2010年广东中考数学试题及答案
【真题集详解版】2010年广东省中考数学试卷及答案
2010年广东省中考数学试卷一、填空题(共6小题,满分23分)1、(2010•广东)﹣2的绝对值是.考点:绝对值。
分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣2|=2.故填2.点评:规律总结:一个正数的绝对值是它本身;一个负数的绝对值是是它的相反数;0的绝对值是0.2、(2010•广东)据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8 000 000人次.试用科学记数法表示8 000 000= .考点:科学记数法—表示较大的数。
专题:应用题。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:用科学记数法表示8 000 000=8×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2010•定西)分式方程的解x= .考点:解分式方程。
专题:计算题。
分析:本题的最简公分母是x+1,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.解答:解:方程两边都乘x+1,得2x=x+1,解得x=1.检验:当x=1时,x+1≠0.∴x=1是原方程的解.点评:(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.4、(2010•广东)如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC= .考点:解直角三角形。
分析:根据题中所给的条件,在直角三角形中解题.根据角的正弦值与三角形边的关系,可求出AC.解答:解:∵在Rt△ABC中,cosB=,∴sinB=,tanB==.∵在Rt△ABD中AD=4,∴AB=.在Rt△ABC中,∵tanB=,∴AC=×=5.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.5、(2010•广东)某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两年内,商品房每平方米平均价格的年增长率都为x,试列出关于x的方程:.考点:由实际问题抽象出一元二次方程。
2010年广东省中考数学试卷解析
2010年广东省中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1.(4分)﹣3的相反数是()A.3 B.C.﹣3 D.﹣考点:难易度M111 相反数容易题分析:根据相反数的概念解答即可.即:∵互为相反数相加等于0,∴﹣3的相反数是3.故选:A.解答: A点评:此题主要考查了相反数的意义,属于中考的一个高频考点,要注意一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)下列运算正确的是()A.2a+3b=5ab B.2(2a﹣b)=4a﹣b C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b2考点:容易题:M11K 整式运算容易题分析:A、利用合并同类项的法则即可判定∵2a,3b不是同类项,∴2a+3b≠5ab,故选项错误;B、利用去括号的法则可得2(2a﹣b)=4a﹣2b,故选项错误;C、利用平方差公式可得(a+b)(a﹣b)=a2﹣b2,正确;D、利用完全平方公式可得(a+b)2=a2+b2+2ab,故选项错误.故选C.解答: C点评:此题较容易,属于送分题,主要考查了整式的运算法则,其中对于平方差公式和完全平方公式的公式结构一定要熟练.3.(4分)如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B.100°C.110°D.120°考点:M31B 平行线的判定及性质M31A 相交线(对顶角、邻补角、同位角、同旁内角、内错角、).难易度:容易题.分析:此题解法不唯一,可以先求出∠1的邻补角,再根据两直线平行,同位角相等即可求出.亦可以先求出∠1的对顶角,再根据两直线平行,同旁内角相等即可求出,具体解法如下:解:如图,∵∠1=70°,∴∠2=∠1=70°,∵CD∥BE,∴∠B=180°﹣∠1=180°﹣70°=110°.故选:C.解答: C点评:本题解法不唯一,主要考查平行线的判定及性质,属于中考高频考点,需要熟练掌握.4.(4分)某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为()A.6,6 B.7,6 C.7,8 D.6,8考点:难易度:M214 中位数、众数容易题分析:首先把所给数据按从小到大的顺序重新排序,然后利用中位数和众数的定义就可以求出结果.具体如下:把已知数据按从小到大的顺序排序后为5元,6元,6元,7元,8元,9元,10元,∴中位数为7∵6这个数据出现次数最多,∴众数为6.故选B.解答: B点评:本题结合众数与中位数考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为中位数.如果是偶数个则找中间两位数的平均数.众数只要找次数最多的即可.5.(4分)如图为主视图方向的几何体,它的俯视图是()A .B .C .D .考点: 难易度 M414 视图与投影 容易题分析: 找到从上面看所得到的图形即可.从上面看可得到三个左右相邻的长方形,故选D 解答: D .点评:本题考查了三视图的知识,属于中考常考知识,注意俯视图是从物体的上面看得到的视图是解题的关键.6.(4分)如图,把等腰直角△ABC 沿BD 折叠,使点A 落在边BC 上的点E 处.下面结论错误的是( )A .AB=BEB .AD=DC C .AD=DED .AD=EC 考点: 难易度: M411 图形的折叠、镶嵌 容易题 分析: 根据折叠性质,有AB=BE ,AD=DE ,∠A=∠DEC=90°.∴A 、C 正确; 又∠C=45°,∴△CDE 是等腰直角三角形,EC=DE ,CD >DE . ∴D 正确,B 错误. 故选B . 解答:B 点评: 本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应边、角相等.7.(4分)已知方程x 2﹣5x+4=0的两根分别为⊙O 1与⊙O 2的半径,且O 1O 2=3,那么两圆的位置关系是( )A .相交B .外切C .内切D .相离 考点: 难易度: M34C 圆与圆的位置关系 M127 解一元二次方程 容易题. 分析: 解答此题,先要求一元二次方程的两根,然后根据圆与圆的位置关系判断条件,确定位置关系.具体解法如下:解:解方程x2﹣5x+4=0得x1=1,x2=4,∵O1O2=3,x2﹣x1=3,∴O1O2=x2﹣x1∴⊙O1与⊙O2内切.故选C.解答: C点评:此题综合考查一元二次方程的解法及两圆的位置关系的判断方法.属于中考常考题,注意:外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).8.(4分)已知一次函数y=kx﹣1的图象与反比例函数的图象的一个交点坐标为(2,1),那么另一个交点的坐标是()A.(﹣2,1)B.(﹣1,﹣2) C.(2,﹣1)D.(﹣1,2)考点:M154 反比例函数的应用M144 一次函数的应用难易度:较难题分析:把交点坐标代入一次函数可求得一次函数的解析式,让一次函数解析式与反比例函数解析式组成方程组即可求得另一交点的坐标.具体解法如下:解:∵(2,1)在一次函数解析式上,∴1=2k﹣1,解得k=1,y=x﹣1,与反比例函数联立得:;解得x=2,y=1;或x=﹣1,y=﹣2.故选:B.解答: B点评:本题考查了反比例函数与一次函数交点的问题,解法不唯一,点在函数图象上,那么点适合函数图象,注意也可根据反比例函数上的点的横纵坐标的积为2可很快得到答案.二、填空题(共5小题,每小题4分,满分20分)9.(4分)据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8 000 000人次.试用科学记数法表示8 000 000=.考点:M11C 科学记数法.难易度:容易题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.则此题用科学记数法表示为:8 000 000=8×106解答:8×106点评:此题考查科学记数法的表示方法.属于中考热点,注意科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(4分)分式方程的解x=.考点:M12B 解可化为一元一次方程的分式方程.难易度:容易题.分析:本题的最简公分母是x+1,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.具体解法如下:解:方程两边都乘x+1,得2x=x+1,解得x=1.检验:当x=1时,x+1≠0.∴x=1是原方程的解.解答: 1点评:本题不难,主要考查了解可化为一元一次方程的分式方程,解此类题型的一般步骤如下:(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.11.(4分)如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC=.考点:难易度:M32E 解直角三角形容易题分析:对于此题,在直角三角形中,根据角的正弦值与三角形边的关系,可求出AC.具体解法如下:解:∵在Rt△ABC中,cosB=,∴sinB=,tanB==.∵在Rt△ABD中AD=4,∴AB=.在Rt△ABC中,∵tanB=,∴AC=×=5.解答: 5点评:本题考查了解直角三角形,属于中考常考知识点,注意边角之间的函tanB=,是解决此题的根本所在.数关系tanB=、12.(4分)某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两年内,商品房每平方米平均价格的年增长率都为x,试列出关于x的方程:.考点:M12A 一元二次方程的应用M127 解一元二次方程.难易度:中等题分析:由于设2007年后的两年内,商品房每平方米平均价格的年增长率都为x,那么2008年商品房每平方米平均价格为4000(1+x),2009年商品房每平方米平均价格为4000(1+x)(1+x),再根据2009年商品房每平方米平均价格为5760元即可列出方程.具体解法如下:解:设2007年后的两年内,商品房每平方米平均价格的年增长率都为x,依题意得4000(1+x)(1+x)=5760,即4000(1+x)2=5760.故填空答案:4000(1+x)2=5760.解答:4000(1+x)2=5760点评:此类题为中考热点题型,主要考查了增长率的问题,注意:一般公式为原来的量(1±x)2=现在的量,x为增长或减少百分率.增加用+,减少用﹣.13.(4分)如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为.考点:M335 正方形的性质与判定M339 四边形的面积M612 规律型题.难易度:较难题.分析:本题需先根据已知条件得出延长n次时面积的公式,再根据求正方形A4B4C4D4正好是要求的第5次的面积,把它代入即可求出答案.具体解法如下:解:最初边长为1,面积1,延长一次为,面积5,再延长为51=5,面积52=25,下一次延长为5,面积53=125,以此类推,当N=4时,正方形A4B4C4D4的面积为:54=625.故答案为:625.解答:625点评:本题属于规律型题,主要考查了正方形的性质与判定,属于中考必考题型,在解题时要根据已知条件找出规律,从而得出正方形的面积.三、解答题(共11小题,满分98分)14.(7分)计算:.考点:难易度: M119 实数的混合运算M32D 特殊角三角函数的值M11E 二次根式的化简容易题.分析:对于本题,在计算时,需要针对每个式子分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:=2﹣2﹣1+1 (4)=0 (6)点评:本题考查实数的实数的综合运算能力,涉及零指数幂、负指数幂、二次根式化简、特殊角的锐角三角函数值等考点,是各地中考题中常见的计算题型.解题时注意各个式子的计算方式,确保正确无误。
2010年广东省茂名市中考数学试卷
2010年广东省茂名市中考数学试卷一、选择题(共10小题,每小题3分,满分30分) 1.(3分)(2010•茂名)如图所示的几何体的主视图是( ).CD .3.(3分)(2010•茂名)如图所示,梯子的各条横档互相平行,若∠1=70°,则∠2的度数是( )5.(3分)(2010•茂名)如图所示,吴伯伯家一块等边三角形的空地ABC ,已知点E ,F 分别是边AB ,AC 的中点,量得EF=5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需要篱笆的长是( )6.(3分)(2010•茂名)若代数式有意义,则x 的取值范围是( )7.(3分)(2010•茂名)已知∠A是锐角,sinA=,则5cosA=()D8.(3分)(2010•茂名)如图,是一个圆锥形冰激凌,已知它的母线长是13cm,高是12cm,则这个圆锥形冰激凌的底面面积是()9.(3分)(2010•茂名)用棋子摆出下列一组“口”字,按照这种方法摆,则摆第n个“口”字需用旗子()10.(3分)(2010•茂名)如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()D二、填空题(共5小题,每小题3分,满分15分)11.(3分)(2010•茂名)一组数据:1,2,3,5,5,6的中位数是_________.12.(3分)(2010•茂名)随机掷一枚均匀的硬币两次,两次都是反面朝上的概率是_________.13.(3分)(2010•茂名)如图,已知AD为⊙O的切线,⊙O的直径是AB=2,弦AC=1,则∠CAD=_________度.14.(3分)(2010•茂名)如图,已知△OAB与△OA′B′是相似比为1:2的位似图形,点O为位似中心,若△OAB内一点P(x,y)与△OA′B′内一点P′是一对对应点,则P′的坐标是_________.15.(3分)(2010•茂名)小慧同学不但会学习,而且也很会安排时间干好家务活,煲饭、炒菜、擦窗等样样都行,小慧同学完成以上各项家务活,至少需要_________分钟.三、解答题(共10小题,满分75分)16.(7分)(2010•茂名)计算:|﹣4|﹣(﹣2)2+()0﹣2﹣117.(7分)(2010•茂名)如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.(1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示)18.(7分)(2010•茂名)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个,从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2,0.3.(1)试求出纸箱中蓝色球的个数;(2)假设向纸箱中再放进红色球x个,这时从纸箱中任意取出一个球是红色球的概率为0.5,试求x的值.19.(7分)(2010•茂名)我国杂交水稻之父﹣袁隆平院士,全身心投入杂交水稻的研究,一次,他用A,B,C,D 四种型号的水稻种了共1000粒进行发芽实验,从中选出发芽率高的种子进行推广,通过实验得知,C种型号的种子发芽率为96%,根据实验数据绘制了如下尚不完整的统计表和统计图.(1)请你补充完整统计表;(2)通过计算分析,你认为应选哪一种型号的种子进行推广.20.(7分)(2010•茂名)已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.21.(8分)(2010•茂名)张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,图中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.(1)汽车行驶_________小时后加油,中途加油_________升;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.22.(8分)(2010•茂名)如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=a,过点D作DE 垂直OA的延长线交于点E.(1)证明:△OAB∽△EDA;(2)当a为何值时,△OAB与△EDA全等?请说明理由,并求出此时点C到OE的距离.23.(8分)(2010•茂名)我市某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147000元,已知甲、乙、丙三种型号的电视机的出厂价格分别为1000元/台,1500元/台,2000元/台.(1)求该商场至少购买丙种电视机多少台?(2)若要求甲种电视机的台数不超过乙种电视的台数,问有哪些购买方案?24.(8分)(2010•茂名)如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上,点B坐标为(6,6),抛物线y=ax2+bx+c经过点A,B两点,且3a﹣b=﹣1.(1)求a,b,c的值;(2)如果动点E,F同时分别从点A,点B出发,分别沿A→B,B→C运动,速度都是每秒1个单位长度,当点E 到达终点B时,点E,F随之停止运动,设运动时间为t秒,△EBF的面积为S.①试求出S与t之间的函数关系式,并求出S的最大值;②当S取得最大值时,在抛物线上是否存在点R,使得以E,B,R,F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.25.(8分)(2010•茂名)已知⊙O1的半径为R,周长为C.(1)在⊙O1内任意作三条弦,其长分别是l1l2l3,求证:l1+l2+l3<C;(2)如图,在直角坐标系xOy中,设⊙O1的圆心为O1(R,R).①当直线l:y=x+b(b>0)与⊙O1相切时,求b的值;②当反比例函数y=(k>0)的图象与⊙O1有两个交点时,求k的取值范围.2010年广东省茂名市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2010•茂名)如图所示的几何体的主视图是().C D.3.(3分)(2010•茂名)如图所示,梯子的各条横档互相平行,若∠1=70°,则∠2的度数是()5.(3分)(2010•茂名)如图所示,吴伯伯家一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需要篱笆的长是()BC=56.(3分)(2010•茂名)若代数式有意义,则x的取值范围是()7.(3分)(2010•茂名)已知∠A是锐角,sinA=,则5cosA=()D=知,如果设cosA==,8.(3分)(2010•茂名)如图,是一个圆锥形冰激凌,已知它的母线长是13cm,高是12cm,则这个圆锥形冰激凌的底面面积是()9.(3分)(2010•茂名)用棋子摆出下列一组“口”字,按照这种方法摆,则摆第n个“口”字需用旗子()10.(3分)(2010•茂名)如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()D,C=C=(,OC=﹣﹣1=2二、填空题(共5小题,每小题3分,满分15分)11.(3分)(2010•茂名)一组数据:1,2,3,5,5,6的中位数是4.12.(3分)(2010•茂名)随机掷一枚均匀的硬币两次,两次都是反面朝上的概率是.13.(3分)(2010•茂名)如图,已知AD为⊙O的切线,⊙O的直径是AB=2,弦AC=1,则∠CAD=30度.14.(3分)(2010•茂名)如图,已知△OAB与△OA′B′是相似比为1:2的位似图形,点O为位似中心,若△OAB内一点P(x,y)与△OA′B′内一点P′是一对对应点,则P′的坐标是(﹣2x,﹣2y).15.(3分)(2010•茂名)小慧同学不但会学习,而且也很会安排时间干好家务活,煲饭、炒菜、擦窗等样样都行,小慧同学完成以上各项家务活,至少需要33分钟.三、解答题(共10小题,满分75分)16.(7分)(2010•茂名)计算:|﹣4|﹣(﹣2)2+()0﹣2﹣1﹣17.(7分)(2010•茂名)如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.(1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示)18.(7分)(2010•茂名)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个,从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2,0.3.(1)试求出纸箱中蓝色球的个数;(2)假设向纸箱中再放进红色球x个,这时从纸箱中任意取出一个球是红色球的概率为0.5,试求x的值.19.(7分)(2010•茂名)我国杂交水稻之父﹣袁隆平院士,全身心投入杂交水稻的研究,一次,他用A,B,C,D 四种型号的水稻种了共1000粒进行发芽实验,从中选出发芽率高的种子进行推广,通过实验得知,C种型号的种子发芽率为96%,根据实验数据绘制了如下尚不完整的统计表和统计图.(1)请你补充完整统计表;(2)通过计算分析,你认为应选哪一种型号的种子进行推广.×种型号的种子发芽率:种型号的种子发芽率:20.(7分)(2010•茂名)已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.=﹣解方程组解得:21.(8分)(2010•茂名)张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,图中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.(1)汽车行驶3小时后加油,中途加油31升;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.22.(8分)(2010•茂名)如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=a,过点D作DE 垂直OA的延长线交于点E.(1)证明:△OAB∽△EDA;(2)当a为何值时,△OAB与△EDA全等?请说明理由,并求出此时点C到OE的距离.AB==523.(8分)(2010•茂名)我市某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147000元,已知甲、乙、丙三种型号的电视机的出厂价格分别为1000元/台,1500元/台,2000元/台.(1)求该商场至少购买丙种电视机多少台?(2)若要求甲种电视机的台数不超过乙种电视的台数,问有哪些购买方案?24.(8分)(2010•茂名)如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上,点B坐标为(6,6),抛物线y=ax2+bx+c经过点A,B两点,且3a﹣b=﹣1.(1)求a,b,c的值;(2)如果动点E,F同时分别从点A,点B出发,分别沿A→B,B→C运动,速度都是每秒1个单位长度,当点E 到达终点B时,点E,F随之停止运动,设运动时间为t秒,△EBF的面积为S.①试求出S与t之间的函数关系式,并求出S的最大值;②当S取得最大值时,在抛物线上是否存在点R,使得以E,B,R,F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.得方程组EB(﹣﹣(+有最大值.25.(8分)(2010•茂名)已知⊙O1的半径为R,周长为C.(1)在⊙O1内任意作三条弦,其长分别是l1l2l3,求证:l1+l2+l3<C;(2)如图,在直角坐标系xOy中,设⊙O1的圆心为O1(R,R).①当直线l:y=x+b(b>0)与⊙O1相切时,求b的值;②当反比例函数y=(k>0)的图象与⊙O1有两个交点时,求k的取值范围.=得:b=y=的图象与⊙OA==R+RR+R,(+R﹣,解得:(﹣y=(﹣<(。
2010年广东佛山中考数学试卷及答案(WORD版)[1]
2010年佛山市高中阶段招生考试数 学 试 卷一、选择题:1、如图,数轴上的点A 表示的数为a ,则a1等于( ) A 、21- B 、21C 、-2D 、22、300角的补角是( )A 、300 角B 、600角C 、900 角D 、1500角3、如图,把其中的一个小正方形看成是基本图形,这个图形中不包含的变换的是( ) A 、对称 B 、平移 C 、相似(相似比不为1) D 、旋转4、“数x 不小于2”是指( )A 、300 角B 、600角C 、900 角D 、1500角5、如图,直线与两个同心圆分别相交于图示的各点,则正确的是( ) A 、MP 与RN 的关系无法确定 B 、MP=RN C 、MP<RN D 、MP>RN6、掷一枚均匀的,前5次朝上的点数恰好是1~5,在第6次朝上的点数(A 、一定是6B 、一定不是6C 、是6 的可能性大小大于是1~5的任意一个数的可能性D 、是6 的可能性大小等于是1~5的任意一个数的可能性 7、尺规作图是指( )A 、用直尺规范作图B 、用刻度尺和圆规作图C 、用没有刻度尺直尺和圆规作图D 、直尺和圆规是作图工具8、如图,是一个几何体的三视图(含有数据)则这个几何体的侧面展开图的面积等于( ) A 、π2 B 、π C 、4 D 、29、多项式21xy xy -+的次数及最高次数的系数是( ) A 、2,1 B 、2,-1 C 、3,-1 D 、5,-110、4个数据8,10,x,10的平均数和中位数相等,则x 等于( ) A 、8 B 、10 C 、12 D 、8或12 二、填空题:11、分解因式:22xy y x -=12、在算式3[]21--中的[ ]里,填入运算符号 使得等式的值最小(在符号÷⨯-+,,,中选择一个) 13、不等式组⎪⎩⎪⎨⎧-≥>+32132x x xx 的解集是A 0 1主视图 左视图俯视图14、根据反比例函数xy 2-=的图象(请先画图象)回答问题,当函数值为正时,x 取值范围是 15、如图,AB 是伸缩性遮阳棚,CD 是窗户,要想夏至正午时的阳光刚好不能射入窗户,则AB 的长度是(假如夏至正午时的阳光与地平面的夹角是600) 三、解答题 16、化简:31922---a a a17、已知,在平行四边形ABCD 中,EFGH 分别是ABBCCDDA 上的点,且AE=CG ,BF=DH ,求证:AEH ∆≌CGF ∆18、儿子今年13岁,父亲今年40岁,是否有那一年父亲的年龄是儿子年龄的4倍?19、一般认为,如果一个人的肚脐以上的高度与肚脐以下的高度符合黄金分割,则这个人好看。
2010年广东省中考数学试题含答案解析(Word版)
2010年广东省初中毕业生学业考试数 学一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-3的相反数是( ) A .3B .31 C .-3D .13-2.下列运算正确的是( ) A .ab b a 532=+B .()b a b a -=-422C .()()22b a b a b a -=-+D . ()222b a b a +=+3.如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为( ) A.70° B.100° C.110° D.120°4.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元、6元、6元、7元、8元、 9元,则这组数据的中位数与众数分别为( )A .6,6B .7,6C . 7,8D .6,8 5. 左下图为主视方向的几何体,它的俯视图是( )二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚19时,参观者已超过 8000000人次,试用科学记数法表示8000000= .7.分式方程112=+x x的解x = . 8.如图,已知R t △ABC 中,斜边BC 上的高AD =4,cosB =54,则 AC = .9.某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两 年内,商品房每平方米平均价格的年增长率都为x ,试列出关于x 的方程: . 10.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到新正方形A 2B 2C 2D 2(如图(2));以此下去…, 则正方形A 4B 4C 4D 4的面积为 .三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:()001260cos 2214π-+-⎪⎭⎫ ⎝⎛+-.12. 先化简,再求值()x x x x x 224422+÷+++ ,其中 x = 2 .13. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,R t △ABC 的顶点均在格点上,在建立平面直角坐标系以后,点A 的坐标为(-6,1),点B 的坐标为(-3,1),点C 的坐标为 (-3,3).(1)将R t △ABC 沿X 轴正方向平移5个单位得到R t △A 1B 1C 1,试在图上画出R t △A 1B 1C 1的图形,并写出点A 1的坐标。
2010年广东湛江中考数学试卷及答案(WORD版)
湛江市2010年初中毕业生学业考试数 学 试 题一、选择题(本大题共15小题,每题3分,共45分)1.-2的绝对值是( )A .-2B .2C .- 1 2D . 122.地震无情人有请,情系玉树献爱心.截止4月23日,湛江市慈善会已收到社会各界捐款和物资共计超过4770000元,数据4770000用科学记数法表示为( )A .4.77×104B .4.77×105C .4.77×106D .4.77×107 3.下列二次根式是最简二次根式的是( ) A .21B .4C .3D .8 4.下列几何体的主视图、左视图和俯视图都是..矩形的是( )5.函数1-=x y 的自变量x 的取值范围是( )A .x ≥1B .x ≥-1C .x ≤-1D .x ≤1 6.下列四组线段中,可以构成直角三角形的是( )A .1,2,3B .2,3,4C .3,4,5D .4,5,6 7.已知∠1=35º,则∠1的余角的度数是( )A .55ºB .65ºC .135ºD .145º 8.下列交通标志中既是中心对称图形,又是轴对称图形的是( )9.下列计算正确的是( )A .x 3+x 3=x 6B .x 6÷x 2=x 3C .3a +5b =8abD .(ab 2)3=a 3b 610.已知两圆的半径分别为3cm 和4cm ,圆心距为8cm ,则这两圆的位置关系是( )A .内切B .相交C .外离D .外切 11.如图,已知圆心角∠BOC =100º,则圆周角∠BAC 的大小是( )A .50ºB .100ºC .130ºD .200º 12.下列成语中描述的事件必然发生的是( )A .水中捞月B .瓮中捉鳖C .守株待兔D .拔苗助长13.小亮的父亲想购买同一种大小一样、形状相同的地板砖铺设地面,小亮根据所学知识告诉父亲,为了能够做到无缝隙、不重叠地铺设,购买的地板砖形状不能是( )A .正三角形B .正方形C .正五边形D .正六边形 14型号34 35 36 37 38 39 40 41 数量(双)3510158321)A .平均数B .众数C .中位数D .方差15.观察算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…….通过观察,用你所发现的规律确定的个位数字是( ) A .3 B .9 C .7 D .1二、填空题(本大题共5小题,每题4分,共20分)16.计算:(2010-π)0-1=.17.点P(1,2)关于x轴的对称点P1的坐标为.18.一个高为15cm的圆柱笔筒,底面圆的半径为5cm,那么它的侧面积为cm2(结果保留π).19.学校组织一次有关世博的知识竞赛共有20道题,每一题答对得5分,答错或不答都倒扣1分.小明最终得76分,那么他答对题.20.因为cos30º=32,cos210º=-32,所以cos210º=cos(180º+30º)=-cos30º=-32;因为cos45º=22,cos225º=-22,所以cos225º=cos(180º+45º)=-cos45º=-22.猜想:一般地,当α为锐角时,有cos(180º+α)=-cosα.由此可知cos240º=.三、解答题(本大题共8小题,共85分)21.(8分)已知P=a2+b2a2-b2,Q=2aba2-b2.用“+”或“-”连接P、Q,总共有三种方式:P+Q、P-Q、Q-P,请选择其中一种进行化简求值,其中a=3,b=2.22.(8分)如图,小明在公园放风筝,拿风筝线的手B离地面高度AB为1.5m,风筝飞到C处时的线长BC 为30m,这时测得∠CBD=60º.求此时风筝离地面的高度(精确到0.1m,3≈1.73).23.(10分)端午节吃粽子时中华民族的传统习惯.五月初五早晨,小丽的妈妈用不透明装着一些粽子(粽子除内部馅料不同外,其他一切相同),其中香肠馅粽子两个,还有一些绿豆馅粽子,现小丽从中任意拿出一个是香肠馅粽子的概率为1 2.(1)求袋子中绿豆馅粽子的个数;(2)小丽第一次任意拿出一个粽子(不放回),第二次再拿出一个粽子,请你用树形图或列表法,求小丽两次拿到的都是..绿豆馅粽子的概率.C BA O P DA B C D E F 24.(10分)如图,在□ABCD 中,点E 、F 是对角线BD 上的两点,且BE =DF .求证:(1)△ABE ≌△CDF ;(2)AE ∥CF .25.(12分)2010年湛江市某校为了了解400名学生体育加试成绩,从中抽取了部分学生的成绩(满分为40分,而且成绩均为整数),绘制了频数分布表与频数分布直方图(如图),请结合图表信息解答下列问题:(1)补全频数分布表与频数分布直方图;(2)如果成绩在31分以上(含31分)的同学属于优良请你估计全校约有多少人达到优良水平; (3)加试结束后,校长说:“2008年,初一测试时,优良人数只有90人,经过两年的努力,才有今天的成绩…….”假设每年优良人数增长速度一样,请你求出每年的平均增长率(结果精确到1%).26.(12分)如图,在△ABC 中,以AB 为直径的⊙O 交BC 于点P ,PD ⊥AC 于点D ,且PD 与⊙O 相切.(1)求证:AB =AC ;(2)若BC =6,AB =4,求CD 的值.27.(12分)病人按规定的剂量服用某药物,测得服药后2小时,每毫升血液中含药量达到最大值为4毫克.已知服药后,2小时前每毫升血液中含药量y (毫克)与时间x (小时)(如图所示).根据以上信息解答下列问题: (1)求当0≤x ≤2时,y 与x 的函数关系式; (2)求当x >2时,y 与x 的函数关系式; (3)如果每毫升血液中含药量不低于2毫克时治疗有效, 则那么服药一次,治疗疾病的有效时间是多长?28.(13分)如图,在平面直角坐标系中,点B 的坐标为(-3,-4),线段OB 绕原点逆时针旋转后与x 轴的正半轴重合,点B 的对应点为点A .(1)直接写出点A 的坐标,并求出经过A 、O 、B 三点的抛物线的解析式;(2)在抛物线的对称轴上是否存在点C ,使BC +OC 的值最小?若存在,求出点C 的坐标;若不存在,请说明理由;(3)点P 是抛物线上的一个动点,且在x 轴的上方,当点P 运动到什么位置时,△PAB 的面积最大?求出此时点P 的坐标和△PAB 的最大面积.。
2010年广东省广州市中考数学试题及答案1
4C PD O B AE 22.(12分)目前世界上最高的电视塔是广州新电视塔.如图8所示,新电视塔高AB 为610米,远处有一栋大楼,某人在楼底C 处测得塔顶B 的仰角为45°,在楼顶D 处测得塔顶B 的仰角为39°.(1)求大楼与电视塔之间的距离AC ;(2)求大楼的高度CD (精确到1米)【答案】(1)由题意,AC =AB =610(米);(2)DE =AC =610(米),在Rt △BDE 中,tan ∠BDE =BE DE ,故BE =DE tan39°.因为CD =AE ,所以CD =AB -DE ·tan39°=610-610×tan39°≈116(米)答:大楼的高度CD 约为116米. 23.(12分)已知反比例函数y =8m x-(m 为常数)的图象经过点A (-1,6). (1)求m 的值; (2)如图9,过点A 作直线AC与函数y =8m x -的图象交于点B ,与x 轴交于点C ,且AB =2BC ,求点C 的坐标.【答案】解:(1)∵ 图像过点A (-1,6),861m -=-. ∴ m -8-1=6 (2)分别过点A 、B 作x 轴的垂线,垂足分别为点D 、E ,由题意得,AD =6,OD =1,易知,AD ∥BE ,∴△CBE ∽△CAD ∵AB =2BC ,∴13CB CA =∴136BE =,∴BE =2.即点B 的纵坐标为当y =2时,x =-3,易知:直线AB 为y =2x +8,∴C (-4,0)24.(14分)如图,⊙O 的半径为1,点P 是⊙O 上一点,弦AB 垂直平分线段OP ,点D 是APB上任一点(与端点A 、B 不重合),DE ⊥AB 于点E ,以点D 为圆心、DE 长为半径作⊙D ,分别过点A 、B 作⊙D 的切线,两条切线相交于点C .(1)求弦AB 的长;(2)判断∠ACB 是否为定值,若是,求出∠ACB 的大小;否则,请说明理由; (3)记△ABC 的面积为S ,若2S DE =ABC 的周长. 【分析】(1)连接OA ,OP 与AB 的交点为F ,则△OAF 为直角三角形,且OA =1,OF =12,借助勾股定理可求得AF 的长; (2)要判断∠ACB 是否为定值,只需判定∠CAB +∠ABC 的值是否是定值,由于⊙D 是△ABC 的内切圆,所以AD 和BD分别为∠CAB 和∠ABC 的角平分线,因此只要∠DAE +∠DBA是定值,那么CAB +∠ABC 就是定值,而∠DAE +∠DBA 等于弧AB 所对的圆周角,这个值等于∠AOB 值的一半;(3)由题可知ABD ACD BCD S S S S ∆∆∆=++=12DE (AB +AC +BC ),又因为2S DE =45°39°D CAE BF CP D O B A E H G所以21()2DE AB AC BCDE++=,所以AB+AC+BC=,由于DH=DG=DE,所以在Rt△CDH中,CH,同理可得CG,又由于AG=AE,BE=BH,所以AB+AC+BC=CG+CH+AG+AB+BH=+,可得=DE+DE=3,代入AB+AC+BC=,即可求得周长为【答案】解:(1)连接OA,取OP与AB的交点为F,则有OA=1.∵弦AB垂直平分线段OP,∴OF=12OP=12,AF=BF.在Rt△OAF中,∵AF,∴AB=2AF(2)∠ACB是定值.理由:由(1)易知,∠AOB=120°,因为点D为△ABC的内心,所以,连结AD、BD,则∠CAB=2∠DAE,∠CBA=2∠DBA,因为∠DAE+∠DBA=12∠AOB=60°,所以∠CAB+∠CBA=120°,所以∠ACB=60°;(3)记△ABC的周长为l,取AC,BC与⊙D的切点分别为G,H,连接DG,DC,DH,则有DG=DH=DE,DG⊥AC,DH⊥BC.∴ABD ACD BCDS S S S∆∆∆=++=12AB•DE+12BC•DH+12AC•DG=12(AB+BC+AC) •DE=12l•DE.∵2SDE=212l DEDE=l=∵CG,CH是⊙D的切线,∴∠GCD=12∠ACB=30°,∴在Rt△CGD中,CG=tan30DG=,∴CH=CG.又由切线长定理可知AG=AE,BH=BE,∴l=AB+BC+AC==,解得DE=3,∴△ABC的周长为25.(14分)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-12x+b交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面6【分析】(1)要表示出△ODE 的面积,要分两种情况讨论,①如果点E 在OA 边上,只需求出这个三角形的底边OE 长(E 点横坐标)和高(D 点纵坐标),代入三角形面积公式即可;②如果点E 在AB 边上,这时△ODE 的面积可用长方形OABC 的面积减去△OCD 、△OAE 、△BDE 的面积;(2)重叠部分是一个平行四边形,由于这个平行四边形上下边上的高不变,因此决定重叠部分面积是否变化的因素就是看这个平行四边形落在OA 边上的线段长度是否变化.【答案】(1)由题意得B (3,1).若直线经过点A (3,0)时,则b =32 若直线经过点B (3,1)时,则b =52若直线经过点C (0,1)时,则b =1 ①若直线与折线OAB 的交点在OA 上时,即1<b ≤32,如图25-a , 此时E (2b ,0) ∴S =12OE ·CO =12×2b ×1=b ②若直线与折线OAB 的交点在BA 上时,即32<b <52,如图2 此时E (3,32b -),D (2b -2,1) ∴S =S 矩-(S △OCD +S △OAE +S △DBE ) = 3-[12(2b -1)×1+12×(5-2b )·(52b -)+12×3(32b -)] =252b b - ∴2312535222b b S b b b ⎧<≤⎪⎪=⎨⎪-<<⎪⎩ (2)如图3,设O 1A 1与CB 相交于点M ,OA 与C 1B 1相交于点N OA 1B 1C 1与矩形OABC 的重叠部分的面积即为四边形DNEM 的面积。
2010年广东省广州市中考数学试卷(含答案)
2010年山东省威海市初中升学考试数 学请仔细阅读以下说明:1.本试卷共10页,分第 I 卷和第 II 卷两部分.第 I 卷(1-2页)为选择题,第 II 卷(3-10页)为非选择题.试卷满分120分.考试时间120分钟.2.请清点试卷,并将答题卡和第Ⅱ卷密封线内的考生信息填写完整.3.第Ⅰ卷的答案用2B 铅笔涂在答题卡上.第Ⅱ卷的答案用蓝色或黑色钢笔、圆珠笔填写在试卷上.不要求保留精确度的题目,计算结果保留准确值.希望你能愉快地度过这120分钟,祝你成功!第 I 卷 (选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.据统计,截止到5月31日上海世博会累计入园人数803.27万人.803.27万这个数字(保留两位有效数字)用科学记数法表示为A .8.0×102B. 8.03×102C. 8.0×106D. 8.03×1062.如图,在△ABC 中,∠C =90°.若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是A .40°B .60°C .70°D .80°3.计算()201020092211-⨯⎪⎭⎫ ⎝⎛-的结果是A .-2B .-1C .2D .3 4.下列运算正确的是A .xy y x 532=+B .a a a =-23C .b b a a -=--)(D .2)2(12-+=+-a a a a )( 5.一个圆锥的底面半径为6㎝,圆锥侧面展开图扇形的圆心角为240°,则圆锥的母线长为 A .9㎝ B .12㎝ C .15㎝ D .18㎝6.化简a a b a b -÷⎪⎭⎫⎝⎛-2的结果是A .1--aB .1+-aC .1+-abD .b ab +-7.右图是由几个相同的小正方体搭成的几何体的三视图, 则搭成这个几何体的小正方体的个数是A .5B .6C .7D .88.已知1=-b a ,则a 2-b 2-2b 的值为A .4B .3C .1D .09.如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点, 连接BD .若BD 平分∠ABC ,则下列结论错误的是A .BC =2BEB .∠A =∠EDAC .BC =2AD D .BD ⊥AC10.如图,在梯形ABCD 中,AB ∥CD ,AD =BC ,对角线AC ⊥BD ,垂足为O .若CD =3,AB =5,则AC 的长为A .24B .4C .33D .5211.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是AECA BDOCADBE左视图俯视图A .21B .31C .41D .5112.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2010个正方形的面积为A .2009235⎪⎭⎫⎝⎛B .2010495⎪⎭⎫ ⎝⎛ C .2008495⎪⎭⎫ ⎝⎛D .4018235⎪⎭⎫ ⎝⎛第 II 卷 (非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分. 只要求填出最后结果)13.在函数x y -=3中,自变量x 的取值范围是 . 14.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上.若∠AOD =30°,则∠BCD 的度数是 .15.如图①,在第一个天平上,砝码A 的质量等于砝码B 加上砝码C 的质量;如图②,在第二个天平上,砝码A 加上砝码B 的质量等于3个砝码C 的质量.请你判断:1个砝码A16.如图,点A ,B ,C 的坐标分别为(2,4),(5,2),(3,-1).若以点A ,B ,C ,D 为顶点的四边形既是轴对称图形,又是中心对称图形,则点D 的坐标为 .17.小明家为响应节能减排号召,计划利用两年时间,将家庭每年人均碳排放量由目前的3125kg降至2000㎏﹙全球人均目标碳排放量﹚,则小明家未来两年人均碳排放量平均每年须降低的百分率是 . 18.从边长为a 的大正方形纸板中间挖去一个边长为b 的小正方形后,将其截成四个相同的等腰梯形﹙如图①﹚,可以拼成一个平行四边形﹙如图②﹚.现有一平行四边形纸片ABCD ﹙如图③﹚,已知∠A =45°,AB =6,AD =4.若将该纸片按图②方式截成四个相同的等腰梯形,然后按图①方式拼图,则得到的大正方形的面积为 .(第15题图)图 ①图 ②(第16题图)图 ②图 ①a A图 ③BC﹙第14题图﹚B三、解答题(本大题共7小题,共66分)19.(7分)解不等式组:20.(7分)某市从今年1月1日起调整居民用天燃气价格,每立方米天燃气价格上涨25%.小颖家去年12月份的燃气费是96元.今年小颖家将天燃气热水器换成了太阳能热水器,5月份的用气量比去年12月份少10m³,5月份的燃气费是90元.求该市今年居民用气的价格.21.(9分)某校为了解学生“体育大课间”的锻炼效果,中考体育测试结束后,随机从学校720名考生中抽取部分学生的体育测试成绩绘制了条形统计图.试根据统计图提供的信息,回答下列问题:,众数是 ;女生体育成绩的中位数是 .(3)若将不低于27分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约是多少?22.(10分) 如图,一次函数b kx y +=的图象与反比例函数x my =的图象交于点A ﹙-2,-5﹚,C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点D .(1) 求反比例函数x m y =和一次函数b kx y +=的表达式; (2) 连接OA ,OC .求△AOC 的面积.⎪⎩⎪⎨⎧--125x x ≤()342-x .23.(10分)如图,在□ABCD 中,∠DAB =60°,AB =15㎝.已知⊙O 的半径等于3㎝,AB ,AD 分别与⊙O 相切于点E ,F .⊙O 在□ABCD 内沿AB 方向滚动,与BC 边相切时运动停止.试求⊙O 滚过的路程.24.(11分)如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC ,△A 1B 1C 1.﹙1﹚将△ABC ,△A 1B 1C 1如图②摆放,使点A 1与B 重合,点B 1在AC 边的延长线上,连接CC 1交BB 1于点E .求证:∠B 1C 1C =∠B 1BC .﹙2﹚若将△ABC ,△A 1B 1C 1如图③摆放,使点B 1与B 重合,点A 1在AC 边的延长线上,连接CC 1交A 1B 于点F .试判断∠A 1C 1C 与∠A 1BC 是否相等,并说明理由.﹙3﹚写出问题﹙2﹚中与△A 1FC 相似的三角形 .25.(12分) (1)探究新知:①如图,已知AD ∥BC ,AD =BC ,点M ,N 是直线CD 上任意两点. 求证:△ABM 与△ABN 的面积相等.A ABDCMN图 ①AB (A 1) CB 1C 1图 ②EA 1C 1CAB (B 1)图 ③FA 1B 1C 1 AB C (图①)②如图,已知AD ∥BE ,AD =BE ,AB ∥CD ∥EF ,点M 是直线CD 上任一点,点G 是直线EF 上任一点.试判断△ABM 与△ABG 的面积是否相等,并说明理由.(2)结论应用:如图③,抛物线c bx ax y ++=2的顶点为C (1,4),交x 轴于点A (3,0),交y 轴于点D .试探究在抛物线c bx ax y ++=2上是否存在除点C 以外的点E ,使得△ADE 与△ACD 的面积相等? 若存在,请求出此时点E 的坐标,若不存在,请说明理由.﹙友情提示:解答本问题过程中,可以直接使用“探究新知”中的结论.﹚参考解答及评分意见评卷说明:1.第一大题(选择题)和第二大题(填空题)的每小题,只有满分和零分两个评分档,不给中间分.2.第三大题(解答题)每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.部分试题有多种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多备用图图 ③ C图 ②ABDMF EG不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.二、填空题(本大题共6小题,每小题3分,共18分)13.x ≤3; 14.105°; 15.2; 16.﹙0,1﹚; 17.20%; 18.2611+. 三、解答题(本大题共7小题, 共66分) 19.(本小题满分7分)解:⎪⎩⎪⎨⎧-≤--+-②(①>).342125,3231x x xx解不等式①,得x <5. ………………………………………………………………3分 解不等式②,得x ≥-2. ………………………………………………………………6分 因此,原不等式组的解集为-2≤x <5. ………………………………………………7分 20.(本小题满分7分)解:设该市去年居民用气的价格为x 元/ m³,则今年的价格为(1+25%)x 元/ m³.……1分根据题意,得 10%)251(9096=+-x x . …………………………………………………3分 解这个方程,得x =2.4. …………………………………………………………………6分经检验,x =2.4是所列方程的根. 2.4×(1+25%)=3 (元).所以,该市今年居民用气的价格为3元/ m³. ………………………………………7分 21.(本小题满分9分)﹙1﹚80; …………………………………………………………………………………3分 ﹙2﹚26.4, 27, 27; ………………………………………………﹙每空1分﹚6分﹙3﹚396804472080231227720=⨯=+++⨯﹙人﹚. ……………………………………9分 22.(本小题满分10分)解:(1)∵ 反比例函数x m y =的图象经过点A ﹙-2,-5﹚, ∴ m =(-2)×( -5)=10.∴ 反比例函数的表达式为x y 10=. ……………………………………………………2分 ∵ 点C ﹙5,n ﹚在反比例函数的图象上,∴ 2510==n .∴ C 的坐标为﹙5,2﹚. ……………………………………………………………3分 ∵ 一次函数的图象经过点A ,C ,将这两个点的坐标代入b kx y +=,得 ⎩⎨⎧+=+-=-.5225b k b k , 解得⎩⎨⎧-==.31b k , …………………………………………………5分 ∴ 所求一次函数的表达式为y =x -3. …………………………………………………6分 (2) ∵ 一次函数y =x -3的图像交y 轴于点B ,∴B 点坐标为﹙0,-3﹚. …………………………………………………………7分 ∴ OB =3.∵ A 点的横坐标为-2,C 点的横坐标为5,∴ S △AOC = S △AOB + S △BOC =()22152215212-21=+⋅⋅=⋅⋅+⋅⋅OB OB OB . …………10分 23.(本小题满分10分) 解:连接OE ,OA .……………………1分∵ AB ,AD 分别与⊙O 相切于点E ,F .∴ OE ⊥AB ,OE =3㎝.………………2分 ∵ ∠DAB =60°,∴ ∠OAE =30°. ……………………3分在Rt △AOE 中,AE =3tan tan 30OE OAE ︒==∠ …………………………………5分∵ AD ∥BC ,∠DAB =60°,∴ ∠ABC =120°. ………………………………………………………………6分A设当运动停止时,⊙O 与BC ,AB 分别相切于点M ,N ,连接ON ,OB . ………7分 同理可得 BN =3㎝. ……………………………………………………………9分 ∴ )3415(33315-=--=--=BN AE AB EN ㎝.∴ ⊙O 滚过的路程为()3415-㎝. ……………………………………………10分 24.(本小题满分11分)(1)证明:由题意,知△ABC ≌△A 1B 1C 1,∴ AB= A 1B 1,BC 1=AC ,∠2=∠7,∠A =∠1.∴ ∠3=∠A =∠1. ………………………………………………………………1分 ∴ BC 1∥AC .∴ 四边形ABC 1C 是平行四边形. ………………2分∴ AB ∥CC 1. ∴ ∠4=∠7=∠2. …………………………………3分 ∵ ∠5=∠6, ∴ ∠B 1C 1C =∠B 1BC .……………………………4分﹙2﹚∠A 1C 1C =∠A 1BC . …………………………5分理由如下:由题意,知△ABC ≌△A 1B 1C 1,∴ AB= A 1B 1,BC 1=BC ,∠1=∠8,∠A =∠2. ∴ ∠3=∠A ,∠4=∠7. ………………………6分 ∵ ∠1+∠FBC =∠8+∠FBC , ∴ ∠C 1BC =∠A 1BA . …………………………7分 ∵ ∠4=21(180°-∠C 1BC ),∠A=21(180°-∠A 1BA ).∴ ∠4=∠A . …………………………………8分 ∴ ∠4=∠2. ∵ ∠5=∠6,∴ ∠A 1C 1C =∠A 1BC .……………………………………………………………………9分 ﹙3﹚△C 1FB ,…………10分; △A 1C 1B ,△ACB .…………11分﹙写对一个不得分﹚ 25.(本小题满分12分)﹙1﹚①证明:分别过点M ,N 作 ME ⊥AB ,NF ⊥AB ,垂足分别为点E ,F . ∵ AD ∥BC ,AD =BC , ∴ 四边形ABCD 为平行四边形.∴ AB ∥CD .∴ ME = NF .∵S △ABM =ME AB ⋅21,S △ABN =NFAB ⋅21, ∴ S △ABM = S △ABN . ……………………………………………………………………1分 ②相等.理由如下:分别过点D ,E 作DH ⊥AB ,EK ⊥AB ,垂足分别为H ,K . 则∠DHA =∠EKB =90°. ∵ AD ∥BE ,∴ ∠DAH =∠EBK . ∵ AD =BE , ∴ △DAH ≌△EBK . ∴ DH =EK . ……………………………2分 ∵ CD ∥AB ∥EF ,∴S △ABM =DH AB ⋅21,S △ABG =EKAB ⋅21, ∴ S △ABM = S △ABG . …………………………………………………………………3分﹙2﹚答:存在. …………………………………………………………………………4分解:因为抛物线的顶点坐标是C (1,4),所以,可设抛物线的表达式为4)1(2+-=x a y .又因为抛物线经过点A (3,0),将其坐标代入上式,得()41302+-=a ,解得1-=a .∴ 该抛物线的表达式为4)1(2+--=x y ,即322++-=x x y . ………………………5分 ∴ D 点坐标为(0,3).设直线AD 的表达式为3+=kx y ,代入点A 的坐标,得330+=k ,解得1-=k . ∴ 直线AD 的表达式为3+-=x y .过C 点作CG ⊥x 轴,垂足为G ,交AD 于点H .则H 点的纵坐标为231=+-.∴ CH =CG -HG =4-2=2. …………………………………………………………6分A B (A 1) C B 1 C 1 图 ② E 14 32 56 7A 1 C 1C A B (B 1)图 ③F3 645 1 2 7 8 A BD C M N 图 ①E F HC图 ②A B D M F E G K设点E 的横坐标为m ,则点E 的纵坐标为322++-m m .过E 点作EF ⊥x 轴,垂足为F ,交AD 于点P ,则点P 的纵坐标为m -3,EF ∥CG . 由﹙1﹚可知:若EP =CH ,则△ADE 与△ADC 的面积相等.①若E 点在直线AD 的上方﹙如图③-1﹚,则PF =m -3,EF =322++-m m .∴ EP =EF -PF =)3(322m m m --++-=m m 32+-.∴ 232=+-m m .解得21=m ,12=m . ……………………………7分当2=m 时,PF =3-2=1,EF=1+2=3. ∴ E 点坐标为(2,3).同理 当m =1时,E 点坐标为(1,4),与C 点重合. ………………………………8分②若E 点在直线AD 的下方﹙如图③-2,③-3﹚,则m m m m m PE 3)32()3(22-=++---=. ……………………………………………9分∴232=-m m .解得21733+=m ,21734-=m . ………………………………10分当2173+=m 时,E 点的纵坐标为2171221733+-=-+-;当2173-=m 时,E 点的纵坐标为2171221733+-=---.∴ 在抛物线上存在除点C 以外的点E ,使得△ADE 与△ACD 的面积相等,E 点的坐标为E 1(2,3);)21712173(2+-+,E ;)21712173(3+--,E . ………………12分 ﹙其他解法可酌情处理﹚。
2010广东佛山中考数学试题及答案
2010年佛山市高中阶段学校招生考试数学说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分120分,考试时间100分钟。
注意事项:1.试卷的选择题和非选择题都在答题卡上作答,不能答在试卷上。
2.要作图(含辅助线)或画表,先用铅笔进行画线、绘图,再用黑色字迹的钢笔或签字笔描黑。
3.其余注意事项,见答题卡。
第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,答案选项填涂在答题卡上)。
1.如图,数轴上的点A表示的数为a,则1a等于A.12B.12C.-2D.22.30°角的补角是A.30°角B. 60°角C. 90°角D. 150°角3.如图,把其中的一个小正方形看作基本图形,这个图形中不含的变换是A.对称 B.平移C.相似(相似比不为1) C.旋转4.“数x不小于2”。
是指A. x≤2B.x≥2C.x<2D.x>2 5.如图,直线与两个同心圆分别交于图示的各点,则正确的是A.MP与RN的大小关系不定 B.MP=RNC.MP<RND.MP>RN6.掷一枚均匀的骰子,前5次朝上的点数恰好是1 ~5,则第6次朝上的点数A.一定是6 B.一定不是6C.是6的可能性大于是1 ~5中的任意一个数的可能性D.是6的可能性等于是1 ~5中的任意一个数的可能性7.尺规作图是指A.用直尺规范作图B.用刻度尺和尺规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具8.如图,是一个几何体的三视图(含有数据),则这个几何体的侧面展开图的面积等于A.2πB.πC.4 D.29.多项式1+xy-xy²的次数及最高次项的系数分别是A.2,1 B.2,-1 C.3,-1 D.5,-110.四个数据8,10,x,10的平均数与中位数相等,则x等于A.8 B.10 C.12 D.8和12第Ⅱ卷(非选择题共90分)二、填空题(本大题共5小题,每小题3分,共15分,把答案填在答题卡中)。
广东省清远市2010年中考数学试卷(含答案)
2010年清远市初中毕业生学业考试数学试题一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在相应题号的答题卡上。
1.计算:0-12=( )A.12B. -2C.-12D. 2【答案】 C2.地球上的海洋面积约为361000000千米2,将361000000这个数用科学计数法表示为( )A. 3.61³108 B 3.61³107 C. 361³107 D.0.361 ³109 【答案】 A3.如图1,在数轴上点A 表示( )A. -2B. 2C. ±2D. 0【答案】 A4.下列各图中,∠1=∠2的是( )【答案】D 5.函数y =41x 中,自变量x 的取值范围是( )A.x ≠0B.x ≥-1C. x ≠-1D. x ≤-1 【答案】C6.(2010广东清远,6,3分)下列各点中,在反比例函数y =4x的图象上的是( ) A .(-1,4)B .(1,-4)C .(1,4)D .(2,3)【答案】C7.(2010广东清远,7,3分)三视图都是一样的几何体是( )A .球、圆柱B .球、正方体C .正方体、圆柱D .正方体、圆锥【答案】B8.(2010广东清远,8,3分)若⊙O 1的半径为2cm ,⊙O 2的半径为3cm ,圆心距O 1O 2的长是5cm ,则⊙O 1与⊙O 2的位置关系为( )A .外离B .外切C .相交D .内切【答案】B9.(2010广东清远,9,3分)等腰三角形的底角为40°,则这个等腰三角形的顶角为( ) A.40°B.80°C.100°D.100°或40°【答案】C10.(2010广东清远,10,3分)如图2,在 ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为( )A.4cm B.5cm C.6cm D.8cm【答案】A二、填空题(每小题3分,共18分)11.25的平方根是 .【答案】±512. 计算:a8÷a2= .【答案】a613. 从围棋盒里抓一打把棋子,所抓出棋子的个数是偶数的概率是 .【答案】0.514.如图3,DE是△ABC的中位线,若△ADE的周长是18,则△ABC的周长是.解:DE是△ABC的中位线,所以BC=2DE,AB=2AD,AC=2AE,由于△ADE的周长是18,即AD+DE+EA=18,所以AB+BC+CA=2(AD+DE+EA)=36.15.方程2x(x-3)=0的解是.解:2x(x-3)=0,所以x(x-3)=0,所以x=0,或者x-3=0,即x1=0,x2=3。
2010年广东省中考数学试题及答案
机密☆启用前2010年广东省初中毕业生学业考试数 学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-3的相反数是( )A .3B .31C .-3D .13- 2.下列运算正确的是( )A .ab b a 532=+B .()b a b a -=-422C .()()22b a b a b a -=-+D . ()222b a b a +=+ 3.如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为( )A.70°B.100°C.110°D.120°4.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元、6元、6元、7元、8元、 9元,则这组数据的中位数与众数分别为( )A .6,6B .7,6C . 7,8D .6,85. 左下图为主视方向的几何体,它的俯视图是( )二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚19时,参观者已超过 8000000人次,试用科学记数法表示8000000= .7.分式方程112=+x x 的解x = . 8.如图,已知R t △ABC 中,斜边BC 上的高AD =4,cosB =54,则 AC = .9.某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两 年内,商品房每平方米平均价格的年增长率都为x ,试列出关于x 的方程: .10.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到新正方形A 2B 2C 2D 2(如图(2));以此下去…,则正方形A 4B 4C 4D 4的面积为 .三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:()001260cos 2214π-+-⎪⎭⎫ ⎝⎛+-. 12. 先化简,再求值 ()x x x x x 224422+÷+++ ,其中 x = 2 .13. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,R t △ABC 的顶点均在格点上,在建立平面直角坐标系以后,点A 的坐标为(-6,1),点B 的坐标为(-3,1),点C 的坐标为 (-3,3).(1)将R t △ABC 沿X 轴正方向平移5个单位得到R t △A 1B 1C 1,试在图上画出R t △A 1B 1C 1的图形,并写出点A 1的坐标。
2010年广东省茂名市中考数学试题及答案(扫描版)
肇庆市2010年初中毕业生学业考试数 学 试 题说明:全卷共4页,考试时间为100分钟,满分120分.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的4个选项中,只有一项是符合题目要求的.) 1.3-的相反数是A.3B. 3-C.31 D. 31- 2.2010年上海世博会首月游客人数超8030000人次,8030000用科学记数法表示是 A.410803⨯ B.5103.80⨯ C.61003.8⨯ D. 71003.8⨯ 3.如图1,已知AB ∥CD ,∠A =50°,∠C =∠E .则∠C 等于A. 20°B. 25°C. 30°D. 40° 4.不等式组 ⎩⎨⎧>>-121x x 的解集是A. 31<<xB. 3>xC. 1>xD. 1<x 5.在Rt △ABC 中,∠C = 90°, AC = 9 , sin ∠B =53,则AB = A.15 B. 12 C. 9 D. 6 6.已知两圆的半径分别为1和4,圆心距为3,则两圆的位置关系是 A. 外离 B. 外切 C. 相交 D. 内切 7.下列四个几何体中,主视图、左视图与俯视图是全等形的几何体是 A. 球 B. 圆柱 C. 三棱柱 D. 圆锥 8. 一个多边形的内角和是外角和的2倍,则这个多边形是A. 四边形B. 五边形C. 六边形D. 八边形9.袋子中装有4个黑球2个白球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到黑球的概率是 A.61 B. 21 C. 31 D. 32 10.菱形的周长为4,一个内角为60︒,则较短的对角线长为A. 2B.3 C. 1 D.21 二、填空题(本大题共5小题,每小题3分,共15分.) 11.计算:=⨯2731▲ . 12.如图2,点A 、B 、C 都在⊙O 上,若∠C =35︒, 则∠AOB 的度数是 ▲ 度.13.某剧团甲乙两个女舞蹈队的平均身高都是 1.65米,甲队身高的方差是S 2甲=1.5, 乙队身高的方差是S 2乙=2.4,那么两队中身高更整齐的是 ▲ 队.(填“甲”或 “乙”)14.75°的圆心角所对的弧长是2.5πcm ,则此弧所在圆的半径是 ▲ cm . 15.观察下列单项式: a ,22a -,34a ,48a -,516a ,…,按此规律第n 个单项式 是 ▲ .(n 是正整数)三、解答题(本大题共10小题,共75分.解答应写出文字说明,证明过程或演算步骤.) 16.(本小题满分6分)计算: 0)8(-+3⋅tan 30°13--17.(本小题满分6分)已知一次函数4-=kx y ,当2=x 时,3-=y . (1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x 轴交点的坐标.18.(本小题满分6分)我市某企业向玉树地震灾区捐助价值26万元的甲、乙两种帐篷共300顶.已知甲种帐篷每顶800元,乙种帐篷每顶1000元,问甲、乙两种帐篷各多少顶?∙OAB C图219.(本小题满分7分)如图3是某中学男田径队队员年龄结构条形统计图,根据图中信息解答下列问题: (1)田径队共有多少人?(2)该队队员年龄的众数和中位数 分别是多少?(3)该队队员的平均年龄是多少?20.(本小题满分7分)先化简,后求值:412)211(22-+-÷-+x x x x ,其中5-=x .21.(本小题满分7分)如图4,四边形ABCD是平行四边形,AC、BD交于点O,∠1 =∠2.(1)求证:四边形ABCD是矩形;(2)若∠BOC =120°,AB = 4cm,求四边形ABCD的面积.22.(本小题满分8分)如图5,已知∠ACB = 90°,AC=BC,B E⊥C E于E,AD⊥C E于D,C E与AB相交于F.(1)求证:△CEB≌△ADC;(2)若AD = 9cm,D E = 6cm,求B E及EF的长.1 2ACOBD﹚﹙图4A BCDFE图523.(本小题满分8分) 如图6是反比例函数xn y 42-=的图象的一支,根据图象回答下列问题: (1)图象的另一支在哪个象限?常数n 的取值范围是什么? (2)若函数图象经过点(3,1),求n 的值;(3)在这个函数图象的某一支上任取点A (a 1,b 1)和 点B (a 2,b 2),如果a 1<a 2,试比较b 1和b 2的大小.24.(本小题满分10分)如图7, AB 是⊙O 的直径,AC 切⊙O 于点A ,且AC=AB ,CO 交⊙O 于点P , CO 的延长线交⊙O 于点F ,BP 的延长线交AC 于点E ,连接AP 、AF . 求证: (1)AF ∥BE ; (2)△ACP ∽△FCA ;·ABOCPE(3)CP=AE .25.(本小题满分10分)已知二次函数12+++=c bx x y 的图象过点P (2,1). (1)求证:42--=b c ; (2)求bc 的最大值;(3)若二次函数的图象与x 轴交于点A (1x ,0)、B (2x ,0),△ABP 的面积是43,求b 的值.参考答案和评分标准一、选择题(本大题共10小题,每小题3分,共30分.)题号 1 2 3 4 5 6 7 8 9 10 答案ACBBADACDC二、填空题(本大题共5小题,每小题3分,共15分.)题号 11 12 13 14 15答案370甲6n n a ⋅--1)2(三、解答题(本大题共10小题,共75分.)16.(本小题满分6分) 解:原式= 313331-⋅+ (3分) = 3111-+ (4分) =35(6分) 17.(本小题满分6分)解:(1)由已知得:423-=-k ,解得 21=k (2分) ∴一次函数的解析式为:421-=x y (3分) (2)将直线421-=x y 向上平移6个单位后得到的直线是:221+=x y (4分) ∵当0=y 时,4-=x ,∴平移后的图象与x 轴交点的坐标是(—4,0) (6分) 18.(本小题满分6分)解:设甲种帐篷x 顶,乙种帐篷y 顶 (1分) 依题意,得⎩⎨⎧=+=+2600001000800300y x y x (3分)解以上方程组,得x =200,y =100 (5分) 答:甲、乙两种帐篷分别是200顶和100顶. (6分) 19.(本小题满分7分)解:(1)由图中信息可知,田径队的人数是:1+2+3+4=10(人) (2分) (2)该田径队队员年龄由高至低排列是 18 18 18 17 17 17 17 16 16 15 ∴该队队员年龄的众数是17 (4分) 中位数是17. (6分) (3)该队队员的平均年龄是:(15+16⨯2+17⨯4+18⨯3)÷10=16.9(岁) (7分)20.(本小题满分7分)解:412)211(22-+-÷-+x x x x =)2)(2()1(2122-+-÷-+-x x x x x (3分) =2)1()2)(2(21--+⋅--x x x x x (4分) =12-+x x (5分) 当5-=x 时,原式=12-+x x =211525=--+-. (7分)21.(本小题满分7分)(1)∵∠1 =∠2,∴BO=CO 即2 BO=2CO (1分) ∵四边形ABCD 是平行四边形∴ AO=CO ,BO=OD (2分) 即AC=2CO ,BD= 2 BO ∴AC= BD (3分)∵四边形ABCD 是平行四边形 ∴四边形ABCD 是矩形 (4分)(2)在△BOC 中,∠BOC =120°, ∴ ∠1 =∠2 =(180°—120°)÷2 = 30° (5分) ∴在Rt △ABC 中,AC=2AB=2⨯4=8(cm),∴BC=344822=-(cm) (6分) ∴四边形ABCD 的面积=)(3164342cm =⨯ (7分)22.(本小题满分8分)证明:(1)∵B E ⊥C E 于E ,AD ⊥C E 于D , ∴∠E=∠ADC=90°(1分)∠BCE=90°— ∠ACD ,∠CAD=90°−∠ACD , ∴∠BCE=∠CAD (3分) 在△BCE 与△CAD 中,∠E=∠ADC ,∠BCE=∠CAD , BC = AC ∴△C E B ≌△AD C (4分) (2)∵△C E B ≌△AD C ∴ B E= D C , C E= AD又AD=9 ∴C E= AD=9,D C= C E — D E= 9—6 = 3,∴B E= DC = 3( cm) (5分) ∵∠E=∠ADF=90°,∠B FE=∠AFD ,∴△B FE ∽△ AFD (6分) ∴AD BE FD EF = 即有 936=-EF EF (7分) 12 ACO BD﹚﹙图4ABCD FE 图5解得:EF=23( cm) (8分)23.(本小题满分8分)解:(1)图象的另一支在第三象限. (2分) 由图象可知,42-n >0,解得:n >2 (4分) (2)将点(3,1)代入x n y 42-=得:3421-=n , 解得:213=n (6分)(3)∵42-n >0,∴在这个函数图象的任一支上,y 随x 减少而增大, ∴当a 1<a 2 时 ,b 1>b 2 (8分)24.(本小题满分10分)(1)∵∠B 、∠F 同对劣弧AP ,∴ ∠B =∠F (1分) ∵BO=PO ,∴∠B =∠B PO (2分) ∴∠F=∠B P F ,∴AF ∥BE (3分) (2)∵AC 切⊙O 于点A ,AB 是⊙O 的直径, ∴ ∠BAC=90°∵ AB 是⊙O 的直径, ∴ ∠B PA=90° (4分) ∴∠EA P =90°—∠BE A ,∠B=90°—∠BE A , ∴∠EA P =∠B=∠F (5分) 又∠C=∠C ,∴△ACP ∽△FCA (6分)(3)∵ ∠C PE= ∠B PO=∠B=∠EA P , ∠C=∠C ∴△P C E ∽△ACP ∴APACPE PC = (7分) ∵∠EA P=∠B ,∠E P A =∠A P B =90° ∴△EA P ∽△A B P ∴APAB PE AE = (8分) 又AC=AB ,∴APACPE AE = (9分) 于是有PEAEPE PC = ∴CP=AE . (10分)25.(本小题满分10分)(1)证明:将点P (2,1)代入12+++=c bx x y 得:12212+++=c b (1分)整理得:42--=b c (2分)· ABOCPE F 图7(2)解:∵42--=b c ∴bc =2)1(2)42(2++-=--b b b (4分) ∵—2<0 ∴当b = —1时,bc 有最大值2; (5分)(3)解:由题意得:43121=⨯AB , ∴AB =︱2x —1x ︱=23,即︱2x —1x ︱2= 49 (6分)亦即494)(21221=-+x x x x (7分)由根与系数关系得:b x x -=+21,32142121--=+--=+=⋅b b c x x (8分) 代入494)(21221=-+x x x x 得:49)32(4)(2=----b b , 整理得:043982=++b b (9分) 解得:213,2321-=-=b b ,经检验均合题意. (10分)[注:以上的解答题若用了不同的解法,可按评分标准中相对应的步骤给分]。
2010年广东省广州市数学中考试题参考答案
2010年广州市中考试题参考答案一、填空题1.【分析】正数和负数可以表示一对相反意义的量,在本题中“增加”和“减小”就是一对相反意义的量,既然增加用正数表示,那么减少就用负数来表示,后面的百分比的值不变.【答案】B【涉及知识点】负数的意义【点评】本题属于基础题,主要考查学生对概念的掌握是否全面,考查知识点单一,有利于提高本题的信度.【推荐指数】★2.【分析】图1是一个直角题型,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.【答案】C【涉及知识点】面动成体【点评】本题属于基础题,主要考查学生是否具有基本的识图能力,以及对点线面体之间关系的理解,考查知识点单一,有利于提高本题的信度.【推荐指数】★3.【分析】去括号时,要按照去括号法则,将括号前的-3与括号内每一项分别相乘,尤其需要注意,-3与-1相乘时,应该是+3而不是减3.【答案】D【涉及知识点】去括号【点评】本题属于基础题,主要考查去括号法则,理论依据是乘法分配律,容易出错的地方有两处,一是-3只与x相乘,忘记乘以-1;二是-3与-1相乘时,忘记变符号.本题直指去括号法则,没有任何其它干扰,掌握了去括号法则就能得分,不掌握就不能得分,信度相当好.【推荐指数】★★4.【分析】由D、E分别是边AB、AC的中点可知,DE是△ABC的中位线,根据中位线定理可知,DE=12BC=2.5.【答案】A【涉及知识点】中位线【点评】本题考查了中位线的性质,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.【推荐指数】★★5.【分析】解不等式①,得:x>-3;解不等式②,得:x≤2,所以不等式组的解集为-3<x<2.【涉及知识点】解不等式组【点评】解不等式组是考查学生的基本计算能力,求不等式组解集的时候,可先分别求出组成不等式组的各个不等式的解集,然后借助数轴或口诀求出所有解集的公共部分.【推荐指数】★★★ 6.【分析】在这四个图片中只有第三幅图片是中心对称图形,因此是中心对称称图形的卡片的概率是41. 【答案】A【涉及知识点】中心对称图形 概率【点评】本题将两个简易的知识点,中心对称图形和概率组合在一起,是一个简单的综合问题,其中涉及的中心对称图形是指这个图形绕着对称中心旋转180°后仍然能和这个图形重合的图形,简易概率求法公式:P (A )=mn,其中0≤P (A )≤1.【推荐指数】★★★★ 7.【分析】由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、2、3,因此这个长方体的体积为4×2×3=24平方单位.【答案】C【涉及知识点】三视图【点评】三视图问题一直是中考考查的高频考点,一般题目难度中等偏下,本题是由两种视图来推测整个正方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.【推荐指数】★★★★ 8.【分析】A 项中a ·b >0可得a 、b 同号,可能同为正,也可能同为负;B 项中a ·b<0可得a 、b 异号,所以错误;C 项中a ·b =0可得a 、b 中必有一个字母的值为0,但不一定同时为零.【答案】D【涉及知识点】乘法法则 命题真假【点评】本题主要考查乘法法则,只有深刻理解乘法法则才能求出正确答案,需要考生具备一定的思维能力.【推荐指数】★★9.a =1=11a --,由于a <1,所以a -1<0,因此11a --=(1-a )-1=-a .【涉及知识点】二次根式的化简【点评】本题主要考查二次根式的化简,难度中等偏难. 【推荐指数】★★★ 10.【分析】m 对应的数字是12,12+10=22,除以26的余数仍然是22,因此对应的字母是w ;a 对应的数字是0,0+10=10,除以26的余数仍然是10,因此对应的字母是k ;t 对应的数字是19,19+10=29,除以26的余数仍然是3,因此对应的字母是d ;…,所以本题译成密文后是wkdrc .【答案】A【涉及知识点】阅读理解【点评】本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.【推荐指数】★★★★ 二、填空题 11.【分析】358000可表示为3.58×100000,100000=105,因此358000=3.58×105. 【答案】3.58×105【涉及知识点】科学记数法 【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成a ×10n的形式(其中1≤a <10,n 为整数,这种计数法称为科学记数法),其方法是(1)确定a ,a 是只有一位整数的数;(2)确定n ;当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).【推荐指数】★★★★★ 12.【分析】由于分式的分母不能为0,x -5在分母上,因此x -5≠0,解得x ≠5. 【答案】5 x【涉及知识点】分式的意义【点评】初中阶段涉及有意义的地方有三处,一是分式的分母不能为0,二是二次根式的被开方数必须是非负数,三是零指数的底数不能为零.【推荐指数】★★★13.【分析】由于两人的平均分一样,因此两人成绩的水平相同;由于2甲S >2乙S ,所以乙的成绩比甲的成绩稳定. 【答案】乙【涉及知识点】数据分析【点评】平均数是用来衡量一组数据的一般水平,而方差则用了反映一组数据的波动情况,方差越大,这组数据的波动就越大.14.【分析】扇形弧长可用公式:180n rl π=求得,由于本题n =90°,r =2,因此这个扇形的弧长为π.【答案】π【涉及知识点】弧长公式【点评】与圆有关的计算一直是中考考查的重要内容,主要考点有:弧长和扇形面积及其应用等.【推荐指数】★★★★ 15.【分析】3ab 2+a 2b =ab (3b +a ). 【答案】ab (3b +a )【涉及知识点】提公因式法因式分解【点评】本题是对基本运算能力的考查,因式分解是整式部分的重要内容,也是分式运算和二次根式运算的基础,因式分解的步骤,一提(提公因式),二套(套公式,主要是平方差公式和完全平方公式),三分组(对于不能直接提公因式和套公式的题目,我们可将多项式先分成几组后后,分组因式分解).【推荐指数】★★★ 16.【分析】由于BD 是△ABC 的角平分线,所以∠ABC =2∠ABD =72°,所以∠ABC=∠C =72°,所以△ABC 是等腰三角形.∠A =180°-2∠ABC =180°-2×72°=36°,故∠A =∠ABD ,所以△ABD 是等腰三角形∠DBC =∠ABD =36°,∠C =72°,可求∠BDC =72°,故∠BDC =∠C ,所以△BDC 是等腰三角形.【答案】3【涉及知识点】等腰三角形的判定【点评】要想说明一个三角形是等腰三角形,只要能找到两个相等的角或两条相等的边即可,本题主要考查的“等角对等边”的应用,本题难度中等,只要细心,很容易拿分.【推荐指数】★★★★ 三、解答题 17.【答案】.112312⎩⎨⎧=-=+②①y x y x①+②,得4x =12,解得:x =3.将x =3代入①,得9-2y =11,解得y =-1.所以方程组的解是⎩⎨⎧-==13y x .【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.18.【分析】由于AD ∥BC ,所以∠A +∠B =180°,要想说明∠A +∠C =180°,只需根据等腰梯形的两底角相等来说明∠B =∠C 即可.【答案】证明:∵梯形ABCD 是等腰梯形,∴∠B =∠C 又∵AD ∥BC ,∴∠A +∠B =180° ∴∠A +∠C =180°【涉及知识点】等腰梯形性质【点评】本题是一个简单的考查等腰梯形性质的解答题,属于基础题. 【推荐指数】★★★ 19.【分析】由于这个方程有两个相等的实数根,因此⊿=240b a -=,可得出a 、b 之间的关系,然后将4)2(222-+-b a ab 化简后,用含b 的代数式表示a ,即可求出这个分式的值.【答案】解:∵)0(012≠=++a bx ax 有两个相等的实数根,∴Δ=240b ac -=,即240b a -=.∵2222222222244444)2(a ab b a a ab b a a ab b a ab =+-=-++-=-+-∵0a ≠,∴4222==a b a ab【涉及知识点】分式化简,一元二次方程根的判别式【点评】本题需要综合运用分式和一元二次方程来解决问题,考查学生综合运用多个知识点解决问题的能力,属于中等难度的试题,具有一定的区分度.20.【分析】(1)由于非常了解频数40,频率为0.2,因此样本容量为:40÷0.2=200,表中的m 是比较了解的频率,可用频数120除以样本容量200;(2)非常了解的频率为0.2,扇形圆心角的度数为0.2×360°=72°;(3)由样本中“比较了解”的频率0.6可以估计总体中“比较了解”的频率也是0.6.【答案】(1)200;0.6;(2)72°;补全图如下:60%比较了解20%非常了解基本了解不太了解2%18%(3)1800×0.6=900【涉及知识点】扇形统计图 样本估计总体【点评】统计图表是中考的必考内容,本题渗透了统计图、样本估计总体的知识,数据的问题在中考试卷中也有越来越综合的趋势.【推荐指数】★★★★★21.【分析】(1)代入对称轴公式2b x b=-和顶点公式(-2bb ,244ac b a -)即可;(3)结合图像可知这两点位于对称轴右边,图像随着x 的增大而减少,因此y 1<y 2.【答案】解:(1)x =1;(1,3)x … -1 0 1 2 3 … y…-1232-1…(3)因为在对称轴x =1右侧,y 随x 的增大而减小,又x 1>x 2>1,所以y 1<y 2.【涉及知识点】抛物线的顶点、对称轴、描点法画图、函数增减性【点评】二次函数是中考考查的必考内容之一,本题是综合考查二次函数的一些基础知识,需要考生熟悉二次函数的相关基本概念即可解题.【推荐指数】★★★★★ 22.【分析】(1)由于∠ACB =45°,∠A =90°,因此△ABC 是等腰直角三角形,所以AC =AB =610;(2)根据矩形的对边相等可知:DE =AC =610米,在Rt △BDE中,运用直角三角形的边角关系即可求出BE的长,用AB的长减去BE的长度即可.【答案】(1)由题意,AC=AB=610(米);(2)DE=AC=610(米),在Rt△BDE中,tan∠BDE=BE DE,故BE=DE tan39°.因为CD=AE,所以CD=AB-DE·tan39°=610-610×tan39°≈116(米)答:大楼的高度CD约为116米.【涉及知识点】解直角三角形【点评】解直角三角形是每年中考的必考知识点之一,主要考查直角三角形的边角关系及其应用,难度一般不会很大,本题是基本概念的综合题,主要考查考生应用知识解决问题的能力,很容易上手,容易出错的地方是近似值的取舍.【推荐指数】★★★★★23.【分析】(1)将A点坐标代入反比例函数解析式即可得到一个关于m的一元一次方程,求出m的值;(2)分别过点A、B作x轴的垂线,垂足分别为点D、E,则△CBE∽△CAD,运用相似三角形知识求出CE的长即可求出点C的横坐标.【答案】解:(1)∵图像过点A(-1,6),861m-=-.∴m-8-1=6(2)分别过点A、B作x轴的垂线,垂足分别为点D、E,由题意得,AD=6,OD=1,易知,AD∥BE,∴△CBE∽△CAD,∴CB BE CA AD=.∵AB=2BC,∴13 CB CA=∴136BE=,∴BE=2.即点B的纵坐标为2当y=2时,x=-3,易知:直线AB为y=2x+8,∴C(-4,0)【涉及知识点】反比例函数【点评】由于今年来各地中考题不断降低难度,中考考查知识点有向低年级平移的趋势,反比例函数出现在解答题中的频数越来约多.【推荐指数】★★★★24.【分析】(1)连接OA,OP与AB的交点为F,则△OAF为直角三角形,且OA=1,OF=12,借助勾股定理可求得AF的长;(2)要判断∠ACB 是否为定值,只需判定∠CAB +∠ABC 的值是否是定值,由于⊙D 是△ABC 的内切圆,所以AD 和BD 分别为∠CAB 和∠ABC 的角平分线,因此只要∠DAE +∠DBA 是定值,那么CAB +∠ABC 就是定值,而∠DAE +∠DBA 等于弧AB 所对的圆周角,这个值等于∠AOB 值的一半; (3)由题可知ABD ACD BCD S S S S ∆∆∆=++=12DE (AB +AC +BC ),又因为243SDE=,所以21()243DE AB AC BC DE ++=,所以AB +AC +BC =83DE ,由于DH=DG =DE ,所以在Rt △CDH 中,CH =3DH =3DE ,同理可得CG =3DE ,又由于AG =AE ,BE =BH ,所以AB +AC +BC =CG +CH +AG +AB +BH =23DE +23,可得83DE =23DE +23,解得:DE =3,代入AB +AC +BC =83DE ,即可求得周长为243.【答案】解:(1)连接OA ,取OP 与AB 的交点为F ,则有OA =1.∵弦AB 垂直平分线段OP ,∴OF =12OP =12,AF =BF . 在Rt △OAF 中,∵AF =22OA OF -=2211()2-=3,∴AB =2AF =3.(2)∠ACB 是定值.理由:由(1)易知,∠AOB =120°, 因为点D 为△ABC 的内心,所以,连结AD 、BD ,则∠CAB =2∠DAE ,∠CBA =2∠DBA , 因为∠DAE +∠DBA =12∠AOB =60°, 所以∠CAB +∠CBA =120°,所以∠ACB =60°;(3)记△ABC 的周长为l ,取AC ,BC 与⊙D 的切点分别为G ,H ,连接DG ,DC ,DH ,则有DG =DH =DE ,DG ⊥AC ,DH ⊥BC . ∴ABD ACD BCD S S S S ∆∆∆=++ =12AB ·DE +12BC ·DH +12AC ·DG =12(AB +BC +AC )·DE =12l ·DE . ∵2S DE =212l DEDE g =l =.∵CG ,CH 是⊙D 的切线,∴∠GCD =12∠ACB =30°, ∴在Rt △CGD 中,CG =tan30DG o, ∴CH =CG.又由切线长定理可知AG =AE ,BH =BE ,∴l =AB +BC +AC ==,解得DE =3, ∴△ABC 的周长为【涉及知识点】垂径定理 勾股定理 内切圆 切线长定理 三角形面积【点评】本题巧妙将垂径定理、勾股定理、内切圆、切线长定理、三角形面积等知识综合在一起,需要考生从前往后按顺序解题,前面问题为后面问题的解决提供思路,是一道难度较大的综合题【推荐指数】★★★★★ 25.【分析】(1)要表示出△ODE 的面积,要分两种情况讨论,①如果点E 在OA 边上,只需求出这个三角形的底边OE 长(E 点横坐标)和高(D 点纵坐标),代入三角形面积公式即可;②如果点E 在AB 边上,这时△ODE 的面积可用长方形OABC 的面积减去△OCD 、△OAE 、△BDE 的面积;(2)重叠部分是一个平行四边形,由于这个平行四边形上下边上的高不变,因此决定重叠部分面积是否变化的因素就是看这个平行四边形落在OA 边上的线段长度是否变化.【答案】(1)由题意得B (3,1).若直线经过点A (3,0)时,则b =32 若直线经过点B (3,1)时,则b =52若直线经过点C(0,1)时,则b=1①若直线与折线OAB的交点在OA上时,即1<b≤32,如图25-a,此时E(2b,0)∴S=12OE·CO=12×2b×1=b②若直线与折线OAB的交点在BA上时,即32<b<52,如图2此时E(3,32b-),D(2b-2,1)∴S=S矩-(S△OCD+S△OAE+S△DBE)=3-[12(2b-1)×1+12×(5-2b)·(52b-)+12×3(32b-)] =252b b-∴2312535222b bSb b b⎧<≤⎪⎪=⎨⎪-<<⎪⎩(2)如图3,设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形OA1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM ∥NE ,DN ∥ME ,∴四边形DNEM 为平行四边形根据轴对称知,∠MED =∠NED又∠MDE =∠NED ,∴∠MED =∠MDE ,∴MD =ME ,∴平行四边形DNEM 为菱形.过点D 作DH ⊥OA ,垂足为H ,由题易知,tan ∠DEN =12,DH =1,∴HE =2, 设菱形DNEM 的边长为a , 则在Rt △DHM 中,由勾股定理知:222(2)1a a =-+,∴54a =∴S 四边形DNEM =NE ·DH =54∴矩形OA 1B 1C 1与矩形OABC 的重叠部分的面积不发生变化,面积始终为54. 【涉及知识点】轴对称 四边形 勾股定理【点评】本题是一个动态图形中的面积是否变化的问题,看一个图形的面积是否变化,关键是看决定这个面积的几个量是否变化,本题题型新颖是个不可多得的好题,有利于培养学生的思维能力,但难度较大,具有明显的区分度.【推荐指数】★★★★★。
2010年广东省深圳市中考数学试卷
2010年广东省深圳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(2010•海南)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.(2010•深圳)为保护水资源,某社区新建了雨水再生水工程,再生水利用量达58600立方米/年.这个数据用科学记数法表示为()A.58×103B.5.8×104C.5.9×104D.6.0×1043.(2010•深圳)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.x2×y2=(xy)4C.x2y•xy2=x3y3D.x6+x2=x44.(2010•深圳)升旗时,旗子的高度h(米)与时间t(分)的函数图象大致为()A.B.C.D.5.(2010•深圳)下列说法正确的是()A.“打开电视机,正在播世界杯足球赛”是必然事件B.“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就有1次正面朝上C.一组数据2,3,4,5,5,6的众数和中位数都是5 D.甲组数据的方差S甲2=0.24,乙组数据的方差S乙2=0.03,则乙组数据比甲组数据稳定6.(2010•深圳)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.7.(2010•深圳)已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.8.(2010•深圳)观察下来算式,用你所发现的规律得出22010的末位数字是()21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,A.2 B.4 C.6 D.89.(2010•深圳)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°10.(2010•深圳)有四张质地相同的卡片,她们的背面相同,其中两张的正面印有“粽子”的图标,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是()A.B.C.D.11.(2010•深圳)某单位向一所希望小学赠送1080件文具,现用A,B两种不同的包装箱进行包装,已知每个B 型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设B型包装箱每个可以装x件文具,根据题意列方程式为()A.=+12 B.=﹣12 C.=﹣12 D.=+1212.(2010•深圳)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=二、填空题(共4小题,每小题3分,满分12分)13.(2010•深圳)分解因式:4x2﹣4=_________.14.(2010•深圳)如图所示,在▱ABCD中,AB=5,AD=8,DE平分∠ADC,则BE=_________.15.(2010•深圳)如图所示,是一个由若干个相同的小正方体组成的几何体的主视图和俯视图,则能组成这个几何体的小正方体的个数最少是_________个.16.(2010•深圳)如图所示,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行_________分钟可使渔船到达离灯塔距离最近的位置.三、解答题(共7小题,满分52分)17.(2010•深圳)计算:2sin45°+(π﹣3.14)0++(﹣1)318.(2010•深圳)先化简分式,然后在0,1,2,3中选一个你认为合适的a值,代入求值.19.(2010•深圳)低碳发展是今年深圳市政府工作报告提出的发展理念,近期,某区与某技术支持单位合作,组织策划了该区“低碳先锋行动”,开展低碳测量和排行活动,根据调查数据制作了频数分布直方图和扇形统计图,图1中从坐到右各长方形的高度之比为2:8:9:7:3:1.(1)已知碳排放值5≤x<7(千克/平方米•月)的单位有16个,则此次行动共调查了_________个单位;(2)在图2中,碳排放值5≤x<7(千克/平方米•月)部分的圆心角为_________度;(3)小明把图1中碳排放值1≤x<2的都看成1.5,碳排放值2≤x<3的都看成2.5,以此类推,若每个被检查单位的建筑面积均为10000平方米,则按小明的办法,可估算碳排放值x≥4(千克/平方米•月)的被检单位一个月的碳排放总值约为_________吨.20.(2010•深圳)如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.21.(2010•深圳)儿童商场购进一批M型服装,销售时标价为75元/件,按8折销售仍可获利50%.商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x>0).(1)求M型服装的进价;(2)求促销期间每天销售M型服装所获得的利润W的最大值.22.(2010•深圳)如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(﹣2,0),B(﹣1,﹣3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.23.(2010•深圳)如图1所示,以点M(﹣1,O)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=﹣x ﹣与⊙M相切于点H,交x轴于点E,交y轴于点F.(1)请直接写出OE,⊙M的半径r,CH的长;(2)如图2所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图3所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.2010年广东省深圳市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(2010•海南)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.考点:绝对值。
2010年广东省深圳市中考数学试卷
2010年广东省深圳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)﹣2的绝对值是()A.﹣2 B.﹣ C.D.22.(3分)为保护水资源,某社区新建了雨水再生水工程,再生水利用量达58600立方米/年.这个数据用科学记数法表示为()A.58×103 B.5.8×104C.5.9×104D.6.0×1043.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.x2×y2=(xy)4C.x2y+xy2=x3y3D.x6÷x2=x44.(3分)升旗时,旗子的高度h(米)与时间t(分)的函数图象大致为()A. B. C. D.5.(3分)下列说法正确的是()A.“打开电视机,正在播世界杯足球赛”是必然事件B.“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就有1次正面朝上C.一组数据2,3,4,5,5,6的众数和中位数都是5D.甲组数据的方差S甲2=0.24,乙组数据的方差S乙2=0.03,则乙组数据比甲组数据稳定6.(3分)下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.7.(3分)已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A. B.C.D.8.(3分)观察下列算式,用你所发现的规律得出22015的末位数字是()21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A.2 B.4 C.6 D.89.(3分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°10.(3分)有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图标,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是()A.B.C.D.11.(3分)某单位向一所希望小学赠送1080件文具,现用A,B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B 型包装箱比单独使用A型包装箱可少用12个.设B型包装箱每个可以装x件文具,根据题意列方程式为()A.=+12 B.=﹣12C.=﹣12 D.=+1212.(3分)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y= B.y= C.y=D.y=二、填空题(共4小题,每小题3分,满分12分)13.(3分)分解因式:4x2﹣4=.14.(3分)如图所示,在▱ABCD中,AB=5,AD=8,DE平分∠ADC,则BE=.15.(3分)如图所示,是一个由若干个相同的小正方体组成的几何体的主视图和俯视图,则能组成这个几何体的小正方体的个数最少是个.16.(3分)如图所示,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行分钟可使渔船到达离灯塔距离最近的位置.三、解答题(共7小题,满分52分)17.(6分)计算:2sin45°+(π﹣3.14)0++(﹣1)3.18.(6分)先化简分式,然后在0,1,2,3中选一个你认为合适的a值,代入求值.19.(7分)低碳发展是今年深圳市政府工作报告提出的发展理念,近期,某区与某技术支持单位合作,组织策划了该区“低碳先锋行动”,开展低碳测量和排行活动,根据调查数据制作了频数分布直方图和扇形统计图,图1中从左到右各长方形的高度之比为2:8:9:7:3:1.(1)已知碳排放值5≤x<7(千克/平方米•月)的单位有16个,则此次行动共调查了个单位;(2)在图2中,碳排放值5≤x<7(千克/平方米•月)部分的圆心角为度;(3)小明把图1中碳排放值1≤x<2的都看成1.5,碳排放值2≤x<3的都看成2.5,以此类推,若每个被检查单位的建筑面积均为10000平方米,则按小明的办法,可估算碳排放值x≥4(千克/平方米•月)的被检单位一个月的碳排放总值约为吨.20.(7分)如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.21.(8分)儿童商场购进一批M型服装,销售时标价为75元/件,按8折销售仍可获利50%.商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x>0).(1)求M型服装的进价;(2)求促销期间每天销售M型服装所获得的利润W的最大值.22.(9分)如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(﹣2,0),B(﹣1,﹣3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;=4S△ABM成立,求点P的坐(3)在第(2)问的结论下,抛物线上的点P使S△PAD标.23.(9分)如图1所示,以点M(﹣1,0)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=﹣x﹣与⊙M相切于点H,交x轴于点E,交y轴于点F.(1)请直接写出OE,⊙M的半径r,CH的长;(2)如图2所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图3所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M 于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.2010年广东省深圳市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2016•宿迁)﹣2的绝对值是()A.﹣2 B.﹣ C.D.2【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.故选D.2.(3分)(2010•深圳)为保护水资源,某社区新建了雨水再生水工程,再生水利用量达58600立方米/年.这个数据用科学记数法表示为()A.58×103 B.5.8×104C.5.9×104D.6.0×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:58 600用科学记数法表示为5.86×104≈5.9×104.故选C.3.(3分)(2010•深圳)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.x2×y2=(xy)4C.x2y+xy2=x3y3D.x6÷x2=x4【分析】A、利用完全平方公式即可判定;B、利用单项式相乘的法则即可判定;C、利用单项式加法法则即可判定;D、利用单项式的除法即可判定.【解答】解:A、(x﹣y)2=x2+y2﹣2xy,故选项错误;B、x2×y2=(xy)2,故选项错误;C、x2y+xy2≠x3y3,故选项错误;D、x6÷x2=x4,故选项正确.故选D.4.(3分)(2010•深圳)升旗时,旗子的高度h(米)与时间t(分)的函数图象大致为()A. B. C. D.【分析】根据横轴代表时间,纵轴代表高度,旗子的高度h(米)随时间t(分)的增长而变高来进行选择.【解答】解:高度h将随时间的增长而变高,故选B.5.(3分)(2010•深圳)下列说法正确的是()A.“打开电视机,正在播世界杯足球赛”是必然事件B.“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就有1次正面朝上C.一组数据2,3,4,5,5,6的众数和中位数都是5D.甲组数据的方差S甲2=0.24,乙组数据的方差S乙2=0.03,则乙组数据比甲组数据稳定【分析】结合随机事件、概率的意义、众数、中位数、方差等概念一一判断,找到正确选项即可.【解答】解:A、“打开电视机,正在播世界杯足球赛”是随机事件,故错误;B、“掷一枚硬币正面朝上的概率是”表示在大量重复试验下,抛掷硬币正面朝上次数占一半,不是一定每抛掷硬币2次就有1次正面朝上,故错误;C、中位数是4.5,故错误;D、方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.故先D.6.(3分)(2013•北京)下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故此选项正确;B、是轴对称图形,也是中心对称图形.故此选项错误;C、是轴对称图形,不是中心对称图形.故此选项错误;D、是轴对称图形,不是中心对称图形.故此选项错误.故选:A.7.(3分)(2010•深圳)已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A. B.C.D.【分析】根据第二象限内点的特征,列出不等式组,求得a的取值范围,然后在数轴上分别表示出a的取值范围.【解答】解:∵点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则有解得﹣2<a<1.故选C.8.(3分)(2010•深圳)观察下列算式,用你所发现的规律得出22015的末位数字是()21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A.2 B.4 C.6 D.8【分析】因为21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,观察发现:2n的个位数字是2,4,8,6四个一循环,所以根据2015÷4=503…3,得出22015的个位数字与23的个位数字相同,是8.【解答】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选:D.9.(3分)(2010•深圳)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B 的度数是()A.40°B.35°C.25°D.20°【分析】先根据等腰三角形的性质及三角形内角和定理求出∠ADC的度数,再根据等腰三角形的性质及三角形外角与内角的关系求出∠B的度数即可.【解答】解:∵△ABC中,AC=AD,∠DAC=80°,∴∠ADC==50°,∵AD=BD,∠ADC=∠B+∠BAD=50°,∴∠B=∠BAD=()°=25°.故选C.10.(3分)(2010•深圳)有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图标,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是()A.B.C.D.【分析】列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:列树状图得:共有12种情况,两张图案一样的有4种情况,所以概率是,故选A.11.(3分)(2010•深圳)某单位向一所希望小学赠送1080件文具,现用A,B 两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设B型包装箱每个可以装x件文具,根据题意列方程式为()A.=+12 B.=﹣12C.=﹣12 D.=+12【分析】关键描述语:单独使用B型包装箱比单独使用A型包装箱可少用12个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量﹣12,由此可得到所求的方程.【解答】解:根据题意,得:=﹣12,故选B.12.(3分)(2010•深圳)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y= B.y= C.y=D.y=【分析】根据P(3a,a)和勾股定理,求出圆的半径,进而表示出圆的面积,再根据圆的面积等于阴影部分面积的四倍,求出圆的面积,建立等式即可求出a 的值,从而得出反比例函数的解析式.【解答】解:由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为10π×4=40π.因为P(3a,a)在第一象限,则a>0,3a>0,根据勾股定理,OP==a.于是π=40π,a=±2,(负值舍去),故a=2.P点坐标为(6,2).将P(6,2)代入y=,得:k=6×2=12.反比例函数解析式为:y=.故选:D.二、填空题(共4小题,每小题3分,满分12分)13.(3分)(2010•深圳)分解因式:4x2﹣4=4(x+1)(x﹣1).【分析】所求代数式中含有公因数4,可先提取公因数,然后再运用平方差公式分解因式.【解答】解:原式=4(x2﹣1)=4(x+1)(x﹣1).故答案为:4(x+1)(x﹣1).14.(3分)(2010•深圳)如图所示,在▱ABCD中,AB=5,AD=8,DE平分∠ADC,则BE=3.【分析】先根据角平分线和平行四边形的性质求出CD=CE,再由BE=BC﹣CE求解.【解答】解:在ABCD中,AB=5,AD=8,∴BC=8,CD=5,∵DE平分∠ADC,∴∠ADE=∠CDE,又▱ABCD中,AD∥BC,∴∠ADE=∠DEC,∴∠DEC=∠CDE,∴CD=CE=5,∴BE=BC﹣CE=8﹣5=3.故答案为3.15.(3分)(2010•深圳)如图所示,是一个由若干个相同的小正方体组成的几何体的主视图和俯视图,则能组成这个几何体的小正方体的个数最少是9个.【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层正方体的可能的最少个数,相加即可.【解答】解:由俯视图易得最底层有6个正方体,由主视图第二层最少有2个正方体,第三层最少有1个正方体,那么共有9个正方体组成.故答案为:9.16.(3分)(2010•深圳)如图所示,某渔船在海面上朝正东方向匀速航行,在A 处观测到灯塔M在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行15分钟可使渔船到达离灯塔距离最近的位置.【分析】过M作AB的垂线,设垂足为N.由题易知∠MAB=30°,∠MBN=60°;则∠BMA=∠BAM=30°,得BM=AB.由此可在Rt△MBN中,根据BM(即AB)的长求出BN的长,进而可求出该船需要继续航行的时间.【解答】解:作MN⊥AB于N.易知:∠MAB=30°,∠MBN=60°,则∠BMA=∠BAM=30°.设该船的速度为x,则BM=AB=0.5x.Rt△BMN中,∠MBN=60°,∴BN=BM=0.25x.故该船需要继续航行的时间为0.25x÷x=0.25小时=15分钟.三、解答题(共7小题,满分52分)17.(6分)(2010•深圳)计算:2sin45°+(π﹣3.14)0++(﹣1)3.【分析】本题涉及零指数幂、乘方运算、特殊角的三角函数值、二次根式化简、负指数幂5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=9﹣2×+1+﹣1=9.18.(6分)(2010•深圳)先化简分式,然后在0,1,2,3中选一个你认为合适的a值,代入求值.【分析】先把分式中的分子、分母进行因式分解,在进行化简,最后根据分式有意义的条件选择合适的值代入求解即可.【解答】解:原式=÷﹣=÷+a=×+a=a+a=2a.∵若使分式有意义,则a(a+3)≠0,且a﹣1≠0,解得,a≠1,a≠0且a≠﹣3.∴在0,1,2,3中只需a≠0,a≠1即可,当a=2时,原式=2a=4.19.(7分)(2010•深圳)低碳发展是今年深圳市政府工作报告提出的发展理念,近期,某区与某技术支持单位合作,组织策划了该区“低碳先锋行动”,开展低碳测量和排行活动,根据调查数据制作了频数分布直方图和扇形统计图,图1中从左到右各长方形的高度之比为2:8:9:7:3:1.(1)已知碳排放值5≤x<7(千克/平方米•月)的单位有16个,则此次行动共调查了120个单位;(2)在图2中,碳排放值5≤x<7(千克/平方米•月)部分的圆心角为48度;(3)小明把图1中碳排放值1≤x<2的都看成1.5,碳排放值2≤x<3的都看成2.5,以此类推,若每个被检查单位的建筑面积均为10000平方米,则按小明的办法,可估算碳排放值x≥4(千克/平方米•月)的被检单位一个月的碳排放总值约为2180吨.【分析】(1)先算出每一份有多少个单位,16÷4=4,再算一共调查了多少个单位,4×(2+8+9+7+3+1)=120(个);(2)先算出碳排放值5≤x<7(千克/平方米•月)部分所占的百分比16÷120×100%,然后计算出圆心角;(3)先计算碳排放值4≤x<5的单位,碳排放值5≤x<6的单位,碳排放值6≤x<7的单位分别有28个,12个,4个,再算出碳排放值x≥(4千克/平方米•月)的被检单位一个月的碳排放总值.【解答】解:(1)16÷=120(个),答:则此次行动共调查了120个单位;(2)16÷120×360°=48°;答:碳排放值5≤x<7(千克/平方米•月)部分的圆心角为48度;(3)碳排放值x≥(4千克/平方米•月)的被检单位是第4,5,6组,×120=28,×120=12,×120=4,即分别有28个,12个,4个单位,10000×28×4.5+12×5.5+4×6.5=10000×(126+66+26)=2180000(千克),2180000千克=2180(吨)答:碳排放值x≥(4千克/平方米•月)的被检单位一个月的碳排放总值约为2180吨.20.(7分)(2010•深圳)如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.【分析】(1)因为∠AOB=∠COD=90°,由等量代换可得∠DOB=∠AOC,又因为△AOB和△COD均为等腰直角三角形,所以OC=OD,OA=OB,则△AOC≌△BOD;(2)由(1)可知△AOC≌△BOD,所以AC=BD=2,∠CAO=∠DBO=45°,由等量代换求得∠CAB=90°,则CD=.【解答】(1)证明:∵∠DOB=90°﹣∠AOD,∠AOC=90°﹣∠AOD,∴∠BOD=∠AOC,又∵OC=OD,OA=OB,在△AOC和△BOD中,∴△AOC≌△BOD(SAS);(2)解:∵△AOC≌△BOD,∴AC=BD=2,∠CAO=∠DBO=45°,∴∠CAB=∠CAO+∠BAO=90°,∴CD===.21.(8分)(2010•深圳)儿童商场购进一批M型服装,销售时标价为75元/件,按8折销售仍可获利50%.商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x>0).(1)求M型服装的进价;(2)求促销期间每天销售M型服装所获得的利润W的最大值.【分析】(1)销售时标价为75元/件,按8折销售仍可获利50%.可得:标价打8折等于(1+0.5)乘进价.(2)开展促销活动,每件在8折的基础上再降价x元销售,则实际销价为60﹣x,利润W=(60﹣x)(20+4x).【解答】解:(1)设进价为z,∵销售时标价为75元/件,按8折销售仍可获利50%.则75×0.8=(1+0.5)z.∴z=40;答:M型服装的进价为40元;(2)∵销售时标价为75元/件,开展促销活动每件在8折的基础上再降价x元销售,∴M型服装开展促销活动的实际销价为75×0.8﹣x=60﹣x,销售利润为60﹣x﹣40=20﹣x.而每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x,∴促销期间每天销售M型服装所获得的利润:W=(20﹣x)(20+4x)=﹣4x2+60x+400=﹣4+625.∴当x==7.5(元)时,利润W最大值为625元.22.(9分)(2010•深圳)如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(﹣2,0),B(﹣1,﹣3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;=4S△ABM成立,求点P的坐(3)在第(2)问的结论下,抛物线上的点P使S△PAD标.【分析】(1)将A、B点的坐标代入抛物线的解析式中即可求出待定系数的值;(2)由于A、D关于抛物线对称轴即y轴对称,那么连接BD,BD与y轴的交点即为所求的M点,可先求出直线BD的解析式,即可得到M点的坐标;(3)设直线BC与y轴的交点为N,那么△ABM的面积即为梯形ABNO、△BMN、△AOM的面积差,由此可求出△ABM和△PAD的面积;在△PAD中,AD的长为定值,可根据其面积求出P点纵坐标的绝对值,然后代入抛物线的解析式中即可求出P点的坐标.【解答】解:(1)由题意可得:,解得;∴抛物线的解析式为:y=x2﹣4;(2)由于A、D关于抛物线的对称轴(即y轴)对称,连接BD.则BD与y轴的交点即为M点;设直线BD的解析式为:y=kx+b(k≠0),则有:,解得;∴直线BD的解析式为y=x﹣2,点M(0,﹣2);(3)设BC与y轴的交点为N,则有N(0,﹣3);∴MN=1,BN=1,ON=3;S△ABM=S梯形AONB﹣S△BMN﹣S△AOM=(1+2)×3﹣×2×2﹣×1×1=2;∴S=4S△ABM=8;△PAD=AD•|y p|=8,由于S△PAD即|y p|=4;当P点纵坐标为4时,x2﹣4=4,解得x=±2,∴P1(﹣2,4),P2(2,4);当P点纵坐标为﹣4时,x2﹣4=﹣4,解得x=0,∴P3(0,﹣4);故存在符合条件的P点,且P点坐标为:P1(﹣2,4),P2(2,4),P3(0,﹣4).23.(9分)(2010•深圳)如图1所示,以点M(﹣1,0)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=﹣x﹣与⊙M相切于点H,交x轴于点E,交y轴于点F.(1)请直接写出OE,⊙M的半径r,CH的长;(2)如图2所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图3所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M 于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.【分析】(1)在直线y=﹣x﹣中,令y=0,可求得E的坐标,即可得到OE的长为5;连接MH,根据△EMH与△EFO相似即可求得半径为2;再由EC=MC=2,∠EHM=90°,可知CH是RT△EHM斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半即可得出CH的长;(2)连接DQ、CQ.根据相似三角形的判定得到△CHP∽△QDP,从而求得DQ 的长,在直角三角形CDQ中,即可求得∠D的余弦值,即为cos∠QHC的值;(3)连接AK,AM,延长AM,与圆交于点G,连接TG,由圆周角定理可知,∠GTA=90°,∠3=∠4,故∠AKC=∠MAN,再由△AMK∽△NMA即可得出结论.【解答】解:(1)∵直线y=﹣x﹣中,令y=0,则x=﹣5,即OE=5;令x=0,则y=﹣,故F点坐标为(0,﹣),∴EF==,∵M(﹣1,0),∴EM=4,∵∠E=∠E,∠AOE=∠EHM,∴△EMH∽△EFO,∴=,即=,∴r=2;∵CH是RT△EHM斜边上的中线,∴CH=EM=2.(2)连接DQ、CQ.∵∠CHP=∠D,∠CPH=∠QPD,∴△CHP∽△QDP.∴CH:DQ=HP:PD=2:3,∴DQ=3.∴cos∠QHC=cos∠D=.(3)如图3,连接AK,AM,延长AM,与圆交于点G,连接TG,则∠GTA=90°,∴∠MAN+∠4=90°,∵∠3=∠4∴∠MAN+∠3=90°由于∠BKO+∠3=90°,故∠BKC=∠MAN;而∠BKC=∠AKC,∴∠AKC=∠2,在△AMK和△NMA中,∠AKC=∠MAN;∠AMK=∠NMA,故△MAK∽△MNA,=;即:MN•MK=AM2=4,故存在常数a,始终满足MN•MK=a,常数a=4.参与本试卷答题和审题的老师有:CJX;蓝月梦;zhjh;Liuzhx;lanchong;郭静慧;gbl210;733599;HJJ;HLing;bjy;kuaile;Linaliu;MMCH;星期八;疯跑的蜗牛;王岑;lbz;py168;hbxglhl(排名不分先后)菁优网2017年6月15日。
2010年广东梅州中考数学试卷及答案.doc
AB D AC BPF DEABCEF 梅州市2010年初中毕业生学业考试数 学 试 题一、选择题(每小题3分,共15分)1.-2的相反数是( )A .2B .-1C .- 1 2D . 12 2.如图所示几何体的正视图是( ) 3.如图是我市某一天内的气温变化图,根据图2,下列说法中错误..的是(A .这一天中最高气温是24℃B .这一天中最高气温与最低气温的差为16℃C .这一天中2时至14时之间的气温在逐渐升高D .这一天中只有14时至24时之间的气温在逐渐降低 4.函数1+=x y 的自变量x 的取值范围是( )A .x ≥1B .x ≥-1C .x ≤1D .x ≤-1 5.下列图形中,是轴对称图形而不是中心对称图形的是( ) A .圆 B .正方形 C .矩形 D .正三角形二、填空题(每小题3分,共24分)6.如图,在△ABC 中,BC =6cm ,E 、F 分别是AB 、AC 的 中点,则EF =_______cm .7.已知反比例函数y =kx(k ≠0)的图象经过点(1,-1),则k =______. 8.分解因式:a 2-1=____________.9.甲、乙、丙、丁四支足球队在世界杯预选赛中的进球数分别为:9、9、11、7,则这组数据的:①众数为_____________,②中位数为____________,③平均数为__________.10.为支援玉树灾区,我市党员捐款近600万元,600万用科学记数法表示为__________. 11.若x 1、x 2是一元二次方程x 2―2x ―1=0的两个根,则x 1+x 2=________.12.已知一个圆锥的母线长为2cm ,它的侧面展开图恰好是一个半圆,则这个圆锥的侧面积等于_______cm 2(用含π的式子表示). 13.平面内不过同一点的n 条直线两两相交,它们的交点个数记作a n ,并且规定a 1=0.那么:①a 2=_____,②a 3-a 2=_______,③a n -a n-1=______(n ≥2,用含n 的代数式表示).三、解答题(本题有10小题,共81分)14.(7分)如图4,Rt △ABC 中,∠C =90°,∠A =60°,AC =2.按以下步骤作图:①以A 为圆心,以小于AC 长为半径画弧,分别交AC 、AB 于点E 、D ;②分别以D 、E 为圆心,以大于12DE 长为半径画弧,两弧相交于点P ;③连结AP 交BC 于点F .那么:(1)AB 的长为__________;(2)∠CAF =_________°(直接填写答案)./时教学楼x A O P B BA D C O P 图1 图215.(7分)计算:45cos 8)14.3(21201⨯+-+⎪⎭⎫ ⎝⎛---π. 16.(7分)解方程:122122+-=-x x x x .17.(7分)在平面直角坐标系中,点M 的坐标为(a ,1-2a ).(1)当a =-1时,点M 在坐标系的第___________象限(直接填写答案);(2)将点M 向左平移2个单位,再向上平移1个单位后得到点N ,当点N 在第三象限时,求a 的取值范围.18.(8分)(1)如图1,PA 、PB 分别与⊙O 相切于点A 、B .求证:PA =PB .(2)如图2,过⊙O 外一点P 的两条直线分别与⊙O 相交于点A 、B 和C 、D .那么当___________时,PB =PD (不添加字母符号和辅助线,不需证明,只需填上符合题意的一个条件).19.(8分)如图,某中学要在教学楼后面的空地上用40m 长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x ,面积为y . (1)求y 与x 的函数关系式,并求自变量x 的取值范围; (2)生物园的面积能否达到210m 2?说明理由.O 分数49.5 59.5 69.5 79.5 89.5 100.5 人数 2 10 162020.(8分)某校九年级有200名学生参加了全国初中数学联合竞赛的初赛,为了了解本次初赛的成绩情况,从中抽取了50名学生,将他们的初赛成绩(得分为整数,满分为100分)分成五组:第一组49.5~59.5;第二组59.5~69.5;第三组69.5~79.5;第四组79.5~89.5;第五组89.5~100.5.统计后得到如图所示的频数分布直方图(部分).观察图形的信息,回答下列问题: (1)第四组的频数为_________________(直接填写答案).(2)若将得分转化为等级,规定:得分低于59.5分评为“D ”,59.5~69.5分评为“C ”,69.5~89.5分评为“B ”,89.5~100.5分评为“A ”.那么这200名参加初赛的学生中,参赛成绩评为“D ”的学生约有________个(直接填写答案).(3)若将抽取出来的50名学生中成绩落在第四、第五组的学生组成一个培训小组,再从这个培训小组中随机挑选2名学生参加决赛.用列表法或画树状图法求:挑选的2名学生的初赛成绩恰好都在90分以上的概率.21.(8分)东艺中学初三(1)班学生到雁鸣湖春游,有一项活动是划船.游船有两种,甲种船每条船最多只能坐4个人,乙种船每条船最多只能坐6个人.已知初三(1)班学生的人数是5的倍数,若仅租甲种船,则不少于12条;若仅租乙种船,则不多于9条. (1)求初三(1)班学生的人数;(2)如果甲种船的租金是每条船10元,乙种船的租金是每条船12元.应怎样租船,才能使每条船都坐满,且租金最少?说明理由.22.(10分)如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线MN ∥BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:PE =PF ;(2)当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由;N(3)若在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =32.求此时∠A 的大小.23.(11分)如图,直角梯形OABC 中,OC ∥AB ,C (0,3),B (4,1),以BC 为直径的圆交x 轴于D 、E 两点(D 点在E 点右方). (1)求点E 、D 的坐标;(2)求过B 、C 、D 三点的抛物线的函数关系式;(3)过B 、C 、D 三点的抛物线上是否存在点Q ,使△BDQ 是以BD 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机密☆启用前
2010年广东中考数学试题及答案
说明:1.全卷共4页,考试用时100分钟,满分为120分.
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、
试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,
如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.
4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域
内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和
涂改液.不按以上要求作答的答案无效.
5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.
一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确
的,请把答题卡上对应题目所选的选项涂黑.
1.-3的相反数是( )
A .3
B .31
C .-3
D .13
- 2.下列运算正确的是( )
A .ab b a 532=+
B .()b a b a -=-422
C .()()22b a b a b a -=-+
D . ()222
b a b a +=+ 3.如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为( )
A.70°
B.100°
C.110°
D.120°
4.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元、6元、6元、7元、8元、 9元,则这组数据的中位数与众数分别为( )
A .6,6
B .7,6
C . 7,8
D .6,8
5. 左下图为主视方向的几何体,它的俯视图是( )
二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应
的位置上. 6.根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚19时,参观者已超过 8000000人次,试用科学记数法表示8000000= .
7.分式方程11
2=+x x 的解x = . 8.如图,已知R t △ABC 中,斜边BC 上的高AD =4,cosB =
54,则 AC = .
9.某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两 年内,商品房每平方米平均价格的年增长率都为x ,试列出关于x 的方程: .
10.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;
把正方形A 1B 1C 1D 1边长按原法延长一倍得到新正方形A 2B 2C 2D 2(如图(2));以此下去…, 则正方形A 4B 4C 4D 4的面积为 .
三、解答题(一)(本大题5小题,每小题6分,共30分)
11.计算:()001260cos 2214π-+-⎪⎭
⎫ ⎝⎛+-. 12. 先化简,再求值 ()x x x x x 224422+÷+++ ,其中 x = 2 .
13. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,R t △ABC 的顶点均在格点上,
在建立平面直角坐标系以后,点A 的坐标为(-6,1),点B 的坐标为(-3,1),点C 的坐标为 (-3,3).
(1)将R t △ABC 沿X 轴正方向平移5个单位得到R t △A 1B 1C 1,试在图上画出R t △A 1B 1C 1的图形,
并写出点A 1的坐标。
(2)将原来的R t △ABC 绕着点B 顺时针旋转90°得到R t △A 2B 2C 2,试在图上画出R t △A 2B 2C 2的
图形。
14.如图,PA 与⊙O 相切于A 点,弦A B ⊥OP ,垂足为C ,OP 与⊙O 相交于D 点,已知OA =2,
OP =4.
⑴求∠POA 的度数;
⑵计算弦AB 的长.
15.如图,一次函数1y kx =-的图象与反比例函数m y x
=的图象交于A 、B 两点,其中A 点坐标 为(2,1).
⑴试确定k 、m 的值;
⑵求B 点的坐标.
四、解答题(二)(本大题4小题,每小题7分,共28分)
16.分别把带有指针的圆形转盘A 、B 分成4等份、3等份的扇形区域,并在每一个小区域内标上
数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停 止时,若指针所指两区域的数字之积为奇数,则欢欢
胜;若指针所指两区域的数字之积为偶数,则乐乐胜;
若有指针落在分割线上,则无效,需重新转动转盘.
⑴试用列表或画树状图的方法,求欢欢获胜的概率;
⑵请问这个游戏规则对欢欢、乐乐双方公平吗?试
说明理由.
17.已知二次函数2
y x bx c =-++的图象如图所示,它与x 轴的一个交点坐标为(-1,0) ,与
y 轴的交点坐标为(0,3)
. ⑴求出b ,c 的值,并写出此二次函数的解析式;
⑵根据图象,写出函数值y 为正数时,自变量x 的取值范围.
18.如图,分别以Rt ABC ∆的直角边AC 及斜边AB 向外作等边ACD ∆,等边ABE ∆.已知
∠BAC =30°,EF ⊥AB ,垂足为F ,连结DF .
⑴试说明AC =EF ;
第17题图 第18题图
⑵求证:四边形ADFE 是平行四边形.
19.某学校组织340名师生进行长途考察活动,带有行礼170件,计划租用甲、乙两种型号的汽车 共有10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.
⑴请你帮助学校设计所有可行的租车方案;
⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?
五、解答题(三)(本大题3小题,每小题9分,共27分)
20.已知两个全等的直角三角形纸片ABC 、DEF ,如图(1)放置,点B 、D 重合,点F 在BC 上,
AB 与EF 交于点G .∠C =∠EFB =90°,∠E =∠ABC =30°,AB =DE =4.
(1)求证:EGB ∆是等腰三角形;
(2)若纸片DEF 不动,问ABC ∆绕点F 逆时针旋转最小____度时,四边形ACDE 成为以ED 为底的梯形(如图(2)).求此梯形的高.
21.阅读下列材料:
112(123012),3
123(234123),3
134(345234),3
⨯=⨯⨯-⨯⨯⨯=⨯⨯-⨯⨯⨯=⨯⨯-⨯⨯ 由以上三个等式相加,可得
1122334345203
⨯+⨯+⨯=⨯⨯⨯=. 读完以上材料,请你计算下各题:
(1)1223341011⨯+⨯+⨯++⨯(写出过程);
(2)122334(1)_____n n ⨯+⨯+⨯++⨯+=;
(3)123234345789______⨯⨯+⨯⨯+⨯⨯+
+⨯⨯=. 22.如图(1),(2)所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N
分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延 长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连结FM 、MN 、FN ,当F 、N 、 M 不在同一条直线时,可得FMN ∆,过FMN ∆三边的中点作∆PQW .设动点M 、N 的速度 都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题:
(1)说明FMN ∆∽∆QWP ;
(2)设0≤x ≤4(即M 从D 到A 运动的时间段).试问x 为何值时,∆PQW 为直角三角形?
当x 在何范围时,∆PQW 不为直角三角形?
(3)问当x 为何值时,线段MN 最短?求此时MN 的值.。