点”时t的值.2.已知在纸面上有数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:(1)若数轴上数1表示的点与﹣1表示的点重合,则数轴上数﹣5表示的点与数表示的点重合.(2)若数轴上数﹣3表示的点与数1表示的点重合.①则数轴上数3表示的点与数表示的点重合.②若数轴上A、B两点之间的距离为5(A在B的左侧),并且A、B两点经折叠后重合,求A、B两点表示的数分别是多少?③若数轴上C、D两点之间的距离为d,并且C、D两点经折叠后重合,求C、D两点表示的数分别是多少?(用含d的代数式表示)3.如图,在数轴上点A表示的有理数为﹣6,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度由A→B→A运动,同时,点Q从点B出发以每秒1个单位长度的速度由B→A运动,当点Q到达点A时P、Q两点停止运动,设运动时间为t(单位:秒).(1)求t=2时,求点P和点Q表示的有理数;(2)求点P与点Q第一次重合时的t值;(3)当t的值为多少时,点P表示的有理数与点Q表示的有理数距离是3个单位长度?4.如图:在数轴上A点表示数﹣10,B点示数6,①A、B两点之间的距离等于;②在数轴上有一个动点P,它表示的数是x,则|x+10|+|x﹣6|的最小值是;③若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上的A、B之间找一点C,使AC=3BC,则C点表示的数是;④若在原点O的左边2个单位处放一挡板,一小球甲从点A处以5个单位/秒的速度向右运动;同时另一小球乙从点B处以2个单位/秒的速度向左运动,在碰到挡板后(忽略球的大小,可看作一点)两球分别以原来的速度向相反的方向运动,设运动时间为t秒,请用t来表示甲、乙两小球之间的距离d.5.如图,线段AB=12cm,(1)延长AB到点C,使BC=AB,点D是BC中点,点E是AB中点;请根据题意,补全图形,并求出DE的长.(2)点M是线段AB上一点,若动点P从点M出发,以1cm/s的速度向点A运动,同时动点Q从点B出发,以3cm/s的速度向点M运动(P在线段AM上,Q在线段BM上),若P、M在运动的过程中,总有MQ=3AP,求的值.(3)若线段AB在数轴上,且点A在数轴上对应的数为﹣3,点B在点A右侧,点B对应的数为m,点F是数轴上一点,点F对应的数是x,请你探索式子:|x+3|﹣|x﹣m|的最大值和最小值分别为多少?6.已知数轴上A,B两点对应的有理数分别是﹣30,15,两只电子蚂蚁甲,乙分别从A,B两点同时出发相向而行,甲的速度是3个单位/秒,乙的速度是6个单位/秒.(1)当乙到达A处时,求甲所在位置对应的数;(2)当电子蚂蚁运行t秒后,甲,乙所在位置对应的数分别是多少?(用含t的式子表示)(3)当电子蚂蚁运行t(t>10)秒后,甲,乙相距多少个单位?(用含t的式子表示)7.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,从图中可以看出,终点表示的数是﹣2,已知A,B是数轴上的点.请参照图并思考,完成下列填空:(1)如果点A表示数3,将点A向右移动7个单位长度,那么终点B表示的数是,A,B两点间的距离是.(2)如果点B表示数2,将点B向左移动9个单位长度,再向右移动5个单位长度,那么终点A表示的数是,A,B两点间的距离是.(3)如果点A表示的数是﹣4,将点A向右移动168个单位长度;再向左移动2个单位长度,那么终点B表示的数是,A,B两点间的距离是.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示的数是,A,B两点间的距离是.8.已知数轴上A,B,C三点对应的数分别为﹣1、3、5,点P为数轴上任意一点,其对应的数为x.点A与点P之间的距离表示为AP,点B与点P之间的距离表示为BP.(1)若AP=BP,则x=;(2)若AP+BP=8,求x的值;(3)若点P从点C出发,以每秒3个单位的速度向右运动,点A以每秒1个单位的速度向左运动,点B以每秒2个单位的速度向右运动,三点同时出发.设运动时间为t秒,试判断:4BP﹣AP的值是否会随着t的变化而变化?请说明理由.9.操作探究:已知在纸面上有一数轴(如图3所示),操作一:(1)折叠纸面,使表示的点1与﹣1表示的点重合,则﹣2表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,那么5表示的点与表示的点重合,此时若数轴上A、B两点之间距离为9,(A在B的左侧),且A、B两点经折叠后重合,那么A、B两点表示的数分别是、.操作三:(3)已知在数轴上点A表示的数是a,点A移动4个单位,此时点A表示的数和a是互为相反数,那么a的值是.10.已知a>b,a与b两个数在数轴上对应的点分别为点A、点B,求A、B两点之间的距离.【探索】小明利用绝对值的概念,结合数轴,进行探索:因为a>b,则有以下情况:情况一、若a>0,b≥0,如图,A、B两点之间的距离:AB=|a|﹣|b|=a﹣b;……(1)补全小明的探索【应用】(2)若点C对应的数c,数轴上点C到A、B两点的距离相等,求c.(用含a、b的代数式表示)(3)若点D对应的数d,数轴上点D到A的距离是点D到B的距离的n(n>0)倍,请探索n的取值范围与点D个数的关系,并直接写出a、b、d、n的关系.参考答案1.解:(1)根据点C在线段AB上,其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的“二倍点”.①一条线段的中点是这条线段的“二倍点”,②线段AB=20,C是线段AB的“二倍点”,所以BC=AB=10;或BC=AB=;或BC=AB=.则BC=10或或故答案为:是,10或或;(2)根据题意,得①2t=AB=10,解得t=5,②2t=AB=,解得t=,③2t=AB=,解得t=.答:t为5或或时,点M是线段AB的“二倍点”;(3)如图所示,根据题意,得MB=2t,AN=t,AB=20,∴AM=20﹣2t,①当AM=AN时,即20﹣2t=t,解得t=8;②当AM=AN时,即20﹣2t=t,解得t=;③当AM=AN时,即20﹣2t=t,解得t=.综上所述:当t为8或或时,点M是线段AN的“二倍点”.2.解:(1)5;(2)①﹣5;②∵数轴上数﹣3表示的点与数1表示的点重合,∴折痕过表示数﹣1的点∴用x A表示A点的数,有x A﹣(﹣1)=﹣解得x A=﹣3.5同理x B=1.5,故A:﹣3.5;B:1.5.③设C在D的左侧C点表示的数为x,D的表示的数为y,根据题意有x﹣(﹣1)=﹣,解得x=﹣1﹣0.5d同理y=﹣1+0.5d;当C在D的右侧时,C:﹣1+0.5d;D:﹣1﹣0.5d.故C:﹣1﹣0.5d;D:﹣1+0.5d或C:﹣1+0.5d;D:﹣1﹣0.5d.3.解:(1)当t=2时,点P表示的数为:﹣6+2×2=﹣6+4=﹣2,点Q表示的数为:6﹣1×2=6﹣2=4;(2)[6﹣(﹣6)]÷(1+2)=(6+6)÷3=12÷3=4,答:点P与点Q第一次重合时的t值为4;(3)点P和点Q第一相遇前,(1+2)t=[6﹣(﹣6)]﹣3,解得,t=3;当点P和点Q相遇后,点P到达点B前,(1+2)t=[6﹣(﹣6)]+3,解得,t=5;当点P从点B向点A运动时,t﹣3=2t﹣[6﹣(﹣6)],解得,t=9;由上可得,当t的值为3,5,9时,点P表示的有理数与点Q表示的有理数距离是3个单位长度.4.解:①A、B两点之间的距离等于:|6﹣(﹣10)|=16故答案为:16;②∵|x+10|+|x﹣6|表示x与﹣10和x与6的距离之和,则当﹣10≤x≤6时,|x+10|+|x﹣6|的值最小,最小值是16故答案为:16;③设C点表示的数是x,由题意得:x﹣(﹣10)=3(6﹣x)解得:x=2故答案为:2;④运动t秒钟后,甲球表示的数是:﹣10+5t(0≤t≤)或6﹣5t(t>);乙球表示的数是:6﹣2t(0≤t≤4)或2t﹣10(t>4)∴d=16﹣7t(0≤t≤),或3t(<t≤4),或7t﹣16 (t>4).∴甲、乙两小球之间的距离d为:16﹣7t(0≤t≤),或3t(<t≤4),或7t﹣16 (t>4).5.解:(1)补全图形如图,∵AB=12cm,BC=AB∴BC=6cm点D是BC中点,点E是AB中点∴BD=3cm,BE=6cm∴DE=6+3=9cm;(2)设动点P、Q的运动时间为t s由题意:MP=1×t=t;BQ=3×t=3t∴BQ=3MP又∵MQ=3AP∴BQ+MQ=3MP+3AP∴BM=3AM∴=;(3)∵点A在数轴上对应的数为﹣3,点B在点A右侧,且AB=12 cm ∴点B在数轴上对应的数为+9,即m=9∵点F在数轴上对应的数是x∴FA=|x﹣(﹣3)|=|x+3|FB=|x﹣9|∴|x+3|﹣|x﹣m|=FA﹣FB①F在点A的左侧时,如图|x+3|﹣|x﹣m|=﹣12;②当点F在点A、B之间时,含点A、B两点﹣12≤|x+3|﹣|x﹣m|≤12;③当点F在点B的右侧时|x+3|﹣|x﹣m|=+12综上所述:|x+3|﹣|x﹣m|的最大值为12,最小值为﹣12.6.解:(1)乙到达A处时所用的时间是(30+15)÷6=7.5(秒)此时甲向左移动了3×7.5=22.5单位,所以甲所在位置对应的数是﹣30+(+22.5)=﹣7.5;(2)因为电子蚂蚁甲,乙分别向右,左移动,所以移动t秒后,甲,乙所在位置对应的数分别是﹣30+(+3t)=3t﹣30,15+(﹣6t)=15﹣6t,(3)由(2)知,运行t秒后,甲,乙所在位置对应的数分别是3t﹣30,15﹣6t,当t>10时,3t﹣30>0,15﹣6t<0,所以,运行t(t>10)秒后,甲,乙间的距离是|3t﹣30|+|15﹣6t|=(3t﹣30)﹣(15﹣6t)=(9t﹣45)个单位.7.解:(1)由题意可知,B点表示:3+7=10,A、B间距离为10﹣3=7;故答案为10,7;(2)由题意可知,A点表示:2﹣9+5=﹣2,A、B间距离为2﹣(﹣2)=4;故答案为﹣2,4;(3)由题意可知,B点表示:﹣4+168﹣2=162,A、B间距离为162﹣(﹣4)=166;故答案为162,166;(4)由题意可知,B点表示:m+n﹣p,A、B间距离为|m+n﹣p﹣m|=|n﹣p|;故答案为m+n﹣p,|n﹣p|.8.解:(1)由数轴可得:若AP=BP,则x=1;故答案为:1;(2)∵AP+BP=8∴若点P在点A左侧,则﹣1﹣x+3﹣x=8∴x=﹣3若点P在点A右侧,则x+1+x﹣3=8∴x=5∴x的值为﹣3或5.(3)BP=5+3t﹣(3+2t)=t+2AP=t+6+3t=4t+6∴4BP﹣AP=4(t+2)﹣(4t+6)=2∴4BP﹣AP的值不会随着t的变化而变化.9.解:(1)折叠纸面,使表示的点1与﹣1表示的点重合,则﹣2表示的点与 2表示的点重合;故答案为:2(2)由表示﹣1的点与表示3的点重合,可确定对称点是表示1的点,则表示5的点与对称点距离为4,则重合点应该是左侧与对称点距离为4的点,即﹣3;由题意可得,A、B两点距离对称点的距离为9÷2=4.5,∵对称点是表示1的点,∴A、B两点表示的数分别是﹣3.5,5.5.故答案为:﹣3;﹣3.5,5.5(3)当A向左移动时,有a﹣4=﹣a,a=2当A向右移动时,有a+4=﹣a,a=﹣2综上所诉,a=2或﹣2.故答案为:2或﹣2.10.解:(1)情况二:若a≥0,b<0 时,A、B两点之间的距离:AB=a+|b|=a﹣b;情况三:若a<0,b<0 时,A、B两点之间的距离:AB=|b|﹣|a|=a﹣b;(2)∵点C对应的数c,点C到A、B两点的距离相等,∴a﹣c=c﹣b,∴2c=a+b,即c=(a+b);(3)①当0<n<1时,点D的个数为2,此时a﹣d=n(d﹣b),d﹣a+n(d﹣b).②当n=1时,点D的个数为1,此时点D到A,B两点距离相等,d=.③当n>1时,点D的个数为2,此时a﹣d=n(d﹣b),a﹣d=n(b﹣d).。
人教版初一数学数轴5
[填空题]废石场的潜在危害主要来自以下两方面:其一是由于废石场()所引发的废石场变形、滑坡及废石场泥石流;其二是废石场所造成的(),其污染形式有粉尘、毒气和酸雨。 [单选]吸入性损伤的治疗下列哪项最关键()A.住层流病房B.应用广谱抗生素C.严格消毒隔离制度D.湿化气道E.高营养支持 [单选,A2型题,A1/A2型题]结核性胸膜炎胸腔内是否用药的原则是()A.最好每个患者都注射结核药物B.一般情况下,抽胸水后没有必要胸腔内注入抗结核药物C.最好注射糖皮质激素D.可以注射胸膜粘连剂E.绝对不能胸腔内用药,以免产生胸膜反应 [单选]工作人员人员临时进出营业室,须严格遵守联动互锁门()的规定,严防外人乘机进入营业室。A.登记管理B.一启一关C.请示报告D.自己开关门 [单选,A2型题,A1/A2型题]原核细胞型微生物的结构特点是()A.无核膜核仁B.有核膜核仁C.有完整细胞器D.有染色体E.以上都不是 [单选,A2型题,A1/A2型题]以下不是长骨的是()A.腓骨B.肋骨C.跖骨D.掌骨E.指骨 [单选]下列指标中,属于建设项目动态财务评价指标的有()。A.利息备付率B.财务内部收益率C.资产负债率D.偿债备付率 [填空题]阴道加特纳菌是引起非淋菌性____的主要病原菌之一。 [单选,A2型题,A1/A2型题]心跳复苏后,最容易出现的并发症()。A.肺水肿B.脑缺氧性损伤C.肝小叶中心性坏死D.心肌缺氧性损伤E.肾小管坏死 [单选]关于稿件来源的说法,错误的是()。A.引进稿件是指通过著作权贸易或者出版交流而获得的稿件B.组织稿件是出版单位获得稿件的主要途径C.引进稿件一般都正式出版过,不需再进行审稿和编辑加工D.自投稿意味着作者主动将该作品的出版权授予出版单位 [单选]气调养护,在进行气体置换时,应将塑料帐内气体真空度抽到多少为止()。A.100mm汞柱B.150mm汞柱C.300mm汞柱D.80mm汞柱E.200mm汞柱 [单选]对于有抗冻、抗渗或其他特殊要求的小于或等于C25混凝土用砂,其泥块含量不应大于()。A.1.0%B.2.0%C.3.0% [问答题,简答题]圣斗士星矢的作者是谁? [名词解释]测量仪表(配料系统中) [单选,A2型题,A1/A2型题]肱骨外科颈骨折的部位是()A.肱骨大、小结节交界处B.肱骨大、小结节移行为肱骨干的交界处C.肱骨头周围的环形沟D.肱骨头与肱骨干的交界处E.肱骨上端干骺端处 [单选]交接班时间为下班时间前()分钟到达岗位。A.15B.20C.30D.10 [问答题,简答题]我国现行国库的职责有哪些? [单选,A1型题]暑湿感冒,暑热偏盛,热盛烦渴者,治疗方剂宜首选()。A.新加香薷饮B.黄连香薷饮C.藿朴夏苓饮D.三物香薷饮E.藿香正气散 [单选]齿状突顶端超过腭枕线多少,可诊断为颅底凹陷症()A.2mmB.2.5mmC.3mmD.4mmE.5mm [单选,A2型题,A1/A2型题]下列描述的微生物特征中,哪项不是微生物的共同特征()A.个体微小B.结构简单C.繁殖迅速D.分布广泛E.专性寄生 [单选]TXB2减少见于()A.血栓前状态B.糖尿病C.心肌梗死D.脑血栓形成E.服用阿司匹林类药物 [多选]属于开车前塔器外部检查主要内容正确的有()。A、液面计是否安装好B、浮阀安装质量C、仪表是否安装好D、安全阀是否打好铅封 [多选]网关的作用是()。A.从第一个网络读取所接收的信息B.向第二个网络发送信息C.翻译信息D.确定优先权 [多选,案例分析题]上海市嘉定区某乡办化工厂生产"油溶黑"染料,主要原料为硝基苯、苯胺。××××年8月17日下午1时,工人张某在常规操作加入苯胺时,由于管道陈旧,导致管道爆裂,苯胺沾染衣服和皮肤,经简单清洗换衣后继续工作,下班后感到头晕、恶心、呼吸困难,继而出现口唇、 [单选]关于焦虑症状,正确的叙述是()A.惊恐发作是面临现实危险时的恐惧反应B.广泛性焦虑是长期处于不利环境所致的情绪状态C.焦虑症状多数情况属于正常的心理反应D.焦虑症状具有"自由浮动"特征E.只有无任何诱因所导致的焦虑才是病理性焦虑 [单选]Apgar评分判断新生儿临床恶化的顺序().A.皮肤颜色-呼吸-反射-肌张力-心率B.皮肤颜色-反射-肌张力-呼吸-心率C.皮肤颜色-肌张力-反射-呼吸-心率D.皮肤颜色-呼吸-肌张力-反射-心率E.心率-皮肤颜色-肌张力-反射-呼吸 [单选,A2型题,A1/A2型题]小儿急性肠套叠是婴儿时期最常见的急腹症。有关其临床特点,下列不正确的是()A.以1岁以下婴儿,尤其是5~9个月婴儿最常见B.大多数小儿急性肠套叠属于原发性C.小儿肠套叠最多见的类型是回盲型和回结型D.小儿肠套叠的诊断中最重要的临床表现是果酱色黏液血 [单选,A2型题,A1/A2型题]据《素问·四气调神大论》,“闭藏”描述的是哪一季节的物候规律()A.春B.夏C.秋D.冬E.长夏 [单选,A2型题,A1/A2型题]冷凝集综合征患者的抗体类型为()A.IgMB.IgGC.IgAD.结合补体E.补体 [单选]城乡规划是()。A.一定时期内城市和乡村建设、发展和管理的依据B.包括城市规划和乡村规划C.城市或乡村在一定时期内的发展计划D.城乡空间布局各项建设的综合部署和具体安排E.以上都是 [填空题]高层建筑结构的水平向承重体系有(),(),(),()。 [单选,B1型题]小儿前囟闭合过早见于哪种疾病()A.佝偻病B.小头畸形C.中枢感染D.脱水E.甲状腺功能低下 [判断题]金属塑性一般受金属晶粒影响,晶粒大,塑性差。()A.正确B.错误 [填空题]往复式压缩机的传动部分是把电动机的()运动转化为活塞的()运动。 [单选]满灌疗法也被称()A.塑造法B.示范法C.厌恶疗法D.生物反馈法E.暴露疗法 [填空题]FTP(FileTransferProtocol)就是(),是最基本的网络服务 [单选,A1型题]慢性支气管炎的诊断标准是()A.咳嗽、咳痰或伴喘息,每年发病持续2个月,连续2年以上B.咳嗽、咳痰或伴喘息,每年发病持续2个月,连续3年以上C.咳嗽、咳痰或伴喘息,每年发病持续3个月,连续1年以上并排除其他心肺疾病D.咳嗽、咳痰或伴喘息,每年发病持续1个月,连续 [单选]施工单位应当于()出具工程质量保修书。A.竣工验收合格时B.竣工验收备案时C.提交竣工验收报告时D.提交竣工结算文件时 [单选]航路、航线地带和民用机场区域设置:()。A.高空管制区、中低空管制区、机场塔台管制区B.航路管制区、终端(进近)管制区、机场塔台管制区C.高空管制区、中低空管制区、终端(进近)管制区、机场塔台管制区 [单选]锅炉上必须安装两个彼此独立的水位计,以保证正确地指示锅炉水位的高低。水位计与汽包之间的汽、水连接管上不能安装阀门,更不得装设球形阀。如装有阀门,在运行时应将阀门(),并予以铅封。A.全开B.全闭C.半开D.半闭
人教版初一数学数轴5
人教版初一数学数轴5.docx
二手泵车:https:///[单选,A1型题]影响乳腺癌预后的最主要因素是()A.手术切除范围B.是否绝经C.患者年龄D.癌肿本身生物学特性E.肿块大小[单选]复治涂阴肺结核的治疗方案可写为()A.2HRZES/4~6HRB.4HRZES/4~6HREC.2HZES/4~6HRED.2HZES/4~6HRSE.2HRZES/4~6HRE[单选]某男,咳痰黄稠,身热微恶风寒,鼻流浊涕,口干咽痛,最宜诊断为()A.风热表证B.风热犯肺C.肺热炽盛D.痰热蕴肺E.燥邪犯肺[单选,A2型题,A1/A2型题]白血病的血象特点,不正确的是()A.红细胞减少B.血红蛋白降低C.网织红细胞升高D.白细胞增高E.血小板降低[填空题]受拉热轧光圆钢筋(HPB235)的末端应倒做()弯钩,其弯曲直径d不得小于钢筋直径的(),钩端应留有不小于钢筋直径3倍的直线段。
[单选]营业人员打开联动互锁门进入营业室前,应()。
A.整理好工作服B.搞好大厅外的卫生C.与大厅外的客户招呼D.注意身边是否有人员尾随[名词解释]吕德斯带[单选]根据刑事法律制度的规定,下列各项中,属于拘役法定量刑期的是()。
A.15天以下B.1个月以上6个月以下C.3个月以上2年以下D.6个月以上15年以下[单选]储层定向分布及内部各种属性都在极不均匀地变化,这种变化称为储层的()性。
A、均质B、物性C、特性D、非均质[单选]强迫症包括强迫观念和()。
A.怪异观念B.强迫行为C.强迫洗手D.强迫恐惧[单选,A2型题,A1/A2型题]下列可使血糖浓度下降的激素是()A.肾上腺激素B.胰升糖素C.生长素D.胰岛素E.甲状腺素[单选,A1型题]《母婴保健法》规定的孕产期保健服务不包括()A.胎儿保健B.孕妇、产妇保健C.母婴保健指导D.胎儿性别诊断E.新生儿保健[单选]关于降钙素对骨骼的叙述是正确的A.灭活骨细胞膜的腺苷酸环化酶B.促进由骨骼游离钙离子C.促进由骨骼游离磷离子D.阻滞由骨骼游离钙离子E.阻滞由骨骼游离镁离子[多选]以下eSpaceU1910说法正确的是:()A.eSpaceU1910支持100个以下内部用户的业务需求B.eSpaceU1930支持100个以上、300个以下内部用户的业务需求C.eSpaceU1930支持300个以上、1000个以下内部用户的业务需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。